Energy Efficient Strategies and Renewable Energy Utilization for Desalination

Joe Jacangelo, WateReuse Research Foundation

Dr. Jacangelo is a Vice President and Director of Research for MWH. He has 27 years of experience in the field of environmental health engineering, and has specialized in the areas of water quality and treatment, water and wastewater disinfection, membrane technology, renewable energy and public health. He has served as Technical Director, Principal Investigator, Project Manager or Engineer for over 80 water and wastewater projects. He has published over 100 technical papers and holds various positions within professional organizations such as American Water Works Association and the International Water Association. Dr. Jacangelo is also an adjunct faculty member at the Johns Hopkins University Bloomberg School of Public Health. In addition, he is the Chair of the Board of Directors for the WateReuse Research Foundation and a past board member of the American Water Works Association. Dr. Jacangelo served three years as a Peace Corps Volunteer in the Republic of the Congo.

PowerPoint Presentation

http://wrri.nmsu.edu/publish/watcon/proc56/Jacangelo.pdf

WateReuse Research Foundation
To conduct and promote applied research on the reclamation,
recycling, reuse and desalination of water.

Reclaimed Water Utilization by Flow, FDEP 2010

**July State of the Content and State

Commitment to Research \$42 Million since 2001

6

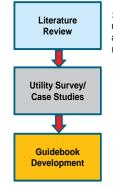
Study Goals

- To develop a comprehensive knowledge-base with the most updated developments in energy minimization and renewable energy techniques.
- Prepare a guidebook based on the relevant practical lessons learned by global researchers, organizations and utilities.

6

4

Energy Efficient Strategies and Renewable Energy Utilization for Desalination


Jacangelo, Ph.D., REHS^{1,2}
Arun Subramani, Ph.D. ¹, Mohammad Badruzzaman, Ph.D., P.E. ¹,
Joan Oppenheimer, MSPH¹

¹MWH

²The Johns Hopkins University Bloomberg School of Public Health

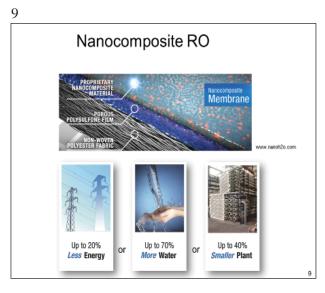
7

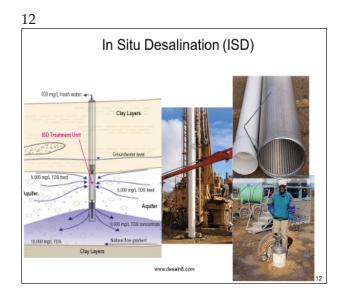
Project Summary

- > Collect information on energy minimization strategies, technological advancements and economic analyses (Water Research 45: 1907, 2011).
- > Document information on process, implementation strategies, regulation and policy.
- Provide information to utility and policy makers.

.

5

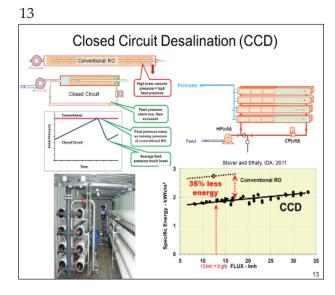

Background


- The generation of energy is the single largest source of green house gas (GHG) emissions.
- Optimizing the energy of desalination and reuse processes has become a critical component in addressing energy consumption.
- Increasing renewable energy resource (RES)
 utilization and reducing GHG emissions has become
 an important goal for water utilities and agencies.

8

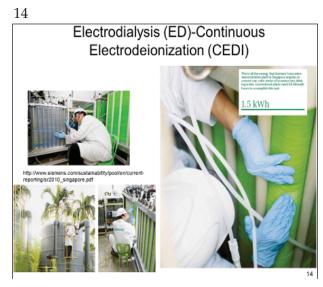
Promising New Desalination Technologies

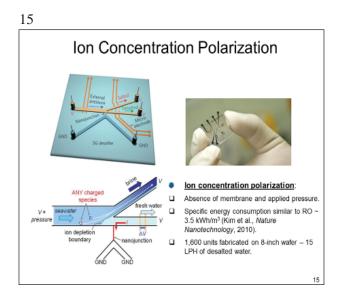
. .


