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ABSTRACT

Based on the concept of uniform nonlinearity (Dooge, 1967) a hydrologic
cascade is formulated for prediction of surface runoff. By applving it to
several natural agricultural watersheds its predictive ability is evaluated.
The cascade contains three parameters. Utilizing watershed morphology equa-
tions are developed to estimate these parameters. The results of the model
application to natural watersheds suggest that the model parameters can be
reliably estimated. This cascade model seems to be a compromise between

simple linear and complex nonlinear surface runoff models.



CHAPTER 1
INTRODUCTION
1.1 GENERAL REMARKS

The nonlinearity of watershed surface runoff has long been recognized.
As a result of this recognition several nonlinear surface runoff models have
appeared in the hydrological literature in the past ten years or so. The
approaches, employed in the development of these models, can be grouped into
two classes:

(1) Hydrodynamical
(2) Operational

The hydrodynamical approach (Chow, 1964; Singh, 1964; Kulandaiswamy,
1964; Wooding, 1965a, 1965b, 1966; Kibler and Woolhiser, 1970; Smith and
Woolhiser, 1970; Eagleson, 1970, 1972; Harley, Perkins and Eagleson, 1970;
Singh, 1975a, 1975b, 1975¢, 1976a) reqguires the assumption that certain
laws of physics hold and further requires a geometrical abstraction of the
real-world phenomenon.

The operational approach (Amorocho and Orlob, 1961; Amorocho, 1863,
1967, 1973; Amorocho and Brandstetter, 1971; Jacoby, 1966; Harder and Zand,
1969; Bidwell, 1970; Chiu and Huang, 1970; Diskin and Boneh, 1972) develops
input~output relationships by data fitting without making any explicit as-
sumptions regarding the internal structure of the system.

This dichotomy in the modes of approaches emerges from the positions
taken by the representatives of those two groups of approaches, and is well
illustrated in a quote by Amorocho and Hart (1964):

The first group espouses the pursuit of scientific research into

the basic operation of each component of the hydrologic cycle in

order to galn full understanding of their mechanisms and inter-

actlons. Although the immediate motivation of an individual re-
searcher may not transcend the narrow confines of a set of special



phenomena, it is implicit that a full synthesis of the hydrologic

cycle may eventually be sought. The concept of a full synthesis

is held to be the only rational approach to hydrology.

The second group is motivated by the need to establish workable

relationships between measurable parameters in the hydrologic

cycle to be used in solving pressing practical techmological

problems. These people generally hold that the vast complexity of

the systems involved in these studies and the inadequacy of the

knowledge now available and the knowledge likely to exist in the

foreseeable future, make the possibility of a full synthesis so

remote in most cases that it must be discarded for practical pur-

poses.

Because of inherent complexities of nonlinear models, both hydrodynami-
cal and operational, they have not yet succeeded in occupying the place of
operational tools in applied hydrology. What puzzles here is that the very
intent of operational nonlinear models is operational, because they contri-
bute little to the understanding of physical mechanisms governing surface
runoff, and yet they have not become truly operational. The consequence is
that the linear models continue to dominate, understandably, hydrologic ap-
plications even where they should justifiably be replaced by nonlinear models.
This predicament can perhaps be overcome by an approach proposed by Dooge
(1967). Based on the concept of uniform nonlinearity, this approach is a
special case of a general nonlinear approach. This approach has the advan-
tage that it avoids much of the complexity of the general nonlinear approach
and hopefully accounts for some of the nonlinear effects which are important
in runoff modeling.

1.2 OBJECTIVES
The objectives of the present investigation are:
(1) To develop a uniformly nonlinear surface runoff model.
(2) To apply the model to natural agricultural watersheds and examine its

potential usefulness.

(3) To estimate the model parameters from watershed morphology.



