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ABSTRACT

The traditional formulation of kinematic wave theory assumes the
kinematic wave friction relationship parameter to be constant. The
present study waives this assumption of parameter constancy, allows
continuous spatial variability in the parameter and develops a more -
general formulation of the kinematic wave theory. This concept of
parameter variability leads to a completely distributed model, and
might eliminate the necessity of utilizing a complex network model to
represent the watershed system. Furthermore, this more general
formulation will reduce the complexity of modeling watershed surface
runoff, and will greatly save computational time and effort.

A systematic treatment to the problem of surface runoff is developed.
It is shown when and where explicit analytical solutions are feasible.
To develop mathematical solutions two cases are distinguished: one
leading to the equilibrium hydrograph and the other leading to the
partial equilibrium hydrograph.

The overland flow on an infiltrating plane is formulated as a
free boundary problem. Mathematical solutions are developed to study
the effect of infiltration on nonlinear overland flow dynamics. To
develop explicit mathematical solutions infiltration and réinfall are
represented by simple space—and-time invariant functions.

The proposed distributed kinematic wave model is utilized to
predict surface runoff from three natural agricultural watersheds.

For determination of the kinematic wave friction relationship parameter
a simple relationship between the parameter and topographic slope is
hypothesized. The simple relation contains two constants which are

optimized for each watershed by the Rosenbrock-Palmer optimization



VIII

algorithm. The model results are in good agreement with runoff observations
from these watersheds. It is shown that if model structure is sound it
will suffice to optimize parameters on hydrograph peak only, even for
prediction of the entire hydrograph.

Current kinematic wave models of watershed runoff incorporate either
numerical or amalytical solutions, depending upon the type of input
(rainfall pattern) and representation of watershed geometry. Numerical
solutions are time~consuming; analytical solutions are not always
feasible. This study formulates these models in terms of an approach
called hybrid approach which is part numerical and part analytical. By
applying it to a set of nine rainfall-runoff events on a natural water-
shed it is demonstrated that this approach is computationally far more
efficient than a totally numerical one, and is applicable where analytical

solutions are not feasible.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL REMARKS

The development of a methodology for watershed runoff is vital for
the solution of many water resource problems. It is useful in the design
of surface water control facilities, economic appraisal of flood prevention
programs, study of the effects of existing and proposed watershed projects,
evaluation of the effects of changes in land management, and design of
experimental watersheds.

The phenomenon of runoff generation is characterized by the response
function describing watershed behavior. This response function is a result
of numerous processes—complex and interdependent- that participate in the
transformation of rainfall into runoff. The transformation process
encompasses virtually the entire domain of the hydrologic cycle, and in
it are reflected the scope, the magnitude, and the complexity of the
problem of modeling the runoff phenomenon. The complexity of runoff
phenomenon is enhanced further by spatial variations in geologic forma-
tions, soil conditions and vegetation, and by spatial and temporal
variations in hydrometeorological conditions.

During the past half a century there have been numerous approaches
to modeling the runoff phenomenon. These approaches can be grouped into
two categories:?

1. Hydrodynamic Approach

2. Operational Approach

The former approach réquires the assumption that certain laws of

physics hold and further requires a geometrical abstraction of the real-



world phenomenon. The latter approach develops input—output relationships
by data fitting without making any explicit assumptions regarding the
internal structure of the system.

This dichotomy over the modes of approaches emanates from the extreme
positions taken by the representatives of these two groups of investigators.

Quoting Amorocho and Hart (1964):

The first group espouses the pursuit of scientific
research into the basic operation of each component

of the hydrologic cycle in order to gain full under-
standing of their mechanisms and interactions.
Although the immediate motivation of an individual
researcher may unot transcend the narrow confines of

a set of special phenomena, it is implicit that a

full synthesis of the hydrologic cycle may eventually
be sought. The concept of a full synthesis is held to
be the only rational approach to hydrology.

The second group is motivated by the need to es-
tablish workable relationships between measurable
parameters in the hydrologic cycle to be used in
solving pressing practical technological problems.
These people generally hold that the vast complexity
of the systems involved in these studies and the
inadequacy of the knowledge now available and the
knowledge likely to exist in the foreseeable future,
make the possibility of a full synthesis so remote
in most cases that 1t must be discarded for practical
purposes.
The seeming dichotomy in the extreme positions of the research workers
is more fictitious than real. In the quantification of watershed
response function or the derivation of rainfall-runoff relationship two
basic questions must be addressed:
1. What principles and mechanisms govern surface runoff, and how
can they be integrated to accurately simulate it?
2. What physiographic characteristics of a watershed in conjunction
with spatial and temporal distributions of rainfall affect the

runoff phenomenon, and how much detail is required in their

representation?



