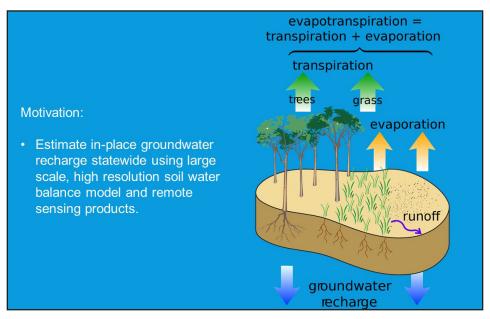
Using Chloride Mass Balance to Quantify Groundwater Recharge in the Mountains of New Mexico

David Ketchum, NM Tech, master's degree student, and NM WRRI Student Water Research Grant recipient

David Ketchum is a native of Bradford, Vermont. He did his undergraduate work in geography at Western Washington University in Bellingham, Washington, with a focus on natural resource management. After working as a nature guide in Chile for six years, he returned to study hydrology at New Mexico Tech, where he is now nearing the completion of his master's degree. David's hydrology work focuses on simulating the statewide soil water balance in New Mexico using high resolution remote sensing inputs. David is bound for Montana, where he will join the State Water Bureau and begin a remote sensing program focused on estimating irrigation requirements and crop water consumption. David is also a recipient of an FY 16 NM WRRI Student Water Research Grant.


ESTIMATING GROUNDWATER RECHARGE USING CHLORIDE MASS BALANCE

David Ketchum

61st Annual New Mexico Water Conference

October 6, 2016

Figure 1. Introduction.

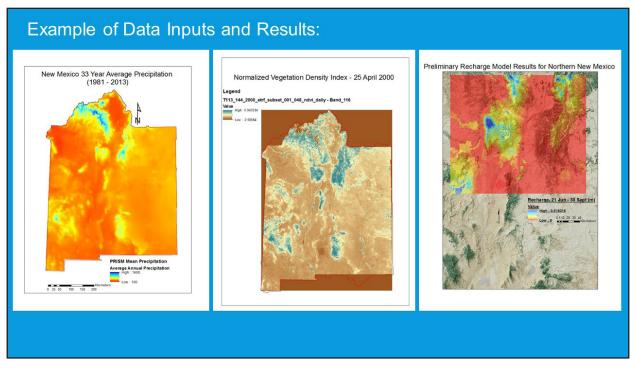


Figure 3. Data inputs and results.

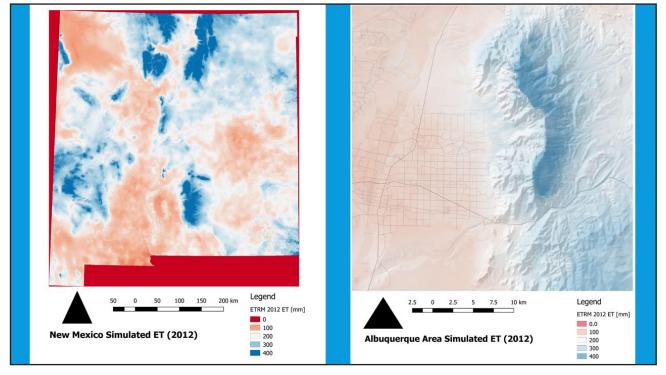


Figure 4. Simulated evapotranspiration for New Mexico and Albuquerque in 2012.

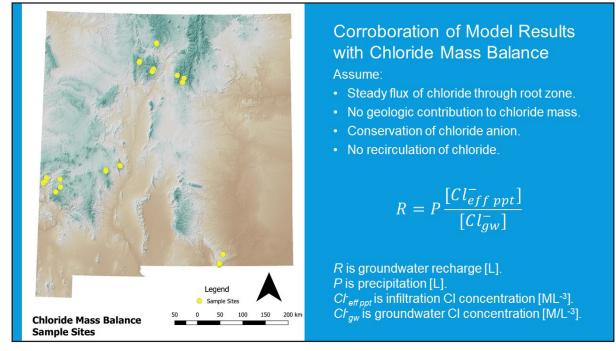
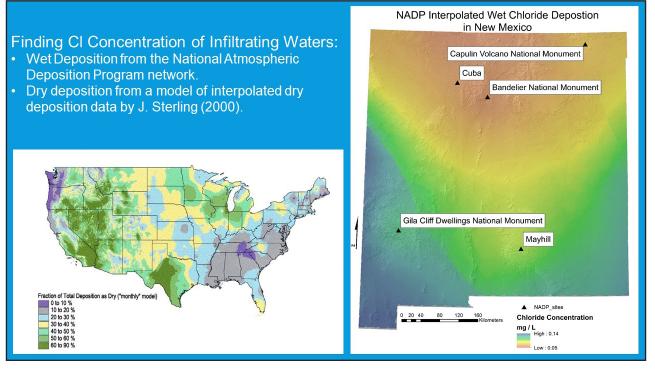
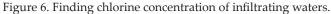




Figure 5. Corroboration of model results with chloride mass balance.