Nanotubes

Carbon nanotubes

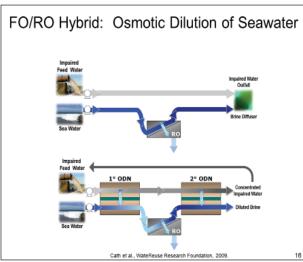
Boron Nitride Nanotubes


WWW.manosaikins.com


Hider et al., Small, 2009.

Biomimetic Membranes

- Saves 70 % on specific power contrareption of ender the contrareption of ender



Benefits of Renewable Energy Sources

- Renewable energy is carbon neutral
- Abundant resources
- Underutilized
- Decentralized facilities
- Ability to create new employment

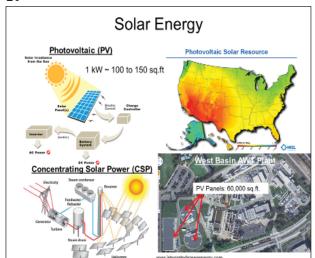
18

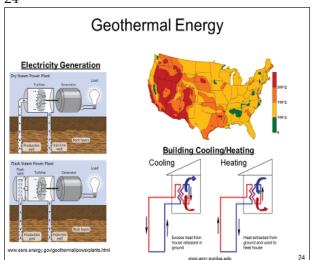
16

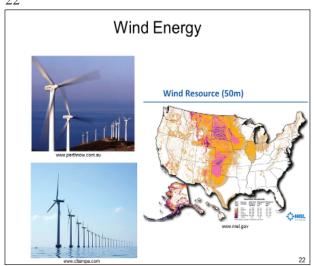
19

Challenges of Renewable Energy Sources

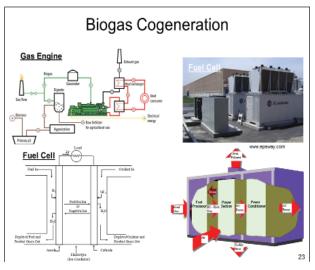
- High capital costs
- Local/region dependent
- Often require new infrastructure
- Requires funding and incentives
- Large footprint requirement
- Return-on-investment (ROI)

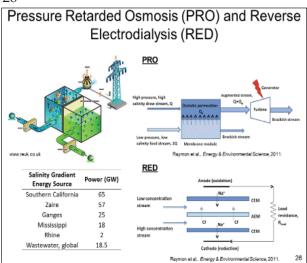

19

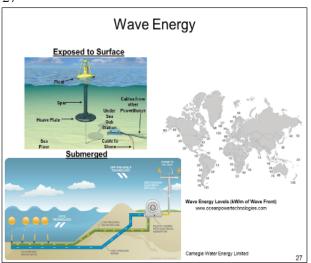

17


20

Renewable Energy Utilization


Established Renewable Energy Technologies





Promising Renewable Energy Technologies

30

Questionnaire Objectives

- Treatment process description
- Energy consumption for utilities using conventional energy source
- Energy consumption for utilities using renewable energy
- GHG emissions and tools used for quantification
- Economic evaluation for integrating renewable energy and implementation of energy efficient strategies
- Regulation and policy for energy management

28

Utility Case Studies

31

Utilities Participating in Study

Type of Plant	Capacity MGD	End Use	Feed TDS, mg/L	Permeate TDS, mg/L	Energy Consumption, kWh/m ³
Reuse 1	30	GWR, IPR	850	30	NA.
Reuse 2	11	IPR, Industrial	552	26	0.98
Seawater Desalination 1	38	DW	37,000 - 40,000	< 200	3.6
Seawater Desalination 2	66	DW	36,700	275	3.3
Seawater Desalination 3	88	DW	40,500	< 80	3.5
Seawater Desalination 4	36	DW	35,000	< 270	3.5 – 3.9
Seawater Desalination 5	25	DW	< 28,500	< 360	3.9
Brackish Desalination 1	3.5	DW	2,300	< 320	0.94
Brackish Desalination 2	8	DW	2,000	< 150	1