The key to a systematic study of watershed runoff lies in answering these
questions. A hydrodynamic approach is perhaps the best way to answer them,
and to develop insight into the runoff phenomenon.

There are many plausible hydrodynamic approaches. In the present study
we will consider the one that is based on the kinematic wave theory.. The
traditional formulation of kinematic wave theory assumes the kinematic wave
friction relationship parameter to be constant. The present study waives
this assumption of parameter constancy, allows continuous spatial variability
in the parameter and develops a more general formulation of the kinematic
wave theory. This concept of parameter variability leads to a completely
distributed model and eliminates the necessity of utilizing a complex net-
work model to represent the watershed system. Furthermore, more general
formulation reduces the complexity of modeling watershed surface runoff,
and will greatly save computational time and effort.

Previous studies have treated surface runoff and infiltration as
separate components of hydrologic cycle. A combined study of these phases
is required for modeling surface runoff. Theconventional approach to
combine these phases has been through the familiar notion of so-called
rainfall-excess. 1In this approach infiltration is independently determined
and subtracted from rainfall; the residual is termed as rainfall~excess,
which forms input to the surface runoff model. It seems that this concept
of rainfall-excess is more of an artifice than a reality. The processes of
infiltration and runoff occur simultaneously in nature during and after
the occurrence of rainfall and, therefore, require a combined study.

Studies in the past have postulated one model, and have proceeded to

show that it results in "sufficiently good" fit for a very limited amount



of data (often a few events). It is recognized in the present study that
there may be many plausible alternative models, and that any meaningful
study must consider model performance for several rainfall-runoff events

on different watersheds. Only then a systematic statlstical interpretation

of model results can be made,

1.2 OBJECTIVES
Objectives of the study are:
1. To develop a distributed nonlinear kinematic wave model for
watershed surface runoff.
2. To develop a combined treatment of infiltration and overland
flow.
3. To apply the proposed model to predict surface runoff from

natural agricultural watersheds.



CHAPTER 2

A SURVEY OF KINEMATIC WAVE MODELS
OF WATERSHED RUNOFF

2.1 ROLE OF MODELS IN HYDROLOGY

The need for modeling is well expressed in a quote by Rosenblueth

and Wiener (1945):

No substantial part of the unvierse is so simple
that it can be grasped and controlled without
abstraction. Abstraction consists in replacing
the part of the universe under consideration by

a model of similar but simpler structure. Models,
formal or intellectual on one hand, or material
on the other, are thus a central necessity of
scientific procedure.

To this quote it may well be added that models are also a central
necessity of engineering design and of watershed engineering in particular.
A watershed is an extremely complex system. To understand it in all detail
is beyond human expectation. Therefore, modeling is inevitable to control

or understand some aspects of its behavior.

2.2 KINEMATIC WAVE MODELS

The evolution of surface runoff models based on the kinematic wave
theory can be traced along the following lines:

1. Development of kinematic wave theory

2. Validity and verification of kinematic wave theory

3. Application of kinematic wave theory to hydrograph prediction

4. Dynamics of flood frequency

5. Laboratory investigation of kinematic wave theory

6. Solution techniques



7. Parameter estimation and optimization

8. Determination of watershed characteristic parameters

We will present a comprehensive review of the kinematic wave models

along these lines.

2.2.1 Development of Kinematic Wave Theory

Lighthill and Whitham (1955) introduced the kinematic wave theory,
and utilized it in describing flood movement in long rivers. They also
developed kinematic wave equations for overland flow. In their general
treatment of the theory it was suggested that the solution could be found
by numerical integration along the characteristics when the inflow was a
function of time and distance, and explicit solution could be found for
the lateral inflow being constant or a function of distance only. While
clarifying the role of dynamic waves it was shown that at the "Froude
Numbers' appropriate to the flood waves, dynamic waves were rapidly
attenuated and the main disturbance was carried downstream by the kinematic
waves. Some account was given of the behavior of flow at high Froude
numbers. A variety of factors influencing the stage—discharge relation
were considered. A criterion for kinematic shock waves was delineated.
General properties of shock waves along with kinematicwavés were dis—
cussed. Full equations of motion were employed to investigate the
structure of the kinematic shock.

About the same time Iwagaki (1955) developed an approximate method
of characteristics for steady flow in open channels of any cross-
sectional shape, and proposed that the method would be applicable to

hydraulic analysis of runoff estimation in actual rivers. The kinematic



assumption was implicitly utilized in the analysis. The lateral inflow
was taken nearly uniform. The agreement between the results of the method
and the experiments was reported to be good.