CHAPTER 2
A UNIFORMLY NONLINEAR HYDROLOGIC CASCADE MODEL

2.1 CONCEPT OF UNIFORM NONLINEARITY

A uniformly nonlinear time-invariant system (Dooge, 1967) is one whose
response can be simulated with sufficient accuracy by a model consisting of
some arrangement of equal nonlinear storage elements or reservoirs. The
storage elements can be arranged in series, in parallel, or a combination of
both. The governing equations for a nonlinear storage element consist of
a spatially lumped form of continuity equation and a nonlinear storage-

discharge relationship which can be respectively written as:

- ds
P=a7 3t (2-1)
q = ks™ (2-2)
where

P = inflow to the element in cm/hr;
q = outflow from the element in cm/hr;
g = storage in the element in cm;

t = time in hours;

g rate of change of storage in the element;

characteristic parameter; and

X an index of nonlinearity.
In a uniformly nonlinear model the parameters k and x do not vary from one
storage element to another.
2.2 MATHEMATICAL FORMULATION OF HYDROLOGIC CASCADE
Employing the notion of uniform nonlinearity we now formulate a hydro-

logic cascade as a nonlinear model for surface runoff prediction. Let there

be a cascade of n reservoirs with lateral inflows as shown in Fig. 2-1. By
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combining Egs. (2-1) and (2-2) we obtain a single differential equation for

a single nonlinear storage element relating storage (hence outflow) to inflow:

ds _ X
L= - ks (2-3)

Then for the cascade of Fig. 2~1 we get a system of equations of the type:

ds
s SN
it P1 51
ds
2 N X X
T~ Pyt ks ks
ds
3 b4
T p3 + ks, -k S,
“, C e
e '—"pj + k Sj*l—- ksj (2-4)
dsn—l X X
dt = pnnl +k Sn—~2 -k Sn—l
dsn x x
d& Pn +k sn~1 -k Sn

Tt is easier to write the system of equations (2-4) in a matrix form:
S =P + kBS (2-5)
where
. -

dsl

de
2
dt

ja
[aN
al &

ja¥)
P

5

o
rr



n-1

and

(e} e <
o o (o
~
J
"
o o ﬂ
- 1
} ]
3 T
< ﬂ 0
— —
i |
E i |
w0 53} o

x-1

Sx~l
n-1




The bold~faced letters will henceforth symbolize either matrices or vectors.

Our main interest is in the relationship between the final outflow 4, and

the set of lateral inflows P1> Pys Pgs

for discharge q can then be expressed as:

Q = kCS
where
1
9
Q= 1
qn—l
qn
and
—Sx~l
1
0
C =
0
0

. D.

J

x~1

© P-

The relationship

(2-6)
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Equations (2-5) and (2-6) constitute what may be termed as a state variable
representation of a uniformly nonlinear hydrologic cascade for simulation
of watershed runoff response. Equation (2-5) represents the case where a
number of cascades of equal storage elements are combined in parallel.

2.3 SOME MATHEMATICAL PROPERTIES

The principle of proportionality and the principle of superposition
are the two fundamental principles that make the linear time-invariant sys-—
tems so attractive. These principles do not hold for nonlinear systems in
general and that is why the mathematics of nonlinear systems becomes so
complex. For convenlence, let us define these principles before examining
them with particular regard to uniformly nonlinear systems.

Proportionality implies that input and output have the same scale ratio.
It ensures that for a given pattern of inflow a change in the average inflow
will not affect the shape of the outflow but merely its scale.

Superposition means that the output due to the combined effect of a num-
ber of separate inputs is equal to the sum of the separate outputs due to
each individual input. Thus it allows a complex input to be broken down into
simple elements and the output obtained by summing the outputs due to these
simple elements. This 1s the reason that the output from one complex input
can be used as a basis for computing the output from another complex input
of totally different pattern.