29

Survey Questionnaire					
Salada Ng Salada	AND AND THE PARTY OF THE PARTY				
REMOVABLE DISSON TECHNOLOGIES AND CHEMP STRICTING STRATEGIES: GENELINES FOR WATER DESALIMATION AND REVEX SESTIONS TO GETHINDE INVOCATURE AND STRICT CONTINUOUS CLAS PROSCURES (MEDI-NO. 1).	Note that 2010/01/2016/01/2017 (2016/01/2017				
WATERLINE (III) MWH PROJECT BACKEROUGO AND SURVEY REQUEST	When the executioning parametral Section 1 and 1 a				
The objective of the project is to develop a guidebook on the opportune of energy minimization and rememble energy infrontegins lise made sense and devaluation facilities. The publishman fall for designed is account file following operations in refinition or copy minimization and representations confirmed in the control operations and control operations on the control operations and control operations are controlled to the control operation of control operations are controlled to the control operation of the control operation of the control operations are controlled to the control operation of the control operation operation of the control operation operation of the control operation operation operation operation of the control operation operation operation of the control operation op	This per feature of the Best code is select engine of eight in per feature or two pure. If the per feature of the two of the two per feature of the two per feature or two per feature of the two of two per feature of the two per feature of two per feature of the two per feature of two per feature of the two per feature of two per feature of the two per feature of the two per feature of t				
Prints on the underspooling place processes in their capacity Prints on the share of adequating bear schoolingses? Prints on the Prints of adequating bear schoolingses? Prints on the Prints of the State of the	Showed Street St				
We believe the year perhipsion in this percess of involvable a homeosismit patiences, because year energy managers main value and also because inhomeosism steps for ortical is oversione process) various that may provide economic tensels through reducing enous energy consumption.					
As a percepting utility, you will also be absorbed, you is any percentened papers, contained percent for secretarions, welcomes provided that this project. Furthermore, a final page of the placebook will be provided to you that may be useful for your facture energy management advantage.	Will provided of Softwares placed from East 1 No. 1 Have induced to connect the enterprising and the Software S				
Steadil parkeur any aucrities segmelling this parjets, places for their to content die Joseph lacengels (Jaco) prospositi multiplatei com;	Name and department of the control on the control of the control on the control o				
listoritations l	Secretic Barge I				

32

Energy Consumption of Various Components of a Seawater Desalination Plant Participating in Study

Component	Energy Consumption, kWh/m³	
Raw Water Pumping	0.39	
Pretreatment & Desalination	2.865	
Post Treatment	0.012	
High service pump station	0.3	
General (Buildings, heating, cooling)	0.04	
Total Energy Consumption	3.607	

utility scale.

36

33

Reported Energy Minimization Strategies

- Energy efficiency of pumps monitored (pump efficiency curves) to determine if the pumps and motors are operating close to the best efficiency point (BEP).
- Older pumps and motors replaced with newer premium efficiency models.
- VFDs installed to control motor speed.
- Smaller RO trains and larger high pressure pumps utilized for seawater desalination.
- ERDs (pelton wheel, pressure exchangers) for seawater desalination were installed in the first pass.
- ERDs (turbochargers) for brackish water desalination were installed between the first and second stage to operate as a booster pump.

34

Renewable Energy Employed by Utility Participants

Type of Plant	Renewable Energy	% Use of Renewable	Onsite/Offsite	Funding/Incentives
Reuse 1	Solar PV	20%	Onsite - Grid Connected	Southern California Edison
Reuse 2	Cogeneration	20%	Onsite - Grid Connected	Energy Saving Fund (NSV Dept. of Env. and Climate Change)
Seawater Desalination 1	Wind	100%	Offsite - Grid Connected	Government
Seawater Desalination 2	Wind	100%	Offsite - Grid Connected	Energy Saving Fund (NSV Dept. of Env. and Climate Change)
Seawater Desalination 3	None	0%	-	-
Seawater Desalination 4	None	0%	-	-
Seawater Desalination 5	None	0%	-	-
Brackish Desalination 1	Future Consideration	0%	Considering Onsite Solar PV/CSP	Not Determined
Brackish Desalination 2	Future Consideration	0%	Considering Onsite Solar PV	Not Determined

37

Guidebook

Reported Renewable Energy Utilization Lessons

Feasibility study essential before implementation at the

by installing solar panels on existing concrete tanks.

Footprint requirements for installation of solar PV reduced

Grid integration for solar PV panels improved by utilizing

several inverters in parallel to provide continuous power

Government funding and support from utility board was key in the implementation of renewable energy resources.