These investigators laid down the foundation, developed the mathematical

base, and demonstrated the applicability of the kinematic wave theo;y.

2.2.2 Validity and Verification of Kinematic Wave Theory

Some questions remained unresolved regarding the applicability of the
kinematic wave theory to watershed hydrology. They were, for example:
what is the criterion for the choice between the complete dynamic
equations and the kinematic equations? What degree of approximation is
introduced in the solution by the kinematic approximation? How good is
the kinematic approximation in hydrologic problems as opposed to full
dynamic equations?

Woolhiser and Ligget (1967) solved equations for overland flow,
in three one~dimensional forms, for the rising hydrograph by finite
difference techniques. A single dimensionless parameter was found to
delineate a criterion for choice between the complete equations and the
kinematic approximation. It was shown that for most hydrologically
significant cases the kinematic wave solution would give accurate
results., This parameter is now known as kinematic wave number. It
was concluded that there was no unique dimensionless hydrograph for
overland flow, contradicting the unit hydrograph theory.

A similar conclusion was reached by Overton (1972) when he analyzed
more than 200 overland flow hydrographs generated by simulated rainfall

on long impermeable planes. It was shown that kinematic waves prevailed



over dynamic waves. It was observed that most flows appeared to be either
in the transition from laminar to turbulent state or in a fully developed
turbulent state. The transition was found to be significantly affected by
rainfall intensity. However, error involved in treating all flows as
turbulent would be small with the resulting analysis made considerably less
complex.

Some earlier studies by Ishihara (1964), Yu and McNown (1964) and
Harbaugh (1966) subscribed implicitly to that same contention on the

applicability of kinematic wave theory to problems of hydrologic significance.

2.2.3 Application of Kinematic Wave Theory to Hydrograph Prediction

No attempt was made to utilize the kinematic wave theory in watershed
hydrology until Henderson and Wooding (1964). They used it in describing
the hydrograph from a steadyrain of finite duration for laminar or turbulent
flow over a sloping plane, neglecting the slope of water surface relative
to the slope of plane. The relationships developed by them showed certain
distinct differences from those postulated in the unit hydrograph theory
(Sherman, 1932; Nash, 1957; Dooge, 1959). The results of calculations
based on the theory were found to be in close agreement with the experimental
measurements. The kinematic wave solution was also compared with the
solution to the problem embodying groundwater flow through a porous medium
overlying a sloping impermeable stratum; significant differences were noted
between the two.

Later, Wooding (1965a, 1965b, 1966) employed the kinematic wave theory
in the development of a 2-component, 4~-parameter runoff model for a V-shaped

watershed geometry (two planes contributing runoff to a channel between



them). Analytical and numerical solutions were presented, and numerical
solutions were compared with runoff measurements from three natural water-
sheds. All watersheds, regardless of their complexity, were represented
as a single V-shaped watershed with overland flow planes contributing
lateral inflow to a channel in the apex of V. 1In spite of good agreement
reported between observed and computed runoff hydrographs he concluded
that a better geometrical description of stream network would be desirable.
One feature of the hydrograph that his model was unable to reproduce was
the steeply rising portion of the hydrograph caused by concentration of
runoff.

In his model, Wooding considered two parameters as constants which
were the indices in the power law equations of motion for catchment and
stream. No objective way was specified for arriving at these constants,
and for determination of other parameters. The model did not account for
temporal and spatial variability in rainfall and watershed characteristics.
No attempt was made to relate model parameters to watershed geometry, or
rainfall characteristics or both. He did not offer any explanation for
choosing rectangular geometry and ignored the sensitivity of model para-
meters,

The work of these investigators provided a real impefus to further
research on applications of the kinematic wave theory (Eagleson, 1967, 1968,
1871, 1972; Overton and Brakemsiek, 1970; Li, 1974; Singh, 1974). In these
attempts a V-shaped geometry, proposed by Wooding (1965a), was taken to
represent the natural watershed. Some dissatisfaction was expressed by
Wooding himself with regard to the inadequacy of the proposed geometrical
representation of a natural watershed. Investigators continued to use it

until Brakensiek (1967a) came up with the concept of kinematic cascade.
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He utilized this notion in the transformation of an upland watershed into
a cascade of planes discharging into a single channel. The transformation
technique was based on the preservation of the hypsometric curve and the
contour-length-elevation curve of the watershed.