Figure 7. Sites of springs where water was collected for stable isotope analysis in the San Pedro, Sangre de Cristo, and Guadalupe mountains.

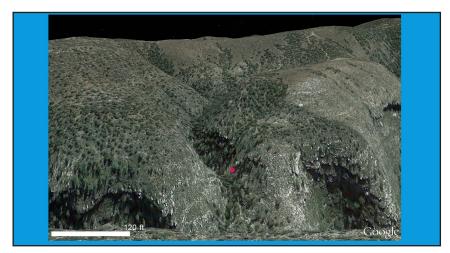


Figure 8. Sites of springs where water was collected for stable isotope analysis in the San Pedro, Sangre de Cristo, and Guadalupe mountains (cont.).

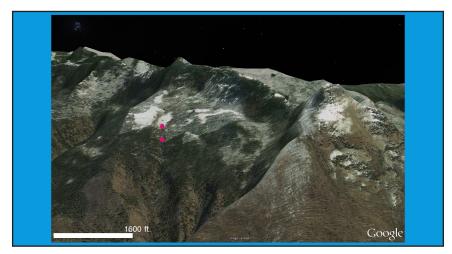


Figure 9. Sites of springs where water was collected for stable isotope analysis in the San Pedro, Sangre de Cristo, and Guadalupe mountains (cont.).

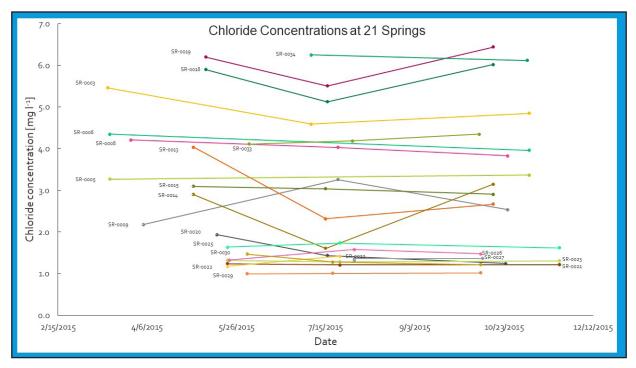


Figure 10. Chloride concentrations at 21 springs.

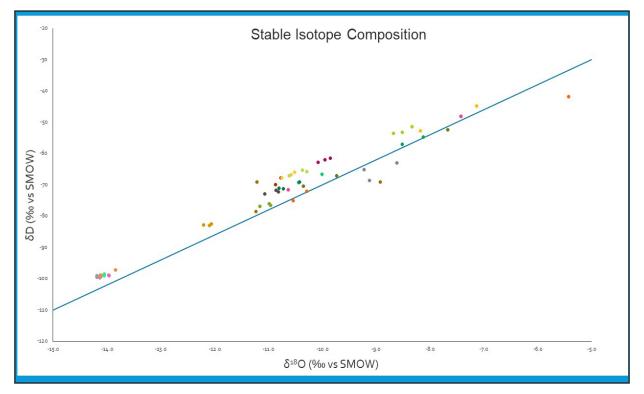


Figure 11. Stable isotopic composition of waters used in this study.

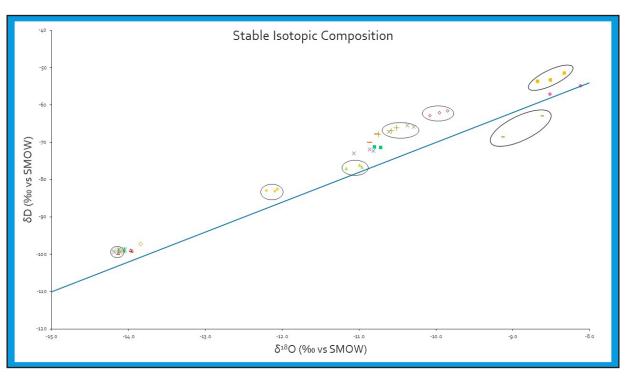


Figure 12. Stable isotopic composition of spring waters, grouped by location.