For uniformly nonlinear gystems the principle of superposition does
not hold. However, it can be shown that for such systems the principle of
proportionality will hold provided that the time scale has been previously
transformed in accordance with the input intensity. To prove 1it, it will
be convenient 1f we define Eq. (2~5) in a dimensionless form by the use of

the following normalizing quantities:



normalizing rate of inflow. This can be taken as average input rate,
or any other input rate that may be suitable.

normalizing storage. This can be expressed in terms of P0 as:

—————

Pr“'loﬂj

| S—
Kl

normallzing time. This can be expressed in terms of PO and S0 as:

S

2=

P 1 xc-1
X

b4
©* @)

o]

Tt must be remarked that once the normallzing rate Po has been defined, the

normalizing storage and the normalizing time can be calculated from it using

the parameters k and x of the nonlinear storage element. Thus the normaliz-

ed quantities, denoted by asterisks, are:

_ Pj(t/To)
p‘kj Po
ot
t* = ;f""
(]
S —i
%7 50
ds,.. d(s./S
x ( j/ o)
e, d(t/To)
q.
q -
%3 Po

Then Eqs. (2-5) and (2-6) can be written as:

Sy

Qu

kB,S, = P, (2-7)

= k—C*S.}: (2"‘8)
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Let us now suppose that two distinctly different input patterns, as shown in
Fig., 2-2, are given for which runoff hydrograph is desired. If these iInputs
are such that they both lead to one and the same p,, then q, will also be
the same in both cases as 1s evident from Eqs. (2-7) and (2-8). Such inputs
were defined by Dooge (1967) as similar inputs, and for these inputs the
principle of proportionality holds for uniformly nonlinear hydrologic sys-
tems. If, however, given input patterns do not lead to the same p, as
shown in Fig. 2-3, then the principle of proportionality will no longer
hold even though the inputs may be proportional in an absolute sense.
2.4 RELATIONSHIP WITH KINEMATIC CASCADE

The governing equations for a kinematic plane consist of an equation
of continuity and an approximation to momentum equation, which can be written

respectively as:

9h . 3q _ -
q =an® (2-10)
where

h = mean local depth of flow in cm;

p(x,t) = lateral inflow in cm/hr varying in time and space;

x = space coordinate;

t = time coordinate;

¢ = an index of nonlinearity; and

o = kinematic wave friction relatlonship parameter,

On comparing Eqs. (2-9) and (2-10) with Eqs. (2-1) and (2-2) we notice that
the former account for space-time variability of rainfall p and runoff q
while the latter ignore their spatial variability and account for their

temporal variability only. Once this distinction is realized, it is easy to
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Flg. 2-3. Dissimilar inputs.
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show that a uniformly nonlinear cascade is a special case of the kinematic

3Q Q

cascade. If we consider a small reach (Ax) then % can be replaced by %;;
for a given time interval At and a reach of length Ax we can write %% =

(I - 0)/Ax , where I is upstream inflow and O outflow. The term %% can be
replaced for small At by %% . Thus we can write Eq. (2~9) as:

4h (I -0) _ _
At Ax P 0%, €) (2-11)
Multiplying Eq. (2-11) by Ax,

7‘;-}%‘ - Ax - (I - 0) = p(x,t) » bx (2-12)

Ah » Ax is equal to As; lateral inflow p(x,t) * Ax can be combined with up-~

stream inflow and can simply be written as I. Thus we can write:

b _1_ (2-13)

Then Eq. (2-13) can be written as:

- ds -
I=0+ = (2-14)

Equation (2-14) is the same as Eq. (2-1). Similarly, Eq. (2-10) can be re-

duced to Eq. (2~2). Multiply and divide the right-hand side of Eq. (2-10)

by (8x)°,
q = —— {Ax « h}* (2-15)
(ax)©

We can then write:

q = —— g° (2-16)
(8x) €

Replacing a/(ax)° by k,
q = ks© (2-17)

Equation (2-17) is the same as Eq. (2-2).
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CHAPTER 3
APPLICATION TO NATURAL WATERSHEDS

For model calibration and testing, 21 natural agricultural watersheds
were selected from two geographically distinct regions: 5 near Hastings,
Nebraska, and 16 near Riesel (Waco), Texas. These watersheds vary in area
from 1.2 to 1720 ha. Thelr detailed description can be found elsewhere
(e.g. USDA, 1963 and subsequent publications).
3.1 DETERMINATION OF MEAN AREAL, RAINFALL