The kinematic cascade concept has since been incorporated in several
investigations. Woolhiser, et al (1970) utilized this concept to describe
overland flow and channel flow for small rangeland watersheds. The friction
relation was assumed to be of the Darcy-Weisbach form, with initially
lamilar flow becoming turbulent flow at a transitional Reynolds number of
300. Optimum values of the friction parameter were obtained by a univariate
optimization procedure for four heavily gaged watersheds and four lightly
gaged watersheds for a single storm. Although these watersheds showed
substantial differences in vegetal composition and cover and in weight of
vegetation per unit area, the roughness parameters were not gignificantly
different. The average of the eight optimized parameters was used in the
kinematic cascade to predict runoff hydrographs.

Kibler and Woolhiser (1970, 1972) developed dimensionless equations
for the kinematic cascade, and derived general equations for a single
element in the cascade. Properties of the solution for a kinematic cascade
with pulsed lateral inputs were examined. They developed a criterion by
which to delineate the development of kinematic shock waves.

Rovey (1974), Singh (1974) and Lane (1975) applied the kinematic
cascade to predict surface runoff from experimental, agricultural and
urban watersheds. Brakensiek (1967b) gave a formal definition of kinematic
flood routing and its application. Harley, et al (1967) developed a

general purpose river basin distributed simulation model. The problems
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of network decomposition and lumped parameter recognition were discussed,
and a scheme suitable for any specific tree-like network was proposed.
Flood routing within the individual elements was performed using a non-
linear kinematic wave model. The properties and behavior of the model
under various conditions were examined, and recommendations were made
regarding their suitability in various flow regimes.

Besides V-shaped geometry and cascade of planes and channels, alternate
geometric representations were proposed and applied. Woolhiser (1969)
suggested that a watershed consisting of a V-shaped section plus a portion
of the surface of a cone at the upstream end might result in a better
description than the simple V-shaped catchment because of the concentration
of flow in the cone; such a model could be taken to represent a watershed
of any complexity or it could be used as a basic element in a network model.
The kinematic wave equations for an experimental converging surface were
solved numerically for a number of values of the convergence parameter.

An analytic solution was given for recession from equilibrium. He found
for pulse inputs of lateral inflow that the shape of the hydrograph might
be changed appreciably by varying the convergence parameter.

In order to test the utility of such a model, Woolhiser, et al (1971)
presented experimental data for two types of surfaces from a converging over-
land flow section, and compared the properties of the experimental hydro-
graphs with those predicted by kinematic wave theory. Chezy's friction law,
and both laminar and turbulent regimes were incorporated. The shape of
the recession hydrographs predicted by kinematic wave theory showed that
there was no general basis for the commonly accepted negative exponential.

Following the work of Woolhiser, Singh (1974, 1975a) utilized the

converging section geometry in developing a nonlinear kinematic wave model
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for watershed runoff. TFor steady input he developed analytical solutions.
The model was utilized to predict runoff hydrographs from an experimental
rainfall-runoff facility and a large number of experimental agricultural
watersheds. The behavior of kinematic wave parameters was examined, and an
experimental justification was advanced to reduce the number of modgl
parameters. An objective methodology was given to estimate and optimize
model parameters. The performance of the model was compared with that of
kinematic wave models based on other geometric configurations and Nash's
linear model. The model results supported the contention expressed by
Woolhiser (1969).

Some attempts were made to use the kinematic wave theory to establish
the relation between watershed geomorphology and runoff response. Golany
and Larson (1971) developed a model for a watershed of 4th oxder stream.

It included overland flow planes, an elementary channel and a channel
system. Morphological relationships and physical characteristics of small
watersheds were used in the model., Excess rainfall was routed by a numer-
ical solution of the kinematic wave equations through the overland flow
plane and the elementary chamnel. The outflow hydrographs of the elementéiy
channel were used as input to the channel system where the flow was routed
by successive numerical solutions of the dynamic wave equations of the
unsteady flow to obtain the runoff hydrographs of the watershed. Backwater
effect was considered above the major junctions in the main channels of

all orders except one. The model was used to study the effects of water-
shed characteristics, length, slope and roughness of the main channel

and watershed area on the time to virtual equilibrium. The effect of each
factor was determined by varying it independently while keeping others

constant. The roughness and slope were also varied., They inferred that
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the relationships developed by them would be applicable only to the model
watershed.

Wei and Larson (1971) attempted to incorporate the effects of time
digstribution and areal distribution of rainfall storm movement, and water-
shed shape on the runoff hydrograph. The attempts were directed to find
a relationship between an appfopriate input parameter and a modificaéion
(peak flow) coefficient to be used in adjusting the peak discharge estimated
by the methods based on constant intensity uniformly distributed over the
watershed.

