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ESTIMATION OF PARAMETERS OF TWO MATHEMATICAL
MODELS OF SURFACE RUNOFF

ABSTRACT

A methodology is developed to estimate the parameters of the Nash
model (1957) and the converging overland flow model (Singh, 1974) of
surface runoff, utilizing physically measurable watershed characteristics.
These characteristics are investigated and used to derive equations to
estimate the model parameters for small natural agricultural watersheds.
Runoff hydrographs are predicted for several rainfall events on several
of these watersheds. A comparison of the predictive performance of the
two models indicates that both models performed equally well on these

watersheds.



CHAPTER 1
INTRODUCTION
1.1 General Remarks

The importance of surface runoff is exemplified by the abundance of
surface runoff prediction models in the hydrologic literature. A funda-
mental problem common to most of the models is: how to estimate the model
parameters from physically measurable watershed characteristics? The
traditional approach has been to bypass this problem by optimizing the
model parameters for some selected rainfall-runoff events over a given
watershed, using a suitable optimization algorithm and an objective func-
tion. Th;se optimized parameter values are then utilized in the model to
predict runoff for the rainfall events of interest not used in the optimi-
zation. This, however, does not offer a solution to the basic problem, and
has other serious shortcomings. For example, the optimized parameﬁers can
best represent the system only for the events used in the optimization; as
soon as the optimization set of rainfall events is changed, the optimum
parameter values will also change. The extensive amount of data normally
required for optimization is oftén lacking and may prove prohibitive in the
widespread applicability of the model. Equally important, optimization is
a costly operation.

An approach to solve this basic problem is to relate the model param-
eters to those watershed characteristics which can be obtained from the
topographic map. It is implicitly assumed that such characteristics remain
unchanged throughout the period of study. One obvious advantage of this is

that it is readily applicable to urigaged watersheds or watersheds with in-

sufficient data for optimization.




1.2 Objectives

The objective of this study is to develop a methodology to estimate
apriori the parameters of the linear Nash model and the nonlinear conver-
ging overland flow model for small agricultural watersheds. A comparison

of the predictive performance of the two models is also made.

SRR




CHAPTER 2
REVIEW OF LITERATURE

In this chapter we provide a comprehensive survey of investigations
that have utilized watershed geomorphology in rainfall-runoff modeling.

It will be apparent from the ensuing discussion that most investigations
have been confined to estimating unit hydrograph parameters from watershed
geomorphology.

Quantitative geomorphic methods provide a means whereby the physio~
graphic and topographic characteristics of a watershed are analysed to
define their relationship with the wmit hydrograph characteristics. Nu-
merous methods have been developed for constructing the unit hydrograph
for ungaged watersheds utilizing watershed characteristics. These ne thods
differ from one another either in the relationships established or the
methodology employed. The following dlscussion summarizes several of the
more commonly used methods. Many of the methods are merely modifications
of existing procedures, modified so as to account for variations in regional
geomoxrphology.

Sherman (1932a) defined the unit hydrograph as the discharge~time
relationship resulting from steady effective rainfall of unit duration
uniformly distribu£ed over a watershed. It follows, therefore, that the
unit hydrograph should reflect translation and storage effects of the water-
shed, and these effects would be expected to be related to its physical
characteristics. Sherman (1932b) studied the relationship of runoff hydro-
graphs to size and character of drainage basins, and suggested the dominant
factors controlling the distribution of runoff-rates to be: (1) drainage~

area size and shape, (2) distribution of watercourses, (3) slope of the



valley sides or general land slope, (4) slope of the mainstream, and (5)
ﬁondage resulting from surface or channel obstructions forming natural de-
tention reservoirs.

Snyder (1938) was probably the first to relate the physical geometry
of a basin to the unilt hydrograph characteristics. ¥rom his study of the
watersheds in the Appalachian Highland which varied in size from 10-10,000

square miles, he defined three points of the unit hydrograph as:

. . 0.3 (2-1)
£ Ct(LLCa)

Qp = (saoAcp)/tL (2-2)
Ty =3+ 3(cL/24) ‘ (2-3)

where tLis the basin lag time (difference between the centroid of rainfall

and the hydrograph peak), L length of the mainstream in miles from the outlet
to the divide, Lca the distance in miles from the outlet to a point on the
mainstream nearest the center of the watershed, Cp and Ct coefficients
depending upon units and drainage-basin characteristics (Cp = 0.56 to 0.69;

Ct = 1.8 to 2.2), QP peak discharge of the unit hydrograph in cfs, A

area of drainage basin in square miles, and TB length of the base of the
unit hydrograph in days.

Equations (2-1), (2~2), and (2-3) hold for an excess rain of duration tr:

£, = tL/S.S (2-4)

Lag period tLR for a different rainfall duration tg can be calculated as:

tp =t t (tR-tr)/a.o (2~5)




Once the values for tL’ Qp, and T, are known, the unit hydrograph can

B
be sketched. It is drawn so that the area under the graph represents a
one inch volume of direct runoff from the watershed.

A few years later, Clark (1945) derived the unit hydrograph of a water-
shed by routing its time-area concentration curve through a linear reservoir
S = KQ, where S is storage, Q discharge, and X storage coefficient.

Clark utilized in his derivation the Muskingham method of flood routing

(McCarthy, 1939). He estimated the parameter K from the relation:

K = ¢ L//s—L' (2-6)

where SL is mean channel slope, and ¢ coefficlent varying from 0.8 to 2.2.
Thereafter, Edson (1951) derived an expression for the shape of the

instantaneous unit hydrograph:

S

UL = pagy e (2-7)

where Q(t) 1s the Instantaneous discharge rate at time t, V the rainfall
excess volume, y the recession constant, z the expouent whose value de-
pends upon the shape of the time-area concentration curve of the watershed,
e the base of the natural logarithﬁ, and T the gamma function. Edson
observed that the failure encountered in correlating basin characteristics
with hydrograph properties, peak discharge and time of rise, may be attribu-
table to the complex relationship of y and =z.