Rainfall-runoff data are available for these watersheds in the USDA
publications on hydrologic data (e.g., USDA, 1963). These publications are
released almost yearly and consist of one rainfall-runoff event a year om a
waterhsed. Although a watershed may have more than one raingage, data are
normally availlable in these publications for only a centrally located rain-
gage indicating that this represents the mean areal rainfall. For consistency
this practice was followed on each watershed.
3.2 DETERMINATION OF RAINFALL-EXCESS

Rainfall-excess formed the lateral inflow and was obtained by sub-
tracting infiltration from rainfall. Philip's equation (Philip, 1957) was

utilized to estimate infiltration loss. His equation can be written as:

4

f=a+%8t (3-1)

where

f = infiltration rate in em/hr;

t = time in hours;

o = a parameter depending on soil characteristics and initial soil moisture
conditions; and

8= a parameter depending on soil characteristics and initial soil moisture

conditions.
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Parameter a was considered roughly identical to saturated hydraulic condue-
tivity and was therefore determined from soil characteristics. Parameter

8 was allowed to vary with each rainfall episode and was determined such that
for each rainfall episode volume of rainfall-excess was egual to the volume

of observed runoff. Henceforth, rainfall will imply rainfall-excess.

3.3 HYDROLOGIC CASCADE

We consider a special case of the uniformly nonlinear hydrologlc cas-
cade formulated in the preceding chapter. The special, simple case is shown
in Fig. 3-1, where the values of pj, P3yecsessnes P would all be zero; only
p1 will be greater than zero. This represents a case of lumped input rather
than distributed input of Fig. 2-1. The operation of the cascade can be sum~
marized as follows:

(1) specify the parameters k, x and n.

(2) select a time interval At.

(3) Given the input pattern, use Eq. (2-5) to compute é. Note that at
the beginning of time t = 0, S and B are zero. In vector P only p; is a posi-
tive quantity and the rest of the elements P2s P3s svrveas pn are all zero.
These define the initial condition.

(4) Input into the jth storage element (j = 1, 2, .....n) at the be-
ginning of a particular time interval At is an impulse of a magnitude equal
to the sum of input pj, the surface inflow qj~l and the surface outflow qj'
The impulse input causes an instantaneous change in the storage of the jth
element.

(5) Responses of the elements to the impulse inputs determine the out-
puts and the states of the elements at the end of the time interval At; the

new states are the initial conditions for the following time increment.
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(6) Thus, given the inltial states of the system, Bo and So’ and the
input vector P0 at the beginning of a particular time interval At, Eq. (2-5)
is used to solve for éo’ The state of the system at the end of the time
interval Ato is the initial state at the beginning of the next time interval
At , and is given by § = So -+ éo' Outflows from the n elements at the end
of At are given by Bq. (2-8).

3.4 CHOICE OF OBJECTIVE FUNCTION

The concept of determining optimal model parameters requlres that the ob-
jective function be compatible with the intended use. There is, however, a
difficulty in defining an error criterion that, upon minimization, will cor-
respond to model parameter values without an undesirable blas. The following

objective function was first investigated regarding its sultability:

F=vyf; + (1-y) f5 => min (3-2)
where

¢ = weighting factor taking values from o to 1;

M
fy= I [Q (3) - Q (DI%
j=1 Po Pa
and
M
fo= 2 [t () -t (DI?
J=1 Py Pe
where
Qp (j) = observed hydrograph peak in cm/hr for jth event;
e]
QP (i) = estimated hydrograph peak in cm/hr for jth event;
e
tp (j) = observed hydrograph peak time in min for jth event;
o
tp (i) = estimated hydrograph peak time in min for jth event; and
e