Rastogi and Jones (1969, 1971) applied the kinematic wave model to a
third order stream representing conditions on the catchment under study.
The model drainage basin was considered as a distributed hydrologic system
with stream network, channel characteristics and overland flow lengths as
distributed hydrologic variables. Different order channel lengths, channel
cross—-sections and channel-slopes were treated as spatially distributed.
The results of the model indicated that various time parameters were affected
by change in rainfall-excess intensity. The peak flow rates for a given
rainfall-excess duration showed a nonlinear response with rain-
fall~excess intensity. No verification of the mathematical model was made,

In these investigations little attention was focused on the
problem of estimating water entering the soil mass, and coupling it with
the kinematic wave models of surface runoff. In most investigations
rainfall-excess was determined in a rather empirical fashion. To
resolve this complex problem Foster, Huggins and Meyer (1968) coupled an
infiltration model with a kinematic wave model to predict overland flow
on very rough, short slopes. The model incorporated retention storage,

provision for a variable point infiltration rate, a variable coefficient
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of friction, the drying up of the upstream end of the slope during recession
and a variable area infiltration rate -~ a function of water surface area
during recession. Field hydrographs from fallow erosion study plots were
analyzed for retention storage, and values of the Darcy-Weisbach coefficient
of friction were estimated. These results were used in a model to simulate
hydrographs that were compared with field hydrographs to test the concept
used in the model.

Smith and Woolhiser (1971a, 1971b) combined the kinematic wave approx-
imation for unsteady overland flow on cascaded planes with a mathematical
model of infiltration based on the partial differential equation for
vertical, one-phase, unsaturated flow in soils. Numerical solutions were
employed to obtain the solution. Model results were compared with
experimental and field data. The agreement was adequate, although there
were some differences in recession lengths. This same approach was later
implicit in a study by Singh (1973).

In most investigations very little attention was paid to the vari-

ability in rainfall and watershed characteristics and its effect on character
of runoff phenomenon. Eagleson (1967) used the kinematic wave model by
Wooding (1965a) for the determination of the peak discharge from an impulse
of rainfall-excess located at any distance from the catchment outlet.
The spatial impulse response was employed in linearization of the catch-
ment dynamics to obtain a simple, superposition relation for estimating
the effect of areal variability in rainfall distribution on peak surface
runoff.

Singh (1975h) derived general solutions to kinematic wave equations
using space-time variant input., Several special cases were considered by

imposing conditions on input and kinematic wave parameters. The model
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was applied to a natural agricultural watershed, and the agreement between
model results and observations of runoff was reported to be good. In
optimizing model parameters the role of the choice of an objective function

was examined.

2.2.4 Dynamics of Flood Frequency

In other studies by Eagleson (1971, 1972) the kinematic wave method
was generalized through the incorporation of random variations in temporal
and areal distribution of storm rainfall-excess. Expressions were derived
for the peak direct runoff and streamflow in terms of the statistics of
rainfall rate and duration.

Probability density functions of storm duration and storm rainfall
depth were assumed. The classical flood frequency curve was derived as
an explicit function of parameters defining the rainfall duration and the
catchment stream physiography. The flood frequency relation expressed the
mean annual flood as a function of catchment area, and its comparison was
made with observations from natural catchments. The curve was found to
be sensitive to the particular value of direct runoff fraction and that of

catchment area.

2.2.5 Laboratory Investigation of Kinematic Wave Theory

Laboratory watershed models provide opportunities to study unsteady
flow in a number of geometrically different systems. They appear to be
a powerful tool in testing purely mathematical models of watershed hydraulics,
and also in testing the applicability of lumped system models (linear or
nonlinear) over the range of prototype size that can be accomodated. Studies

of surface runoff on small prototypes without spatial wvariation in rainfall
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will unquestionably answer interesting hydraulic and hydrologic questions.
When used in conjunction with mathematical models they aid in understanding
and predicting watershed behavior.

Experiments on a natural watersheds are very time consuming, and there
is no control over the input. The physical size is also a problem; so for
practical reasons some investigators attempted to model hydrologic systems
utilizing a change in scale (Chery, 1966). They found that this was not a
viable approach. Grace and Eagleson (1965, 1967) demonstrated that scale
models were feasible only in very special cases.

An important consideration is that laboratory model must duplicate
the most important features of the complex system. If it does not, it
cannot give insight into real system behavior. Realizing the significance
of laboratory watersheds in hydrologic research several investigators
studied the kinematic wave theory experimentally.