About the same time, Taylor and Schwarz (1952) analyzed data from 20
watersheds in the North and Middle Atlantic States and developed an expres-

sion for lag tL as:

tL = Cte (2-8)
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where m is:

0.212
m = —25 (2-9)
L)

and the coefficlent Ct is:

C e 0.6

t (2-10)

2|

where SL is the weighted slope of the channel. Several parameters of water-
shed size and shape were investigated, but the quantity LLca with an exponent
very nearly equal to Smyder's value was found best. The influence of slope

on Ct was indicated earlier by Snyder (1938). Taylor and Schwarz also developed
an expression for the unit hydrograph peak in the form of Eq. (2-8) but with
more complex expressions for the coefficient and exponent.

Tn 1957 the Soil Conservation Service (SCS) developed a method for hydro-
graph synthesis which was later modified by using the dimensionless hydrograph.
From an analysis of a large number of hydrographs for natural watersheds varying
widely in size and geographical location it was concluded that a unit hydro-
graph could be represented by a simple trisngular shape. Thus the method

requires only the determination of the time to peak tp and the peak discharge
Qp as:

£, = te/2 + t; (2-11)
Q, = 484 A/tp (2-12)

where tp is time from beginning of rainfall to peak discharge in hours, tR

duration of rainfall in hours, and t lag time from centrold of rainfall

L

AT Pt
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to peak discharge in hours. Values of tL were determined for various geo-
graphic reglons. The dimensionless hydrograph had its ordinate values ex-
pressed as the ratio Q/Qp, and 1ts abscissa values as the ratio t/tp. These
ratios were tabulated by the Soll Conservation Service. Once Qp and tp

are known, a unit graph can be constructed.

The hydrograph synthesis method developed by Hickok, et al (1959) is
very similar to that of SCS. The primary difference between the two methods
is that the former 1s restricted to very small watersheds varying in size
from 11 to 790 acres located in semiarid regions. The dimenslonless graph
has 1ts ordinate in units of Q/Qp and its abscissa in units of t/tL. Here
the lag tL was taken as the time difference between the centrold of a
limited block of intense rainfall and the resultant peak discharge. Two
different methods for determining the lag time, depending upon geographic
and climatological conditions, were presented:

For homogeneous semiarild rangelands up to approximately 1000 acres in

area the lag is:

oo Ki(A0'3/S opy 061 e

L L

where t. 1s lag time in minutes, S

L average land slope of the watershed in

L

percent, DD drailnage density in feet per acresand K, constant coefficient =

1
106.
For watersheds of widely different physiographic characterilstics tL is:
/T3 + Wsa
tL = K2 e e ———— (2-14)
SLVDD

where T3 is the length from the outlet of the watershed to the center of gravity of

the source area in feet, wsa available width of the source area in feet, and

-y e
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K2 coefficient = 23. The source area was consldered to be the half of the

watershed with the highest average land slope.

The authors determined Qp(cfs) from the relationm:
5
L

Q
£ = -
v (2-15)

where V ig given in acre-feet, t in minutes, and K taken equal to 545.

L 3
For his model (Nash, 1958) Nash expressed the parameters in terms of
moments of the instantaneous unit hydrograph. Two years later, he attempted

to relate the moments to watershed characteristics (Nash, 1960). TFor a

sample of 30 British watersheds the following relationships were obtained:

0.3 . -0.3

m o= 27.6 A7 8 | (2-16)
n, = 2013 (c)™% % (2-17)
_ -0.2 ~0.1 )
m, = 1.0(m,) (s,) (2-18)
m, = 0.41(1) 0% (2-19)

where my is the first moment about the origin of the IUH (hours), m, a
dimensionless second moment, CS mainstream channel slope in parts per 10,000,
and SL overland slope in parts per 10,000,

In 1961 Gray employed the two-parameter gamma distribution to define a
modified form of the unit hydrograph for small watersheds. The method was
developed on the rationalization of the runoff process proposed by Edson
(1951). He then established correlations of hydrograph characteristics with
watershed physiography. His method has since been used in several investi-

gations (Hanson and Johnson, 1964).




About the same time, Reich (1962) chose three parameters to describe the
runoff hydrograph. Regression analysis was performed to estimate these para-
meters from soll, land use, rainfall and antecedent moisture. The following

equations were glven:

W= 0.1315 - 0.5792 Dl + 0.902 T9 + 0.4261 R6 (2-20)
q, = =0.2917 + 0.46 R, = 0.0004 T, + 0.00018 T, (2-21)
~9 5
7313 1077 p
¢ = 0727 § 0.939 (2-22)
5 L

where W 1s total runoff volume in iInches, q, peak discharge in inches per
hour, G time difference in minutes between the peak of runoff and the center

infiltration capacity in inches per hour, T9 time

6 total rainfall in inches, R11 maximum 30

of mass of runoff, Dl
of concentration in hours, R

minute rainfall intensity in iInches per hour, T length in feet along the

3

mainstream from the watershed outlet to the center of mass, T length of

2
the longest tributary in feet, D Cook's LW parameter describing the soil,
land use, and topography, and TS average main channel slope in feet per foot.
Another study conducted by Dyhr-Nielson and Schulz (1972) considered
numerous watershed parameters that affected the shape of the runoff hydrograph.
By means of factor analysis the original list of parameters was reduced to
eight significant watershed parameters: (1) area of the basin, (2) total
length of streams, (3) form factor, (4) compactness coefficient, (5) drainage~
density, (6) dimensionless standard deviation of travel distance, (7) main-
stream slope, and (8) basin slope.

Black (1975) used a laboratory rainfall simulator to study the effects

of watershed size on the hydrograph parameters: (1) maximum;peak, (2) time
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of rise, (3) time of recession, and (4) time of runoff. Experimental results
indicated that runoff per unit area decreases as slze Increases because
larger areas take longer to concentrate the runoff into a peak, and rainfall
intensity and duration decrease over larger areas. Another finding was that
the decay time, as an Index to the time of recession, increases and is re-
lated exponentially to the level of wmaximum peak.

The preceeding investigations suggested the use of the following charac-
teristics in this study: (1) AREA, basin area in hectares, (2) WIDTH,
basin width in kilometers, (3) XLR, length of the mainstream in kilometers,
(4) SHAPE, shape factor, (5) DD, drainage-density in meters"l, (6) SLOPE,
average basin slope in percent, (7) CSLOPE, average mainstream channel slope

in percent, and (8) SO, stream order.
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CHAPTER 3
DISCUSSION OF MODELS

This chapter provides a brief description of the two models used in the
present study. The model parameters and their possible physical interpreta-
tions are indicated.