M = number of runoff events in the optimization set.
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Suitability of Eq. (3-2) was examined on watershed SW-17, Riesel (Waco),
Texas. This is a small watershed of 1.2 ha in area. Nine rainfall-runoff
events were avallable on this watershed. These events were divided into two
sets; one set, called optimization set, consisted of five events; another set,
called prediction set, consisted of four . events. These two sets did not
have any events in common. By taking n equal to 3 in the cascade the para-
meters k and x were optimized by the modifed Rosenbrock algorithm (Rosen~
brock, 1960; Palmer, 1969; Himmelblau, 1972) for the optimization set of
events with vy varying from o to 1 in Eq. (3-2). The values of F, and op-
timized k and x are given in Table 3-1 for various values of y. It 1s in-
teresting to note that when y < 0.6, there is no change in the optimized
values of parameters k and x. From this table, however, the value of vy for most
suitable F is not clear. For this reason hydrographs were predicted for
the events in the prediction set by using optimized parameters. Table 3-2
gives observed and predicted hydrograph peak and its time for three dif-
ferent values of y. It is interesting to obsexrve that gilving greater weight
to £5 in Eq. (3-2) does not necessarily lead to better matching of hydrograph
peak time. Indeed the value of y equal to 1 provides just as good a fit of
hydrograph peak time as Y equal to 0.8 and better when y is less than or equal
to 0.6. It was therefore concluded that the following objective function, a

special case of Eq. (3-2), was most suitable:

M
F =1

J [Qp i - Q, (3)1% => min (3-3)

1 o e
Henceforth, Eq. (3-3) will be employed as an objective function in the en-

suring discussion.
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Table 3-1. Values of objective function and optimum parameters for watershed
SW—17, Riesel (Waco), Texas, for various values of weighting factor.

Number of storage elements n = 3

Cas Welghting Parameters Objective
ase .
numher factor function
Y x k ¥
1 1 1.4 0.22 0.162
2 0.8 1.38 0.15 117.01
3 0.6 1.1 0.12 208.21
4 0.4 1.1 0.12 311.05
5 C.2 1.1 0.12 413.90
6 0.0 1.1 0.12 516.75
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3.5 MODEL CALIBRATION

The uniformly nonlinear cascade has three parameters n, k and x. It
will be useful to establish if any of the parameters has physital signi-

ficance. The parameter n signifies the number of storage elements in the model.

The value of n must be greater than one to obtain proper hydrograph shape, and
will depend on the topographic complexity of a watershed. This can essentially
be called a shape parameter. A natural watershed entails a network of channels
and overland flow planes. The combined action of a channel and a plane is being
simulated here by a nonlinear storage element. It would then seem that a very
large number of storage elements will be needed to simulate the action of a
network of channels and planes and, in turn, the runoff response of a watershed.
Fortunately, it so happens that only a small number of storage elements will
suffice. This is because the planes and channels having more or less similar
hydraulic behavior can be combined and then their combined action can be
simulated by a single storage element. The exact value of n will vary from

one watershed to another, but it seems plausible that n will more or less be

the same for watersheds in a certain area range having the same order of

drainage evolution.

The parameters x quantifies the degree of nonlinearity of surface runoff
process. Although the value of x may change throughout the development of
a runoff hydrograph, it is plausiblie that x can be fixed for watersheds in
a certain area range and that this fixed value of x will provide a good ap-—
proximation to the degree of nonlinearity in surface runoff.

The precise physical significance of the parameter k is not clear. It
appears that it accounts for translation and attenuation effects, and con-
sequently it may change considerably from one watershed to another. The
topographic characteristics of a watershed seem tO be dominant factors affecting
the value of k. Although k will most likely change from event to event on the
same watershed but this change may not hopefully be large. Thus it seems