In his famous experimental study Izzard (1943) collected data on the
hydraulics of overland flow from paved and turf plot surfaces. These data
have often been used to verify analytic and numerical results (Morgali
and Linsley, 1965; Mongali, 1970). From his data analysis he concluded
that detention on the rising side of the hydrograph, or at any time that
rain was falling, was definitely and appreciably greater than the detention
required to maintain the same rate of flow on the recession side of the
hydrograph after all rain had ceased.

Izzard (1944) applied the experimental data to the equatiomns of
motion (Keulegan, 1944) in order to compute the surface profile of overland
flow. The attempt was limited to consideration of flow at equilibrium
during rainfall at constant rate and did not involve flow on the rising

or falling limb of the hydrograph, except for some data based on the
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recession curve at the point where discharge was equal to the discharge
during rainfall equilibrium.

Since Izzard, very few experiments were conducted pertaining to the
hydraulics of overland flow. It is only recently that growing interest
in watershed experimentation was renewed.

Woo and Brater (1962) made a study of spatially varied flow produced
by uniform rainfall for two types of uniform surfaces for slopes varying
from 0 to 0.06. A rainfall applicator was developed by means of which rain-
drops of desired size could be applied at a reasonably high velocity and a
uniform intensity. Rainfall was applied to a flume 29 feet 7 inches long
and 6 1/4 inches wide, with intensities of 1.65, 2.95 and 5.04 inches per
hour, keeping the intensity constant during each test. The flow was laminar.
The study indicated that the effect of rainfall impact on overland flow
profile could be included in the analysis by a change in the friction coef-
ficient. A method for computing the water surface profile during rain was
developed for practical use.

Amorocho and Hart (1965) discussed three types of laboratory catchments:
model catchment, hydromechanic prototypes, and prediction analysis proto—'
types. The first type, used for the simulation of natural watershed
behavior, involved a number of questions related to the problem of in-
complete similitude. A procedure for systematic adjustment of these catch-
ments in order to obtain experimental predictability was suggested. The
second type was employed in watershed hydraulics for the investigation of
individual flow mechanics. The third type was used to test the methods
of nonlinear analysis of hydrologic systems (Amorocho, 1963; Amorocho and
Orlob, 1961). A description of the results of experimentation with these

devices indicated their usefulness in hydrologic research.
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Chery (1966) discussed theoretical considerations and described
design criteria, fabrication, and tests of a physical hydrologic model
including a storm simulating device. Model performance during a series
of preliminary tests was discussed. Based on the information obtained from
the tests the author proposed further investigation into physical hydrologic
models to establish rainfall-runoff relationship.

Robertson, et al (1966) discussed overland flow experiments performed
at Stillwater, Oklahoma. The principle purpose was to develop and test
analytic procedures for predicting the surface profile for overland flow
resulting from application of rainfall simulation over steep rough surfaces.

Chow and Harbough (1965) described a technically efficient method for
producing artificial raindrops. The approach was based on broad basic
requirements to be adapted in the experimental investigation on watershed
hydraulics. Modular construction of the raindrop producing device was
adapted, allowing variable time distribution and areal coverage of
intensities from 0.75 to 13 inches per hour. The rainfall producer
provided fast response to on-off commands and produced in the laboratory
controllable simulated storms of flexible time and areal distributionpattérns.

Chow (1967) described the laboratory approach investigating the basic
laws and principles controlling the mechanics of runoff from the watershed.
It employed a watershed experimentation system based on integrated hydraulic,
electronic and structural design. A discussion was given of the system,
the rationale behind its construction and some of the research tactics that
had been used or proposed. The system was a laboratory device to study
unsteady, free surface hydraulic problems. It could produce an artifical

rainfall of variable time and space distribution to move over a laboratory



19

area 40 square feet or less, thus capable of simulating a storm moving in

any direction over a testing drainage basin constructed within the area.

The study considered the time factor in runoff process, the conceptual water-
shed runoff and the effect of storm movement on peak discharges.

Harbaugh and Chow (1967) utilized the laboratory experimentation system
in studying the roughness of a conceptual river system or watershed for
various slopes and shapes. The sensitivity of the conceptual roughness to
depth of flow and raindrop impact on the laboratory watershed was investigated.

Yen and Chow (1969) studied the importance of movement of rainstorm on
the time distribution of surface runoff from watershed through the use of a
laboratory watershed experimentation system. Experiments were performed for
2 rainfall intensities, 4 surface slopes, and 14 rainstorm velocities.
Analysis of the mechanics of water flowing on watersheds was attempted to
explain the influence of movement of rainfall on the characteristics of
surface runoff hydrograph.