3.1 Converging Overland Flow Model (CONV)

The converging overland flow model considers surface runoff as unsteady,
gradually varied free surface flow and approximates its dynamic behavior by
the kinematic wave theory (Lighthill and Whitham, 1955). The complex geo~
metry of a natural watershed is transformed into a simple linearly converg-
ing geometry as shown in Fig. 3-1. This transformation is based on the prem-
ise that the simplified geometry will have a hydrologic response simllar to
that of the natural geometry and 1s, hence, equivalent to some extent (Wool~
hiser, 1969; Singh, 1974, 1975a, 1975b).

From Fig. 3-1 it is clear that the converging section has four geometric
parameters including LO, r, 8, and So’ where LO is the length of the section,
SO the slope, r a parameter related to the degree of convergence, and 6
the interior angle. Because of radial symmetry, € does not affect the relative
response characteristics; since the watershed area must be preserved, it is
dependent on LO and r only. It will be shown later that these geometric param-
aters can be estimated from watershed topography; thus a topographic map iz suf-
ficient to transform the complex watershed geometry into a simplified equivalent
converging geometry.

The mathematical representation of the model consists of a continuity
equation and a kinematic-momentum equation. These equations, as derivedvby

Singh (1974), are:




L4

S, i

frtes

L

: \

Flg. 3-1. Geometry of converging section, CONV model.
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oh dh au Uh
‘é‘E + U—é—)—c + hs;{ = q(x,t) + ——'—————(LO = (3-1)

Q = ah (3-2)

where h is local depth, U local velocity, Q rate of outflow per unit width,
q(x,t) lateral inflow rate in volume per unit time per unit area, Lo radius
of the converging section, a,n parameters of frictional relationship, x

space coordinate, and t time coordinate.

Because of their nonlinear nature it is not possible to solve Egs. (3-1)
and (3-2) explicitly analytically for space-time variable inflow q (Singh, 1974),
However,'numerical and hybrid solutions (Singh, 1975b, 1975e) are relatdively
simple to develop, and will be utilized in the present investigation.

It is clear from Eq. (3-2) that the model has two parameters n and a. 1In
a laboratory study Singh (1974, 1975a) showed that these two parameters were
strongly correlated and that it would be reasonable to keep n fixed at 1.5, thus
reducing the 2-parameter model to a l-parameter model. In the present study
this l-parameter model was used. The dynamical basis of the parameter o strongly
suggests that it has physical significance and that it should be plausiblé to
estimate it from watershed characteristics. For further details see Singh (1974,
1975a, 1975b, 1975c¢, 19754, 1975e).

3.2 Nash Model (NASH)

The Nash model (Nash, 1958) represents a watershed by a cascade of linear
reservoirs as shown in Fig. 3-2. It is noteworthy that the model does not
explicitly account for the geometric configuration of a given watershed. The
runoff dynamics is represented by a spatially lumped continuity equation and a

linear storage law; for time interval At, these can be written as:

ds(t)

q(t) = Q(t) + 5 (3-3)
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S = KQ (3-4)

where S is storage and K storage coefficient or watershed characteristic lag
time. The basis of Nash model emerges principally from the notion of linearity
inherent in Eq. (3-4). By routing an instantaneous unit inflow through a cas-
cade of N equal linear reservoirs Nash (1958) derived an expression for the
instantaneous unit hydrograph (IUH) W(t):

N
K(N - 1)

~-t/K

W(t) = e/t e (3-5)

For an inflow q(t), outflow Q(t) at time t can be computed by the convolution

integral:
t

Q(t) = [ Wt - z) q(z) dz (3-6)
Q

From Eq. (3-5) it is seen that the model has two parameters N and K. The
precise physical significance of these parameters is unclear, but it appears
plausible to establish links between these parameters and watershed character-
istics. To be specific, K 1s a lag time parameter and will depend mainly on
the length of the mainstream, slope, drainage-density and shape factor; whereas
N accounts for the overland and channel phases and will largely depend on the
area, the drainage-density and the shape factor. It is conceivable that by
fixing N, the 2-parameter Nash model can be reduced to a l-parameter model.
Although N will change from one watershed to another, it 1s quite likely that
it may be more or less the same for watersheds in the same size group. This
contention will be explored in the present study. For further details on Nash

model see the references by Nash (1958, 1960).
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CHAPTER 4
ASSEMBLAGE AND ANALYSIS OF RESEARCH DATA

This chapter deals with the collection and analysis of research data.
A brief description of agricultural watersheds, selected for the study, is
provided. TFor optimization of model parameters, the watershed characteris-
tics are identified and determined. TFinally, equations are developed for
estimating the model parameters from these characteristics.

4.1 Selection of Agricultural Watersheds

Thirty eight agricultural watersheds were selected for this study as
shown in Table 4-1. These watersheds represent several reglons of the
United States encompassing diverse geologlc, topographic and hydrologic
conditions. These are small agricultural watersheds varying in area from
about 0.5 hectares to 3,055 hectares. Two factors were considered in the
selection of these watersheds: (1) rainfall-runoff data was adequate, (2)
slope of a watershed was reasonably high.

Deep, fine-textured, granular, slowly permeable, alkaline throughout,
and slow intermal drainage are typical characteristics of soils of water-
sheds near Riesel(Waco), Texas. The dominance of Houston black clay is
notable. These solls are alsc noted for the formation of large extensive
cracks upon drying. Surface drainage is, by and large, good but no well-
defined drainageways exist on the watersheds. Usually, water is drained
by rills and poorly defined field gullies.

Most of the time these watersheds are covered with an agricultural
crop. Because of low permeability of the soils, the watersheds respond rapidly
to rainfall and produce quickly rising hydrographs. Tor the events under
consideration, the major part of rainfall was observed as surface runoff;

the infiltration losses did not dominate.
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The watersheds near Hastings, Nebraska, have loessial soils. The top
01l is normally a mixture of silt loam and silt clay. The internal drainage
is medium, and the permeability of subsoil is moderately slow. Surface
drainage 1s good. The watersheds develop arterial flow toward a central drainage-
way. Channel meandering 1s noticeable and leads to impounding some water.