Risk shared in delivery of renewable energy: third party utilized to provide independent risk assessment.

Specialized staff required within utility during the design

and implementation phase.

35

Challenges for Utility Participants

Plant Type	ROI	Funding	Footprint	Integration	Permitting
Reuse 1	_	+	_	-	+
Reuse 2	_	+	+	-	+
Seawater Desalination 1	-	+	+	+	+
Seawater Desalination 2	-	+	+	+	+
Seawater Desalination 3		NO RENEWABLES UTILIZED			
Seawater Desalination 4		NO RENEWABLES UTILIZED			
Seawater Desalination 5	NO RENEWABLES UTILIZED				
Brackish Desalination 1	_	?	?	?	_
Brackish Desalination 2	_	_	+	?	?

"+ " indicates "favorable condition"
" - " indicates " NOT favorable condi

"?" indicates "NOT evaluated

38

The Purpose of the Guidebook is to Answer the Following Questions

- What resources are available as a utility manager to reduce energy consumption and implement renewable energy resources?
- What are the strategies available to reduce energy consumption in an existing or newly proposed plant?
- How are energy efficiency and GHG emissions monitored?
- What are the steps required for implementing renewable
- What are the renewable energy technologies available for implementation at a large scale?
- What are the funding options available?
- What are the challenges involved during implementation of renewable energy resources?

Components of the Guidebook

- Chapter 1: Introduction
- Chapter 2: Planning
- Chapter 3: Implementation of Efficient Energy Strategies
- Chapter 4: Utilization of Renewable Resources
- Appendices Utility Surveys and Literature Review

Important information

Further resources and tools

39

40

Implementation of Energy Efficient Strategies (Contents of Chapter 3)

- Distribution of energy consumption through treatment processes.
- Design strategies for energy minimization during design of seawater/brackish water/advanced water treatment processes.
- Pumping strategies for energy efficiency.
- Selection of energy minimization components for treatment processes.
- Strategies to reduce energy consumption with HVAC and lighting.
- Implementation of energy efficient strategies.

43

42

Example: What you need to know while selecting solar PV cells (Contents of Chapter 4)

Implementation of Renewable Energy Resources (Contents of Chapter 4)

Available options for financing and incentives.

Integration challenges and methods, consideration for

Determination of resource availability.

Commercial technologies available.

Handling resource variability.

grid integration.

Leading renewable energy providers.

Permitting approach and requirements.

Parameter	Description		
Cell efficiency	Percentage of solar energy falling on PV cells that is converted into		
	electrical energy		
Module efficiency	Combination of cell efficiency		
	placed into a module		
Energy yield	Output in kilowatt hours (kWh) over		
	time		
Typical module size	175 - 200 Watt: 3 feet by 5 feet		
Common types of	Poly Crystalline, Mono Crystalline,		
modules	Amorphous Silicon (thin film)		
Module lifetime	Poly Crystalline ~ 40 years; Mono		
	Crystalline ~ 50 years; Amorphous		
	Silicon ~ 20 years		

4

41

Example: What you need to know while selecting ERDs (Contents of Chapter 3)

Criterion/Device	Pelton Wheel Turbine	Reverse Running Turbine Pump	Turbo Booster Pump	Pressure or Work Exchanger
Commercial Availability	Yes	Yes	Yes	Yes
Proven Technology for high salinity applications	Yes	Yes	Yes	Yes
Potential Energy Savings (Relative to each other)	Medium	Low to Medium	Low	High
Capital Cost (Relative to each other)	Low to Medium	Low to Medium	Low	High
O&M Costs (Relative to each other)	Low	Low	Low	Medium to High
Efficiency (Relative to each other)	Medium (84% to 90%)	Low to Medium (75% to 85%)	Low (55% to 60%)	High (95% to 97%)
Efficiency Curve Shape	Varies	Varies	Slopes downward at low flows	Flat
Efficiency at Changing Process Conditions (Effect of deviation from design point)	Efficiency reduces when flow rate changes from design point	Efficiency reduces when flow rate changes from design point	Efficiency reduces when flow rate changes from design point	Moderate impact on performance
Brine Mixing with Feed Water	None	None	None	About 2 - 3%
System Complexity	Low	Low	Low	High