Dass and Huggins (1970) developed a kinematic wave model to study over-
land flow on a laboratory catchment. Their study indicated that surface )
roughness greatly influenced the time distribution of surface runoff and
the time to equilibrium. Their depth hydrographs suggested a significant
increase in depth of water and consequently in detention volume on the flow
of plane with increase in surface roughness. Their recommendation was to
study the effects of raindrop impact for a variety of slopes, intensities,
depths of water and surface roughness conditions.

Kundu (1971), following the above recommendation, studied in the
laboratory the characteristics of surface runoff on a watershed element

with very rough surfaces. The relative importance of slope, roughness
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and rainfall on the flow characteristics was investigated. A roughness
concentration index was defined to measure the surface roughness and it
was conjectured that thils would be a better measure than either Chezy's
coefficient or Manning's coefficient. A consistent trend of friction
factor with respect to Reynolds number (200-1,000) was reported in ;he
transition zone of flow.

Langford and Turner (1973) described an experimental test to establish
the accuracy of kinematic wave theory as applied to overland flow over a
rough, uneven surface., The depression storage, and the hydraulic
roughness for flows without rain were measured in separate testss the
hydraulic roughness for flows under rain was calculated from the rising
limbs of the runoff hydrographs from a series of simulated storms.
Recession curves were calculated using the kinematic wave theory. Close
agreement between experimental and calculated recessions showed accuracy
of the theory in predicting behavior of flows over rough, uneven surfaces.
Hysteresis was observed in the storage-discharge curves; this was explained
in terms of the theory. The continuity equation was linked with a uniform
flow equation (e.g. Manning's formula) relating discharge to depth of £low;
the effect of momentum of both overland flow and rain was ignored. In the
experimental evaluation of the theory it was found that these assumptions
did not cause important errors in the ability of the theory to predict the
behavior of overland flow. This implied that certain amount of averaging
in time and space was permissible. The major weakness of the study was
the limited nature of the experimental program; only one surface with one
slope was used.

Muzik (1973, 1974a, 1974b) studied the response of a well-defined

impervious surface to a specified input of rainfall, using the state
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variable approach of systems analysis. The mathematical model was tested

by simulating the experimental hydrographs of surface runoff from the lab~-
oratory catchment for uniform, time and space variable rainfall inputs.

A mathematical relationship describing the raindrop impact effect was
developed by the method of dimensional analysis and subjected to empirical
evaluation. The experimental hydrographs were simulated by kinematic wave
and instantaneous unit hydrograph models. The nonlinearity of the rainfall-
runoff process was studied. The kinematic wave model was found to provide
fairly consistent results but had a tendency to overpredict the time to peak
and the peak discharge.

Woolhiser and Schulz (1973) described a large-scale experimental
rainfall-runoff facility. The applicability of kinematic mathematical
model to the experimental results was demonstrated. The friction resistance
to flow was hypothesized by a 4-parameter relation. The facility was
utilized in earlier studies by Woolhiser (1969), Smith and Woolhiser (1971),
Woolhiser, et al (1971), and Kibler and Woolhiser (1972), Rovey (1974),
Singh (1974, 1975a) and Lane (1975).

Singh (1974, 1975a, 1975b) studied the applicability of the kinematic
wave theory on a large experimental rainfall-runoff facility. The runoff
hydrographs predicted by the theory were in close agreement with the
experimental hydrographs. The behavior of kinematic wave friction rela-
tionship parameter was examined. Upon comparing the model with Nash's
linear model, it was found that the former was consistently better than
the latter.

Lane (1975) studied experimentally the influence of simplifications of

watershed geometry in simulation of surface runoff. He developed a methodology
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whereby one could define the simplest kinematic cascade geometry which
when used in simulation will, on the average, preserve selected hydrograph
characteristics to a given degree, given rainfall, runoff and watershed
topography data. Several goodness-of-fit statistics were defined. The

influence of geometric distortion on impulse response was quantified.

2,2.6 Solution Techniques

The solution of kinematic wave equations depends on (a) geometric
representation, and (b) rainfall pattern. There are three basic geometric
elements: converging section, plane, and channel, that are utilized in
different combinations to represent the watershed geometry. The rainfall
pattern can also be of three types: impulse, pulse and complex. For
pulse and impulse rainfall analytical solutions were developed for all
three elemental sections (Wooding, 1965a, 1965b; Woolhiser, 1969; Kibler
and Woolhiser, 1970, 1972; Eagleson, 1971, 1972; Singh, 1974, 1975e).