These are also agricultural watersheds, and have agricultural cover on the
surface. A major part of the ralnwater seeps into the ground, thus infiltration
losses are predominant. Their response to rainfall input 1s not as fast as that of
watersheds near Riesel (Waco), Texas, especially for events under consideration.

The watersheds near Coshocton, Ohio, have residual soills developed from
shale and sandstone. Topsoils are silt loam to loam in texture, moderate
fine crumb in structure. Subsoils have moderate permeability with medium
internal drainage and no impeding layers. Surface drainage is good with flow
to one main channel. Area is highly dissected and has occasional small
gullies and valleys which are narrow and have high gradients except in
lower reaches of the main channel.

These watersheds have a mixture of surface. coverage, all under con-
servation practices. A significant portion of rainfall is absorbed by infil-
tration, thus effectively reducing the rainfall-excees volume. Response to
rainfall input 1s similar to that experienced by the watersheds near Hastings,
Nebraska.

The soils of the Watkinsville, Georgla, watershed consist of piedmont
material ranging in texture from sandy loam to clay loam. Fine-textured,
red and friable material of moderately rapid permeability 1s typical.

Internal drainage is medium to rapid. Surface drainage is good along a

well defined dralnageway meandering through breaks in the bench terraces for

st etz S Y e i
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about two-thirds the length of the watershed; some pocketing of water above
terraces occurs, however.

This old style bench terraced watershed 1s usually cultivated in row
crops generally on the contours. Infiltration is a predominant factor over
runoff; small rainfall-excess 1s typical.

Soils of the McCredie, Missouri, watershed are deep loessial and glacial
material of silt loam texture and fine crumb structure. Permeabllity and
internal drainage of subsoils are very slow. Surface drainage over the gently
rolling or undulating claypan prairie is good.

Surface cover on this agricultural watershed consists of rotational
crops cultivated in rows on generally contoured slopes. The low permeability
of the solls results in a rapid response to rainfall Input.

Loessial soils of medium texture, granular structure and moderéte per-
meabllity are typical of the Ralston Creek, Iowa, and Fennimore, Wisconsin,
watersheds. Surface dralnage of the well dissected watersheds, with 111-
defined boundaries, 1s good. Some ponding near gaging location occurs.

General diversified farming without soil conserving practices, results
in moderate to severe eroslon on these watersheds. Runoff response to rain-
fall input is typically moderate indicating the minor to medium role played
by infiltration.

Solls of tﬁe Oxford, Mississippi, watersheds are loessial and coastal
plains material of silt loam texture and weak fine granular structure, and
have moderate to moderately slow permeability with an impeding subsoil
layer; internal drainage is medium to slow. Surface drainage 1s good. Por-

tions of the watershed (6-19%) are non-contributory due to the presence of

small desilting and retention dams.
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Surface coverage on these agricultural watersheds consists of equal
portions of cultivatlon, pastures, woods, and idle land. Low permeability
and impeding subsoil layers restrict infiltration resulting in fairly rapid
response to rainfall input.

4,2 Selection of Rainfall-Runoff Data

The guidelines proposed by Barnes (1959), Bernard (1935), and Brater
(1939) for the selection of hydrologic data suitable for hydrograph develop-
ment were followed in this study. These can be summarized as follows:

1. The rain must have fallen within the selected time unit.

2. ‘The storm must have been well distributed over the watershed,
all statlons showing an appreclable amount.

3. The storm period must have occupled a place of comparative iso-
lation in the record.

4, The runoff following a storm must have been uninterrupted by the
effects of low temperatures and unaccompanied by melting snow or
ice.

5. The hydrographs must have a sharp, defined rising limb culminating in
a single peak and followed by an uninterrupted recession. In a mul-
tipeaked hydrograph peaks must be distinctly defined.

Rainfall-runoff data for the agricultural watersheds were obtained from

two sources:

1. USDA publications entitled "Hydrologic Data For Experimental Agri-
cultural Watersheds in the United States.'

2. The USDA Hydrologic Data Center, USDA-ARS, Beltsville, Maryland.

Rainfall-runoff data for watersheds near Hastings, Nebraska, were ob-
tained from the USDA Hydrologic Data Center. For the remaining watersheds,
data were obtained directly from the USDA publications on hydrolgic data.
These publications are released almost every year and contain one event per
year for each watershed. This event is generally the largest runoff producing
event in that year. Eight to twelve events per watershed were normally

available; some watersheds had even fewer events. The watershed name,
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location and date of rainfall-runoff event, used in this analysis, are given
in Table 4-2.

USDA publicatilons on hydrologic data usually list readings of only one
raingage, although the watershed may have more than one raingage. This rain-
gage 1s supposedly taken to be representative of watershed rainfall, a situa-
tion not often attained. In order to be consistent throughout, this practice
was followed for each watershed.

4,3 Determination of Ralnfall-Excess

The conventional ¢~index method of determining rainfall-excess was used
in this study. The ¢~Index method assumes a time invariant infiltration rate
for the duration of rainfall (see Fig. 4-1). The ¢-index method simplifies
the rainfall-excess calculation, and its simplicity is the primary reason for
1ts use in hydrologic modeling. For this same reason 1t was used in the
present study. Several disadvantages are, however, associated wilth this method
and will be discussed in a later section.

4.4 Selectlon of Topographic Characteristics

The topographic characteristics selected for this study include average
watershed slope, slope of the mainstream, watershed area, width of the wa&er-
shed, length of the mainstream, drainage~density, shape factor and stream
order. Fundamental concepts inherent in CONV called for consideration of
the first two characterisitcs. The remainder of the characteristics have
been found influential In determining the shape of the runoff hydrograph
{Sherman, 1932b; Gray, 1961; Black, 1975). These characteristics are given
for each watershed in Table 4-3. We now define these characteristics and
discuss how to obtain them.