plausible that k can be expressed in terms of topographic characteristics.
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These plausible hypotheses were tested on watershed SW-17, Riesgel
(Waco), Texas, using the objective function in Eq. (3-3). The para-
meters k and x were optimized for various values of n for the optimization
set of events by the modified Rosenbrock algorithm. The values of F, and
k and x are given in Table 3-3. It is interesting to note that (1) F does
not change for n > 7, (2) x remains fixed for n > 6, (3) x changes little for
n < 6, (4) x decreases as n increases, (5) k increases as n increases, and
(6) forn = 3, F is minimum. Based on these observations, one could fix
n at 3 and x at 1.4. If it can be shown that these parameter values are
reasonable then the cascade will have only one parameter k to be specified.
To examine further, hydrographs were predicted by using various sets of
parameter values. Tables 3-4 and 3-5 compare observed
and predicted hydrograph peak and its time for the prediction set of events
on watershed SW-17, Riesel (Waco), Texas. It is clear from these tables that
the values of n = 3 and x = 1.4 are reasonable. It must be pointed out that
a higher value of n may lead to equally good predictiom, but it will dncrease
computation unnecessarily and is hence undesireable.

Now one question that must be addressed is whether the cascade, with
x = 1.4 and n = 3, produces hydrographs with appropriate shape. For two
sample events predicted and observed hydrographs are shown in Figs. 3-2 and 3-3.
From these figures it is evident that the hydrograph shape is well preserved.
These results confirm that the proposed cascade, with x = 1.4 and n = 3, 1s
capable of representing the rumoff process.
3.6 TDETERMINATION OF PARAMATER k

The cascade has now only one parameter k that needs to be specified. If

k can be specified apriori for a given watershed then the cascade will be
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Table 3-3. Values of objective function and optimized parameters for
watershed SW-17, Riesel (Waco), Texas,.

Case Number of Objective functicn Optimal values of parameters

number storage elements F ” A
L (cm “/hr)

1 2 2.692 3.10 0.26
2 3 0.162 1.4 0.22
3 4 0.168 1.36 0.27
4 5 0.172 1.36 0.32
5 6 0.174 1.35 0.38
6 7 0.175 1.35 0.42
7 8 0.175 1.34 0.46
8 9 0.175 1.34 0.51
9 10 0.175 1.35 0.55
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Table 3-6. Watershed characteristlcs.
- Parameter k
Watershed ?Ezi w%iEh miiivzirzzm S%Z§e Shape iggl:g;i
(m) sec
Riesel (Waco)
C 234.21 1402 2366 2.04 1.8761 0.0245
D 449.22 1892 3567 2,10 2.2246 0.0382
G 1772 .59 2592 7829 2.05 2.7160 0.0134
Y 125.05 915 1537 2.40 1.4830 0.0400
Y-2 53.42 854 1000 2.58 1.4702 0.0794
Y—4 32.30 595 610 2.85 0.9031 0.0760
Y-6 6.50 259 338 3.22 1.0634 0.0800
Y~7 16.19 381 543 1.86 1.4289 0.1.340
Y-8 8.418 183 244 1.94 0.5550 0.1667
Y-10 7.53 381 338 2.37 1.0584 0.1620
W-1 71.23 610 1646 2.18 2.9887 0.1594
W-2 5.26 823 945 2.55 1.3335 0.0989
W-6 17.12 457 445 2.02 0.9090 0.1312
W--10 7.97 305 323 1.62 1.0289 0.2100
SW-~12 1.20 119 116 3.95 0.8770 0.3021
SW-17 1.21 122 116 1.83 0.8712 0.1975
Hastings
2-H 1.21 76 189 6.13 2.0395 0.250L
4-H 1.47 107 162 5.96 1.3921 0.4462
W-3 194,66 1207 2720 5.30 2.9861. 0.0700
W-8 844.20 1811 7953 5.50 5.8850 0.0179
W-11 1412.40 2012 11673 5.09 7.5763 0.0005




completely specified and can be readily applied to gaged or ungaged water-
sheds. A logical way is to relate k to topographic characteristics of a
watershed. To accomplish this rainfall events of each of 21 watersheds were
divided, as before, into-optimization set and prediction set. Then k was
optimized with n = 3 and x = 1.4 for optimization set of events on each
watershed by the modified Rosenbrock algorithm in conjunction with Eq. (3-3)
The optimized k values are given in Table 3~6. Topographic characteristics,
selected for correlating them with k, included area, width, length of the main

stream, weighted slope and shape factor (Chorley, Malm and Pagorzelski,

1957). These characteristics are given for each watershed in the USDA publication:z )
(see Table 3~6). The shape factor of Chorley, Malm and Pagorzelski (1957)

can be written as:

7L?
Shape = ik
where
L = length of the mailnstream; and

A area of the watershed.

il

This shape factor is a dimensionless parameter and quantifies the watershed
shape.