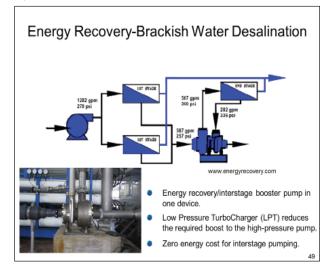
44

Example: What you need to know about financing options available (Contents of Chapter 4)

- Third-party ownership with a power purchase agreement (PPA):
- Provides utilities with the ability to benefit from renewable energy service contracts while avoiding the risks associated with ownership.
- The utility enters into a contract with the vendor/electric company to install a renewable energy system.
- The vendor/electric company deliver a set amount of power at an agreed price.
- The third-party (vendor/electric company) is responsible for operation and maintenance of renewable energy system.

www.epa.gov/greenpower/buygp/solarpower.htm

Resources Provided in the Guidebook You will find information on: Performing energy audits. Best practices for energy Software/Modeling tools for energy optimization and renewable energy implementation. GHG emissions monitoring and management tools. Financing options available for renewable energy implementation. Information on vendors providing state-of-the-art energy reducing technologies and renewable energy equipment


48 **Energy Usage-Reuse Energy Use by Equipment Energy Use by Process** Pumps consume the most energy.

46

Summary

- The evolution of renewable energy sources and development of novel processes and materials will continue to impact energy usage and production of GHG emissions.
- There are many common drivers, operational techniques and challenges for energy optimization or use of renewable energy sources irrespective of source water and end use.
- A guidebook was developed to provide information to utilities, designers and policymakers interested in implementing energy optimization strategies and renewable energy technologies.

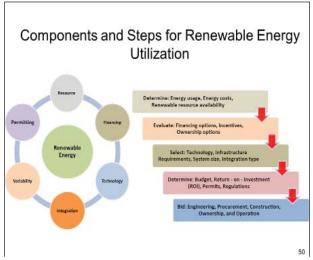
49

47

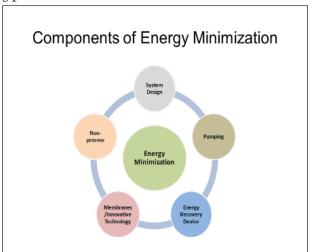
Acknowledgements

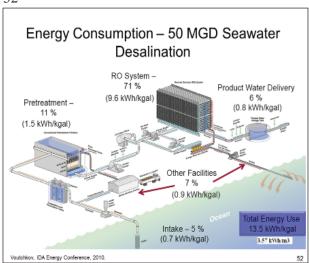
WateReuse Research Foundation (Project # 08-13)

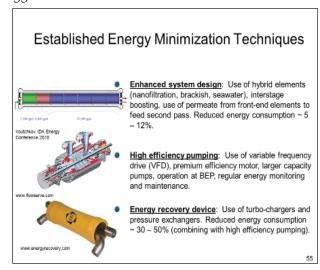
California Energy Commission

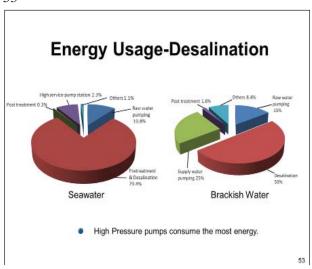

Project Managers – Caroline Sherony (WateReuse Research Foundation), Paul Roggensack – California Energy Commission (CEC)

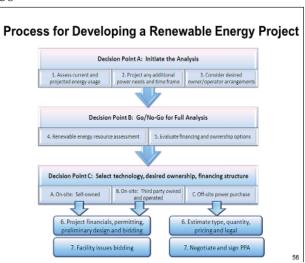
- PAC Members


 > Martin Vorum National Renewable Energy Laboratory (NREL)
 - David Yates National Center for Atomic Research (NCAR)
 - > Stephen Fok Pacific Gas & Electric (PG&E) > Shahid Chaudhry - California Energy Commission (CEC)
 - > Andrew Tiffenbach Bureau of Reclamation (USBR)


Participating Utilities


- > El Paso Water Utilities Public Service Board
- > Eastern Municipal Water District
- > West Basin Municipal Water District
- > Sydney Water Corporation
- > Water Corporation of Western Australia (Perth)
- > Public Utilities Board, Singapore
- > Ashkelon Desalination Facility




Energy Usage and
Minimization Strategies