4.4.1 Average Watershed Slope (SLOPE)
Average watershed slope was obtained directly from the USDA hydrologic

data publications. Slope was given in these publications for several portions
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of the watershed. An average slope was obtained by weighting each slope
with respect to the proportion of watershed comprising this slope.
4.4.2 Average Mainstream Slope (CSLOPE)

The slope of the principal drainage channel was determined from the
topographic map. The length of the mainstream was divided by the difference
in elevation between its upper and lower ends. Small basin areas and the
relatively straight channel reaches justified this simplistic method.

4.4.3 Basin Area (AREA), Basin Width (WIDTH), and Length of Malnstream (XLR)

Area and width of the basin were given in the USDA publications, as was
the length of the mainstream. The length of the principle watercourse was
defined as the distance from the gaging station to the upstream watershed
boundary measured along the floodplain of the watercourse.

4.4.4 Drainage-Density (DD)

Drainage~density was determined from the topographic map. Drainage-

density 1s defined as the cumulative length of all streams, shown in the

drainage~basin, divided by the drainage-basin area:

pp = Ek (4-1)

where DD is drainage-density, A area of drainage-basin, and L length of
watercourses.
4.4.5 Shape Factor (SHAPE)

The shape factor proposed by Chorley, Malm, and Pagorzelskl (1957) was

utilized in this study:

LZ
Ky = 7.5°A (4-2)

where Kf is the dimensionless shape factor, and L length of the malnstream.
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4,4.6 Stream Order (S0)

The method of designating stream order developed by Strahler (1954a)
was applied. Strahler's method assumes that the channel-network map in-
cludes all Intermittent and permanent flow lines located in clearly defined
valleys, the smallest finger-~tip tributaries are designated order 1. Where
two flrst-order channels join, a channel segment of order 2 1s formed;
where two channels of order 2 join, a segment of order 3 is formed; and so
forth. The mainstream through which all digcharge of water passes is there-
fore the stream segment of the highest order.

The usefulness of the stream order system 1s dependent upon the assump-
tion that, on the average, order number 1s directly proportional to relative
watershed dimensions, channel size, and stream discharge at that place in the
system, Due to the dimensionless nature of stream order, drainage¥basins
differing greatly In size can be compared provided the problem of linear
map scaling is resolved.

4,5 Determination of Converging Geometry

The transformation of the éomplex watershed geometry into a simplified
converging geometry requlres the determination of the geometric parameters
Lo’ r, and 0. These geometric parameters were estimated from topographic
characteristics including width and area of the basin, and length of the
mainstream. L was conglidered equal to the length of the mainstream along

its course. 8 was defined as:

§ = 2 arctan (§§“ (4-3)
o

where W 1s the horlzontal projection of the watershed width. Then r can be

determined from the watershed area:
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I (14t) -
A= (M Lg (1-1) (4-4)

4.6 Methodology For Estimation of Model Parameters

The development of a procedure for estimating model parameters from
watershed characteristics involved two basic operations: (1) the optimization
of model parameters for a set of events for each watershed, and (2) the
correlation of the optimized parameters with topographic characteristics by
means of regression analysis. Each of these operations is discussed in the
following sections.
4.6.1 Optimization of Model Parameters

The model parameters were optimized by the modified Rosenbrock method
(Rosenbrock, 1960; Palmer, 1969; and Himmelblau, 1972), using the objective
function based on the sum of squares of peak deviations:

M
== % -— 2 -
FeL @ G) - () (4-5)

1 o e

where F 1s index of disagreement, or error, Qp (1) observed hydrograph peak
for the jth event, Qp (j) estimated hydrographopeak for the jth event, and

M number of runoff evZnts in the optimization set. This objective function is
particularly useful in flood studies and has other attractive features. Ob-
viously, among peaks greater welght is placed on higher peaks. If F is
divided by the number of events,the mean square error will result. This
shows, on the average, how much error occurs as the optimization 1s performed
over a set of events. Because it requires only the hydrograph peak from each
event, it is efficient computationally. However, it is not recommended for
use where hydrograph peak 1s not an important consideration, e.g., low flow

studies. This objective function has been found useful in several studies

(Singh, 1974, 1975a, 1975b, 1975e, 1975f).
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In optimization of model parameters for a watershed all rainfall events,
that were available on that watershed, were utilized., The optimized para-
meters of CONV and NASH are given in Table 4-~4. To optimize parameters of
NASH two cases were distinguished: (1) both N and K were considered parameters
for optimization, (2) N was fixed at 3 and K was considered as the parameter
for optimization. The reason to fix N at 3 will become clear later.

4.6.2 Correlation of Model Parameters with Topographic Characteristics

The UCLA Blomedical Statistical package, called BMDO2R, was used to

perform regression analyses of model parameters and watershed characteris-—

tics. This package is versatile, can handle a large number of variables,

and is stepwilse in nature.

1. Correlation of a

Regression analyses were performed to correlate O as dependentbvariable
with aforementioned watershed characteristics as independent variables.
Initially, a multiple linear regression analysis for all 38 watersheds was
performed. The correlation coefficient was 0.9523 and the standard error
of estimate 9.23. The regression equation is:

o = 0.00942*%AREA + 11.53795*%WIDTH -~ 9.76167*%XLR + 1.94925%SLOPE +

11.8994*SHAPE + 175.32422*DD + 0.89852%S0 - 4.687079*CSLOPE (4-6)

Figure 4-2 shows the computed values of o using Eq. (4~6) versus the opti-
mized values of a,

These statistics indicate a relatively good linear relationship between o and
watershed characteristics. In an attempt to improve the correlation coeffi-
clent, the independent variables were first logarithmically transformed and
then o« was linearly correlated with these transformed variables. The cor-
relation coefficient and standard error of estimate were 0.9274 and 11.31

respectively. The logarithmic transformation obviously did not improve the

correlation.

L BAM DM YT A R A A A i ne s
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It was then hypothesized that stratification of the data based on a water-

shed area criterion might improve the correlation. The area criterion was

selected as the basis for stratification because the area parameter had lar-

ger range of values than any other parameter.
The watersheds were divided into two groups: (1) watersheds smaller

than or equal to 75 hectares, and (2) watersheds larger than 75 hectares.

The former group contained 20 watersheds and the latter 18 watersheds.