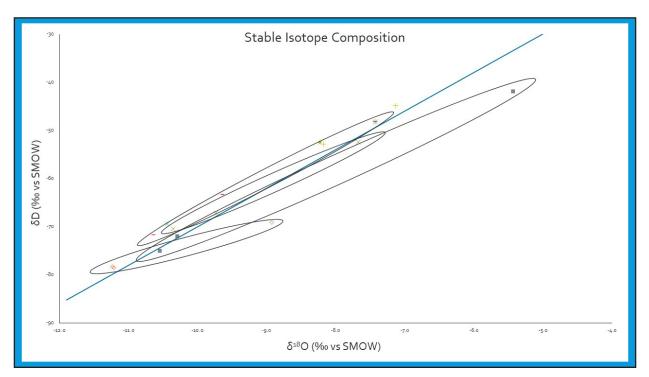


Figure 13. Stable isotopic composition of spring waters, grouped by location (cont.).

133

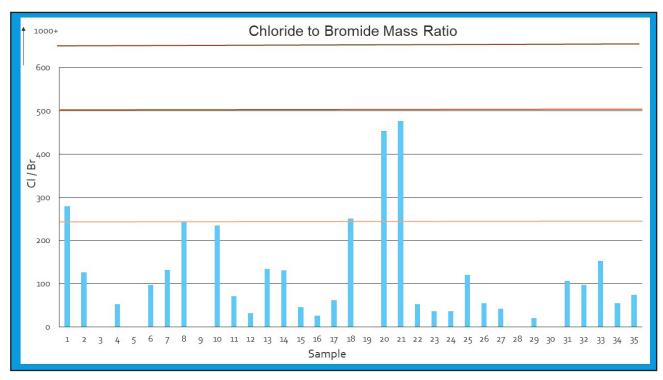


Figure 14. Chloride to bromide mass ratio.

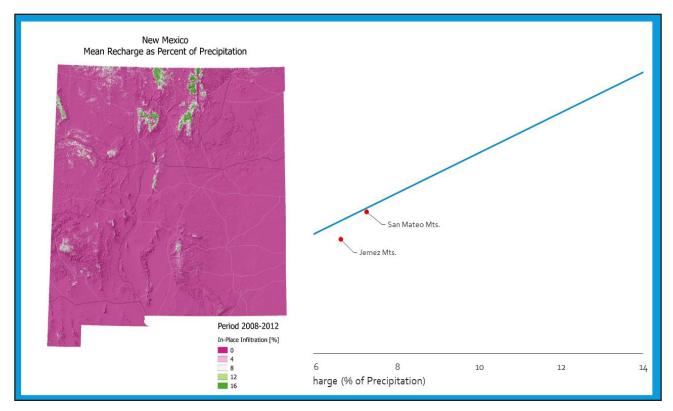


Figure 15. New Mexico mean recharge as percent of precipitation.

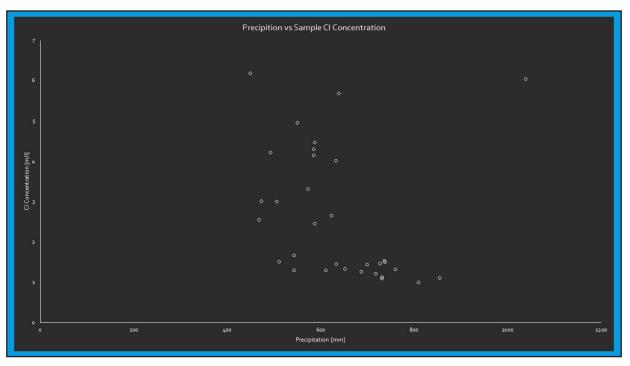


Figure 16. Precipitation v. sample chlorine concentration.

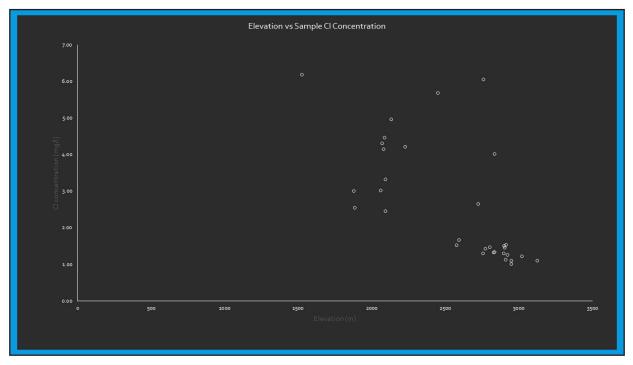


Figure 17. Elevation v. sample chloride concentration.