To correlate k with topographic characteristics a multiple linear re-
gression analysis was used. k was obviously the dependent variable in the
analysis. The linear regression analysis yielded a correlation coefficient of

0.9208 and a standard error of estimate of 0.0746 where slope was most highly

correlated with a correlation coefficient of 0.8080, then were length of

mainstream, area and shape factor respectively.



The regression equation can be written as:
k = 0.00044 Area - 0.00014 Length + 0.03828 Slope + 0.08511 Shape (3-4)
To check the suitability of Eq. (3-4) residuals between optimized k and k
estimated from Eq. (3-4) were computed for all the watersheds. As evident
from Fig. 3-4 there is considerable scattering of points around the regression-
fit line, and we would naturally like to minimize this scattering.

In the hope of improving the correlation all variables, dependent as
well as independent, were transformed logarithmically to the base 10. Hence-
forth, we will deal with these transformed variables only. Then the regression
analysis was performed. A correlation coefficient of 0.9890 and a standard eror
of estimate of 0.1827 were obtained. This time length of mainstream provided
the highest correlation with a correlation coefficient of -0,9763, then did area,
shape factor and slope respectively. The regression equation can be written as:
Log k = ~-0.30871 Log Area ~0.21608 Log Length - 0.08328 Log Slope +

0.30379 Log Shape (3-5)
To check the reliability of Eq. (3-5) residuals between optimized k and
k estimated from Eq. (3-5) were computed. As shown in Fig. 3-5, the scattering
of points is considerably reduced and consequently the relationship is

much 1lmproved.

In the multiple linear regression analysis the independent variables
are assumed to be Independent in a statistical sense; they are seldom so, as
clearly seen from the partial correlation matrix for the transformed variables
given in Table 3-7. It then appears that a fewer number of independent varia-
bles may suffice to develop a reasonable equation for k. To accomplish this,
shape factor was removed from independent variables, and then regression
analysis was performed. A correlation corfficient of 0.9885 and a standard

error of estimate of 0.1757 were obtained. Now width was most highly cor-
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relatéd with a correlation coefficient of ~0.972, and then was area. The
regression equation can be written as:

Log k = -.027271 Log Area - 0.24309 Log Width (3-6)
To evaluate the goodness of Eq. (3-6) the residuals of k were plotted as
shown in Fig. 3-6. It is clear that the relation for k is nearly as good as

Ea. (3-5).

To find out a different combination of independent variables that will
give an equally good relationship for k, shape factor and width were deleted
from independent variables and then regression analysis was performed. A
correlation coefficient of 0.9882 and a standard error of estimate of 0.1834
were obtained. Length of mainstream alone gave a correlation coefficient of
~0.9763, and it was further improved by area and slope respectively. The

regression equation can be written as:

Log k = —~0.22889 Log Area -0.26395 Log Length + 0.10079 Log Slope (3-7
Agaln, residuals of k were computed to determine the reliability of Eq. (3-7),
as shown in Fig. 3~7. This provides, as clear from the figure, just as good
a relationship for k.