Linear regression analyses were performed for both groups. The correlation

coefficients for the small and large watersheds were 0.9932 and 0.9530 with

standard error of estimate 2.29 and 14.31 respectively, It is clear that

the data stratification significantly Improved the correlation coefficient.

The regression equations are:

For the small watersheds,

@ = -0.32453*AREA - 6.5572*WIDTH + 44.29964*XLR + 1.08668*SLOPE — 1.98314%
SHAPE + 427.48218*DD ~ 2.45283*S0 - 1.02488%CSLOPE (4-7)

For the large watersheds,

& = 0.01011%*ARFA + 12.6032*WIDTH - 10.50376*XLR + 1.81744*SLOPE + 12.20712%
SHAPE + 934.08984*DD + 0.79896%50 - 4.59683*CSLOPE (4-8)

Figures 4~3 and 4-4 show the distribution of computed o values using Egs.

(4-7) and (4~8) versus the optimized o values for small and large water-

sheds respectively.

In hope of further improving the correlation coefficient for the group
of large watersheds the functional relationship between each independent
variable and ¢ was investigated. Table 4~5 lists the independent variables -
and the functlonal form which produced the highest correlation coefficient
for @ with that variable. By selectively combining the transformed Independent

variables and performing linear regression analyses, the best equation was
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Table 4-5. Functional form of variables for CONV.

Large Watersheds

Functional Correlation Coefficient
Variable Yorm Between o and Individual
Variable
AREA Linear 0.621
WIDTH Linear 0.830
XLR Linear 0.764
SLOPE Loge 0.917
SHAPE Loge 0.808
DD Loge 0.902
S0 Linear 0.851
CSLOPE Linear 0.754

Table 4-6. Functional form of variables for NASH,

Variable Functional Correlation Coefficient

Form Between K and Individual
Variable

AREA Linear 0.786

WIDTH Linear 0.816

XLR SQRT 0.930

SLOPE Linear 0.614

SHAPE Loge 0.832

DD Linear 0.279

SO Linear 0.842

CSLOPE Linear 0.289
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obtained for the large watersheds with a correlation coefficient of 0.9714

and the standard error of estimate 11.22. The regression equation is:
@ = 0.01233%AREA + 11.82528*WIDTH - 10.50765*XLR + 8.38607*Log, (SLOPE) +

51.27583*Loge (SHAPE) - 1.99823%Loge(DD) - 7.06871%S0 - 2.51323*CSLOPE (4-9)

A comparison of Figs. 4-5 and 4-4 1llustrates the improved correlation be-

tween computed and optimized o values, and corresponds to a higher correlation

coefficient for Eq. (4-9).

Statistical F tests were applied to the regression equations to deter-—
mine at what point variables ceased to be statistically significant, and
could therefore be deleted from the equation. Values of F were calculated
at each regression step using the following equation:

(SSRl - SSRZ)/P

F = MSEl (4~10)

where SSRl is the sum of squares due to regression from the full model,
SSR2 the sum of squares due to regression in the reduced model, where vari-

ables are deleted, p number of varlables deleted, and MSE, the mean square

1
error assoclated with deviations from regression in the full model. Calcula-
ted ¥ values at each step of regression were compared to tabulated F valueé,
F.OS(p’ n~k-1), where n 1s the sample size and k 1s the degrees of freedom
due to regression. . If the calculated F values equalled or exceeded the tabu-
lated F value the variable was retained in the regression equation., Table
4-7 gives the F value comparison. By deleting relatively non-contributory
variables the degrees of freedom were increased thereby enhancing the

statistical significance. The final regression equation for the small

watersheds is:

SRR B :
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o = ~0.45817*AREA ~ 9.54289*WIDTH + 50.53227*XLR + 0.59317%SLOPE ~ 3.13773%
SHAPE + 148.47112%DD (4-11)
with a correlation coefficient of 0.9905 and standard error of estimate 2.49.
Figure 4~6 shows the computed versus optimized values of a for Eq. (4-11)
A comparison of Figs. 4-3 and 4-6 shows that Eqs. (4~7) and (4-11) produce
essentially the same results although two variables have been deleted from
Eq. (4-11).
The final regression equation for the large watersheds 1s:
¢ = 10.91814*WIDTH ~ 6.96391*XLR + 10.764*Loge(SLO?E) + 28.933*Loge(SHAPE)
- 0.70065*Loge(DD) ~ 5.89831*CSLOPE (4-12)
with a correlation coefficient of 0.9625 and standard error of estimate 11.69.
Figure 4-7 shows the computed versus optimized values of o for Eq. (4-12). A
comparison of Figs. 4-5 and 4-7 shows that Egqs. (4-9) and (4-12) produce essen-

tially the same results although two variables have been deleted from Eq. (4-12).

2. Correlation of N and K
Regression analyses were performed to correlate the parameters N and K

as dependent variables with the aforementioned watershed characteristics as

the independent varilables. Initially, a linear regression analysis, for all
38 watersheds, was performed separately for N and K. The correlation
coefficient for N and K was 0.6858 and 0.9038 with standard error of estimate

2.96 and 5.79 respectively. The regression equations are:

N = -0.63439*WIDTH + 1.2826%XLR -~ 0.38665*SLOPE - 1.33649%SHAPE + 142.8307%DD
+ 1.08697*S0 + 0.68069*%CSLOPE + 0.58631*%AREA (4-13)
K = ~-0.001*ARFA — 4.25605*WIDTH + 4.23147*XLR + 0.988*%SLOPE -~ 1.22699*SHAPE

~ 280.94189*DD -~ 1.22258%S0 - 1.89397%CSLOPE (4-14)

Figures 4-8 and 4-9 are plots of computed versus optimized N and K values for

Fgs. (4-13) and (4-14) vespectively,



51

40+
30
(@]
o -Theoretical Line
> 20 of Fi?
e °
Q.
E [:]
o
Q o/ °
10+ o y
0 . . -
0 10 20 30 40
Optimized a
Fig. 4-6. Computed o vs, optimized a for equation émli.
60
. “-Theoratical Line
o 4 of Fit
S 40
g @ e
O o
= . °
o 8
(&) o
201 ° o
[+
0 ¥ L F) v
0 20 40 80 80

Optimized a
Fig. 4-7. Computed o vs. optimized o for equation 4-12.