135

				1									1		No. of Concession, Name	
CH- ID	D	CC L CL->	I I	-	M/-+ T		NI-	Ca:Na		~		60.			Cl:Br	CI- D-+-
Site ID		SC (µS/cm)				Ca	Na	_	Mg	ĸ		504	CI			Sample Date
					Mg-Ca-HCO3	65.6	4.10	16.0		0.790	431	37.0	5.46	0.1		3/15/2015
	Gualadule Mtns	- <i>i</i>			Mg-Ca-HCO3	60.9	3.28	18.6		0.731	375	19.8	3.27	0.034		3/16/2015
SR-0006A	Gualadule Mtns	664	8.1	374	Mg-Ca-HCO3	51.6	3.34	15.4	57.9	0.485	431	31.1	4-35	0.03	131	3/16/2015
	L				Ca-Na-Mg-HCO3-											
SR-0008A	San Mateo Mtns	130	7.9	120		14.2	10.2	1.4	1.89	1.27	51	14.8	4.21	0.02	234	3/28/2015
				200	Ca-Na-Mg-HCO3-		12020				8452					
	San Mateo Mtns		/	<u>~ ~ ~</u>	504	7.61	6.81		1.47	1 222	34		2.18	0.03	<u> </u>	4/4/2015
	Apache N.F.	243	<u> </u>	-	Ca-Mg-Na-HCO3	24.0	17.3		5.92	0.753	138	11.3	4.04	0.09		5/2/2015
		435	7.5	290		63.3	18.3	3.5	10.8	0.864	281	6.99	2.90	0.11		5/2/2015
SR-0015A	Apache N.F.	404	7.2	313	Na-Ca-HCO3	4.86	91.9	0.1	2.24	0.818	249	10.6	3.10	0.05	61	5/2/2015
					Mg-Ca-Na-HCO3-											
SR-0018A	Gila N.F.	186	7.2	147		17.7	6.39	2.8	7.85	2.75	73	23.1	5.90	0.01	454	5/9/2015
					Mg-Ca-Na-HCO3-											
SR-0020A	Gila N.F.	83	6.6	67	504	9.33	3-53	2.6	2.14	0.511	39	6.66	1.94	0.04	53	5/15/2015
	Magdalena		387.1													
SR-0021A		158	7.8	102	Ca-Mg-HCO3	25.5	2.83	9.0	3.17	0.965	85	6.53	1.24	0.03	36	5/21/2015
	Magdalena															
SR-0022A	Ridge	174	7.6	103	Ca-Mg-HCO3	22.6	2.81	8.0	5.84	0.884	99	6.64	1.18	0.03	37	5/21/2015
	Magdalena															
SR-0023A	Ridge	99	7.4	62	Ca-HCO3-SO4	13.9	2.14	6.5	1.02	1.10	46	5.44	1.32	0.01	120	5/21/2015
	Magdalena															
SR-0025A	Ridge	228	7.2	137	Ca-Mg-HCO3	36.7	4.11	8.9	4.52	0.827	133	7.56	1.64	0.04	42	5/21/2015
SR-0026A	Mogote Ridge	90	6.2	70	Ca-HCO3-SO4	11.8	2.57	4.6	1.47	0.923	41	6.86	1.33			5/22/2015
SR-0027A	Mogote Ridge	91	6.2	72	Ca-HCO3-SO4	11.4	2.28	5.0	2.06	1.19	39	8.47	1.30	0.07	20	5/22/2015
SR-0029A	San Pedro Ridge	262	7.0	181	Ca-HCO3	54.1	2.02	26.8	1.23	1.58	160	4.20	1.0	0.01	107	6/1/2015
SR-0030A	San Pedro Ridge	336	7.0	198	Ca-HCO3	55.0	4.27	12.9	7.25	2.19	208	5.63	1.47	0.02	98	6/1/2015
SR-0031A	Pecos Canyon	354	7.2	204	Ca-HCO3	70.4	1.32	53.3	2.27	0.310	206	16.0	1.10	0.01	152	6/2/2015
SR-0032A	Pecos Canyon	345	8.o	200	Ca-Mg-HCO3	68.o	1.26	54.0	2.20	0.305	203	15.6	1.13	0.02	54	6/2/2015
SR-0033A	Pecos Canyon	534	7.4	322	Mg-Ca-Na-HCO3	107	4.62	23.2	5.22	0.571	312	31.7	4.11	0.06	74	6/2/2015

Figure 18. Sample data for 2015.