Thus we have three different relatlonships for k given by Eqs. (3-5) -
(3-7) which are comparable. Any one of the three relationships can be used
to estimate k. However, one may prefer to choose Eq. (3-6) or Eq. (3-7) be-
cause of fewer variables involved therein. Since the ultimate objective of

the model is to predict surface runoff, we would 11ke to see how good these

estimates of the parameters are.
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CHAPTER 4
RESULTS AND DISCUSSION

4,1 HYDROGRAPH PREDICTION

Hydrographs were predicted for the events in the prediction set of
each of the 21 watersheds, utilizing x = 1.4, n = 3 and k estimated by
Eq. (3-7). Table 4-1 provides observed and predicted hydrograph peak
characteristics for the prediction set of events on each watershed. Fig~
ures 4-1 and 4~2 show observed and predicted runoff hydrographs for two
sample events. It is evident that k estimated by Eq. (3-7) is nearly as
good as obtained by optimization (see the results for watershed SW-17,
Riesel (Waco), Texas). It is also clear from the table and figures that
observed and predicted runoff hydrographs are in close agreement. These
results not only indicate that we can completely specify the uniformly
nonlinear cascade but also the cascade is a useful surface runcff simulator.
Further, these results confirm that it is reasonable to take x = 1.4, n =
3 and k estimated by Eq. (3-7), and that with these values of the parameters
the model predicts. surface runoff well.
4.2 RESULTS AND DISCUSSION

From Table 4-1 it is clear that errors in predictions of runoff peak
and its time are relatively small (less than 30%) in most cases. In some
cases, although only a few, these errors are large. An examination of rain-
fall-runoff records indicated that these errors were high in those cases
where (1) synchronization between rainfall and runoff observations was
poor, and (2) infiltration was high so that rainfall-excess was not ade-
quately represented. FErrors in determination of rainfall-excess seem to be

a major problem in most rainfall-runoff models (Singh and Woolhiser, 1976).
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it is well recognized that no matter how sophisticated a runoff model is, 1ts
output accuracy cannot exceed the accuracy of the input that goes into it.

It goes without saying that rainfall-excess can never be accurately estimated
for two reasons: (1) the very concept of rainfall-excess is erroneous, (2)
most infiltration equations do not provide true representation of infiltra-
tion phenomenon and furthermore, there is the difficulty in estimating their
parameters. Philip's equation, used in this study, suffers from these

same handicaps.

To further examine the errors in hydrograph predictions, observed
values were plotted against predicted values for both hydrograph peak and
its time as shown in Figs. 4-3 and 4-4 respectively. On these figures *50%
relative error limits have also been drawn. Although these figures mani-
fest a wide scattering, a close examination will reveal that the fit is
not as bad as it looks because a large number of events have been plotted
and only relatively a few events are far off the plot for the reasons cited
above. Preliminary statistical calculations indicated that (1) mean and
standard deviation of observed peaks were 3.606 and 4.425 respectively,

(2) mean and standard deviation of predicted values were 3.4 and 4.208
respectively, (3) correlation coefficient and standard error of estimate
for observed and predicted peaks were 0.9604 and 1.2391 respectively, (4)
mean and standard deviation of observed peak time were 79.43 and 123.24
respectively, (5) mean and standard deviation of predicted peak time were
76.8 and 95.47 respectively, and (6) correlation coefficient and standard
error of estimate for observed and predicted peak time were 0.845 and
66.273 respectively. These statistics point again toward a close agreement

between observations and model results.
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CHAPTER 5

CONCLUSIONS
The following conclusions are drawn from this study:
The uniformly nonlinear hydrologic cascade is a useful surface runoff
simulator. A close agreement between observed and predicted hydro-
graphs suggests that the cascade does seem to account for the dmpor-
tant nonlinear effects in surface runoff.
Its relative simplicity and good predictive ability can be the basis
to become an operational tool in routine hydrologic applications.
Based on its application to 21 small, natural, agricultural watersheds
it is concluded that the number of storage elements n can be fixed at
3 and the parameter x at 1.4, and that the parameter k can be estimated
reliably from topographic characteristics of a given watershed. Thus
the cascade can be completely specified.
Because of smallness of n, hydrograph computations can be easily per-
formed with a disc calculator or a minicomputer.
A state—space variable represantation of the cascade model is useful

for computer programming.
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