52

207
15 9
= . )
©
-53 10 A ° \Theom?icab Line
o of Fit
5 .
O ° e o °
@ 9@ ¢
5 4 Eoeg @e e
o 2 (]
@60 o
o ]
O . v
0] 5 1O - 15 20

Optimized N
Fig. 4~8. Computed N vs. optimized N for equation 4-13,

60;

D
s

. \Theor@?!cui Line
¢ of Fit

Computed K
o
o

0 i : ; v :
0 5 30 43 60,

Optimized K

Fig. 4-9. Computed K ve. optimized K for equation 4~14.




53

These statistics indicate a poor linear relationship between N and the water-
shed characteristics, and a good linear relationship for K. To improve the
correlation coefficient for N, the independent variables were first logarith-
mically transformed and then N was linearly correlated with these transformed
variables. The correlation coefficient and the standard error of estimate were
0.7098 and 12.38 respectively. Although some improvement in the correlation
coefficient was realized, it was not as high as desired.
Once agailn, in an effort to improve the correlation coefficient stratifi-
cation of the data was performed using the same area criterion that resulted
in two groups of watersheds as in case of a. Regression analyses for para-
meter M were then performed for both small and large watersheds ylelding cor-
relation coefficients 0.7301 and 0.7545 with standard error of estimate 12.20
and 11,82 respectively. The regression equations are:
For the small watersheds,
N = ~0.73154*WIDTH + 1.86349*XLR - 0.54877%SLOPE ~ 2.0598%SHAPE + 140.3692*DD +
1.1248%S0 + 0.59374%CSLOPE + 0.64973%AREA (46~15)
For the large watersheds,
N = -0.73154*WIDTH + 1.73621*XLR -~ 0.60135*% SLOPE -~ 2.,2563*%SHAPE + 149.355%DD +
1.5438%S0 + 0.38441*CSLOPE + 0.49284%AREA (4-16)
Figures 4-10 and 4-~11 show the graphs of computed versus optimized values of
N for Egs. (4-15) and (4-16). A comparison of these plots with Fig. 4-8
clearly shows that no significant improvement in the correlation coefficient

results from the data stratification.

These results clearly indicated that in this case no significant improvement
resulted from the data stratification. In view of the generally weak cor-
relation between parameter N and the watershed characteristics it was decided

to fix N, thus reducing the NASH model to a l-parameter model. This would sim—
plify the determination of parameter K, and also expedite the costly optimization

process.
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Two questions naturally arise: (1) what justification can be made for
fixing N, and (2) what value should N be assigned? To answer the first ques-
tidn, the functional nature of N should be emphasized. The parameter N signifies
the number of linear reservoirs, and thus accounts for the effect of storage on
the watershed response characteristics. Channel storage and overland storage
always exist in most watersheds. The characteristics of these storage ele-
ments will naturally depend on the watershed topography. For smaller watersheds
where topographic characteristics do not change drastically from one watershed
to another, it seems plausible that N will not change drastically either. There-
for it appears that N can be specified for watersheds that fall within a certain
area range.

As to a particular value of N, one can choose any value of N equal to or
greater than 2. The value of N higher than 1 is required to get the right
shape of runoff hydrograph. For smaller watersheds with relatively small channel
development, it may be appropriate to fix N at 3. This choice of N seems to be
consistent with Table 4~4 entalling optimlized N for each watershed under considera-
tion.

Holding N constant necessltated re-optimization of parameter K. The new op-
timized values of K are given in Table 4-4. Linear regression analysis for all
38 watersheds was then performed for new values of parameter K. The multiple
correlation coefficient and standard error of estimate were 0.9375 and 10.59

respectively. The regression equation for K is:

K = 0.59631%AREA ~ 6.03594% WIDTH + 38.8672*XLR ~ 13.5118*SLOPE - 10.6385%SHAPE

- 183.9712*DD ~ 4.8446*S0 + 1.89*CSLOPE (4-17)

Figure 4-12 shows the graph of computed versus optimized values of K for

Eq. (4-17).
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Identification of the functional relationships between each independent
variable and K was attempted to increase the correlation coefficlent. Table
4=6 lists the independent variables and the functional form which produced the
highest correlation coefficlent between K and that variable. By selectively
combining the transformed variables and performing linear regression analysis
the highest correlation coefficient 0.9592 was obtained with a standard error
of estimate of 8.96. The regression equation is:

K = 0.00545*AREA - 9.08041*WIDTH + 32.78809*SORT(XLR) - 0.79334% SLOPE —

5.57113*Loge(SHAPE) = 274.99609*DD ~ 3.10247*%S0 + 1.06% CSLOPE (4-18)

Figure 4-13 shows the plot of computed versus optimized values of K for Eq.

(4-18). A comparison of Figs. 4-12 and 4-13 clearly illustrates the improve-

ment in the correlation after the variables were transformed.

Statistical T tests were again employed in an effort to delete com—
paratively non-contributory variables from the regression equation. Table
4-8 lists calculated and tabulated F values for each step of the regression.
As Table 4-8 indicates variables SHAPE, CSLOPE, SO, and DD were deleted from
the regression equation for K. .The final form of the regression equation is:

K = 0.00666%AREA ~ 6.26551*WIDTH + 22.70943*SQRT(XLR) - 0.7722*SLOPE ‘ (4-19)

with correlation coefficlent of 0.9541 and standard error of estimate 8.91.

Figure 4~14 shows the computed versus optimized values of K for Eq. (4-19).
A comparison of Figs. 4~13 and 4~14 shows that Eqs. (4-18) and (4-19) produce

essentlally the same results although several variables have been deleted

from Eq. (4-19).



Table 4-8. Statlstical F tests for NASH.

Variable To Calculated Tabulated F
Step Be Added F F_Os(p,n—k-l)
1 | XLR - -
2 SLOPE 10.10 4.11
3 WIDTH 5.28 4,12
4 AREA 4.20 4.13
5 50 1.83 4,14
6 SHAPE 1.38 4.15
7 CSLOPE 0.13 4.16

8 DD 0.43 4.17
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CHAPTER 5

HYDROGRAPH PREDICTION AND DISCUSSION OF RESULTS

After the derivation of equations for model parameters, the predictive
ability of the models was considered. Three hydrograph features were of
primary concern: (1) hydrograph peak, (2) time to peak, and (3) the hydro-
graph shape. Hydrograph predictions were performed by CONV and NASH for
several events on a few watersheds selected from each of the two groups.

Test data were comprised of events of two types: (1) events previously used
in the optimization, and (2) events not previously used in the optimization.
5.1 Hydrograph Prediction

Using estimated values of a, hydrographs were predicted by CONV for several
events on both large and small watersheds, as shown in Figs. 5-1 - 5-6 and
Tables 5~1 and 5~2. These figures show a relatively good agreement of pre-
dicted hydrographs with observed hydrographs for small watersheds and not so
good an agreement for large watersheds. The prediction error for both large
and small watersheds varied widely reflecting model sensitivity to input errors.
Poor prediction on large watersheds was largely due to errors in rainfall-
excess and poor synchronizatidh between rainfall and runoff observations.
Predictions were particularly poor for multipeaked hydrographs.

Identical data was used for predictionsby NASH. Figures 5-7. - 5-9
show the hydrographs by NASH. As evident from Table 5-3, NASH consistently
underpredicted the hydrograph peak.

5.2 Discussion of Results

Figures 5-1 to 5-9 show the predictive performance of both models, and
Tables 5-1 to 5-3 give statistics of their performance. These indicate that
hydrograph shape and time characteristics are generally predicted well by
NASH and CONV, although their parameters are estimated from watershed charac-

teristics. Due to its non-linear nature, CONV is very sensitive to spatial
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and temporal distribution of rainfall. The best prediction results were

. obtained when rainfall was almost normally distributed in time and oc-

b e
it 4 P AN

curred for a minimum of 30 minutes. For almost every non-normally dis-
tributed rainfall event, peak times were either over predicted or under
predicted. The significance of the minimum 30 minute rainfall duration
seems to be in the satisfaction of initial abstractioms.

NASH was also found to be sensitive to spatial and temporal rainfall
distribution, but to a lesser degree than CONV. NASH, like CONV, performed
better when rainfall was almost normally distributed, occurring for a min-
imum of 30 minutes.

5.3 Sources of Errors

Now the question arises regarding the probable sources of errors in
model results. Of all, input errors are probably most important.

Inaccurate measurements of rainfall and subsequent estimation of mean
areal rainfall may cause considerable error. On the watersheds in question
a centrally located raingage was assumed to represent the mean areal rain-
fall. However, this is seldom the case because rainfall varies in time and
space. This situation was exemplified by several events in which runoff
volume exceeded rainfall volume, which of course is physically impossible.
This meant that.such rainfall events, tabulated in the USDA publications,
may not have been representative of the mean areal rainfall which actually
caused the runoff. This improper correspondence between rainfall and run-~
off would cause error in model predilctions.

Rainfall-excess forms the input to the model and was determined by
subtracting from rainfall infiltration which was estimated by ¢~index. An

examination of Figs. 5~10 =~ 5-13 shows that the large prediction errors

[P « Bt AL . R
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are likely due to error in rainfall-excess.

~To corroborate this hypothesis the Philip infiltration scheme was
substituted for the ¢-index method in the prediction models. Predicted
hydrographs were then computed for a few watersheds. Tables 5-4 - 5-6
show observed and predicted hydrograph peak and its time. Sample predicted
hydrographs are shown in Figs. 5-14 - 5-17. A comparison of Tables 5-1 -
5~3 with Tables 5-4 -~ 5-6 shows that errors in both runoff peak and its time
are consistently smaller for the predicted hydrographs utilizing the Philip's
infiltration scheme. In particular, multipeaked hydrographs showed the
greatest reduction in peak and peak time errors. Cowparison of Figs. 5-3,
5-7, 5-10, 5-13, and with Figs. 5-14, 5-15, 5-16, and 5-17 respectively,
shows that predicted hydrographs, utilizing the Philip's infiltration
scheme, match the observed hydrographs closer than the predicted hydro-
graphs using the ¢-index method.

For simplicity the following assumptions, which would cause some error,
wvere employed in runoff modeling:

(1) The spatial variability of infiltration was neglected. No allow~
ance was made for depression storage or for infiltration during rainless
periods. Point determination of infiltration at the raingage location seldom
represents the mean conditiomn.

(2) Tt was assumed that 1007 of watershed area contributed to runoff,
This may not be true, especially for large watersheds where spatial rainfall
variability is high.

(3) Evaporation and transpiration were neglected. These losses are not
always negligible.

(4) Complex watershed configurations were transformed into simpler ones.

(5) Spatial varlabilicy of rainfall was not taken into consideration in

the determination of mean areal rainfall.
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(6) The models accounted for only one-dimensional space variability
in surface runoff along the direction of flow.

Some error may be due to model parameters. Errors, incurred in the
process of paramecter determination, are principally from two sources: (1)
poor selection of data used in parameter optimization, and (2) choice of
an unreallstic objective function for use in the optimization procedure.
These sources of errors can be effectively minimized through the strict
application of the guidelines previously outlined for the selection of
hydrologic data and choosing an appropriate objective function that will
serve the intended purpose.

Watershed characteristics may yet be another source of error. The
most serious error in determination of topographic features 1s that of map
scaling. Differing linear map scales can result in the dispropoftionate
determination of identical parameters. The watershed characteristics,
drainage—-density and stream order were especially vulnerable to this
problem. As an example, a stream of order 3 on a small scale map may be
interpreted as a stream of order 1 on a large scale map. However, since
watersheds of simlilar size were generally mapped to simllar scales, data

stratification based on size tended to reduce this error.
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CHAPTER 6
CONCLUSIONS
The following conclusions are drawn from this study:
(1) The model parameters o and K were reliably estimated from water-
shed physiography.
(2) 1In deriving equations for these parameters it is desirable to
include a large number of watersheds having diverse physiographic conditians,
and to estimate infiltration for determlnation of rainfall-excess by a

reliable procedure.

(3) Estimation of the parameters of physically based models is easier

and more reliable than that of the parameters of operational models.
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