For complex inputs, however, numerical solutions for these sections were
developed (Singh, 1974, 1975e; Li, et al, 1975; Kibler and Woolhiser 1970,
1972; Brakensiek, 1966; Ligget and Woolhiser, 1967). Hybrid solutions- |
combination of analytical and numerical solutions -~ were also presented

(Singh, 1974, 1975e).

2.2.7 Parameter Estimation and Optimization

A very few studies, indeed, considered the problem of systematic
determination of kinematic wave parameters. The usual procedure has been
to optimize the parameters over a set of events and utilize these
optimized values for another set of events for which predictions were

desired. Although this method does provide a way to get around the
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problem, but it does not solve it basically. Some studies, rather more
suggestive than conclusive, were conducted by Singh (1974, 1975f, 1975g,
1975h), where parameters were correlated with watershed physiography.
Although the importance of geomorphology has long been recognized in
hydrologic synthesis, it is surprising that only limited effort has been

made in this direction.

2.2.8 Determination of Watershed Characteristic Parameters

Overton (1971) presented hydraulic solutions of lag time for idealistic
surfaces using the kinematic wave equations. The surfaces included
(1) uniform plane, (2) hill slope as a cascade of planes, (3) V-shaped
watershed, (4) V-shaped watershed with hill slope, (5) converging surface,
and (6) concave surface. Lag times were shown to be related to roughness
and catchment slope, and the input rate. A lag relation was developed for
a nonuniform catchment in terms of the lag of a uniform plane and a con~
verging factor. A numerical procedure was shown whereby the converging
factor could be evaluated for any nonuniform catchment from observed input
and output data.

Singh (1975e) derived general expressions for Overton's lag time for
a converging surface, and showed that Overton's solutions were a special
case of his. A similarity factor was defined. In another study Singh
(1975d) employed the kinematic wave theory to derive general expressions
for the time of concentration for plane and converging sections. Several
conditions were considered with regard to space-time distribution of
rainfall and spatial distribution of kinematic wave friction relationship
parameter. Some traditional misconceptions in the notion of time of

concentration were pointed out. It was shown that the generalized
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expressions would give, under very specilal conditions, rise to familiar
time of concentration formula (Mulvany, 1855).

Ragan and Duru (1972) presented a nomograph for times of concentration
employing the kinematic wave theory. They recognized the influence of
rainfall intensity on the time of concentration. Using the Manning's flow
formula they specialized in the equation developed by Henderson and Wooding
(1964) and proceeded to develop a graphical technique to solve for the
time of concentration. Using field data they showed that the time of
concentration based on kinematic wave theory was accurate for most engineefing

design purposes.
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CHAPTER 3
KINEMATIC WAVE THEORY

3.1  GENERAL REMARKS

The equations of motion (Kibler and Woolhiser, 1970; Mahmood and
Yevjevich, 1975) for a wide rectangular channel or plane can be written

as: the continuity equation,
3h , 3Q _
st T = q{x,t) . (3-1)

and the monentum equation,

u ., Ru, 0 —§e) - A6 -
5t + u S + g x g(So-S¢g) 5 u (3~2)

where h = local depth of flow, u = local average velocity, q(x,t) = rate
of space-time variable lateral inflow, Q = rate of flow per unit width,

g = acceleration due to gravity, S, = bottom slope, Sf = slope of the

]

energy line, x = distance measured along channel axis in the direction

of flow, and t time. These equations are often referred to as de Saint
Venant equations. Note that width of the section has been taken as unity
in the derivation of these equations. This implies that cross-section area

(A) is equal to depth of flow (h). We must also note:

Q = uh (3-3)

These equations characterize gradually varied unsteady free surface flow

with lateral inflow. Let us now examine implications of each term in
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Eqs. (3-1) and (3-2).
The term %% accounts for the change in storage with time in the section

due to water surface elevation; the term %% accounts for the difference
between outflow from and inflow to the section due to areal variation in
velocity with spacej the term q(x,t) is lateral inflow which provides the
net mass change spatially and temporally beyond the storage terms. If we

substitute Eq. (3-3) into Eq. (3-1), an alternative form of the continuity

equation is obtained:

oh u sh _
St + h - + u Ay q(x,t) (3~4)

Then the term-%% is called as the rate of rise term; u-%% is the wedgé

Ju ,
storage term; and h-§; is the prism storage term.

In Eq. (3-2) the term-%% is the acceleration term and accounts for
the local acceleration of the fiuld; u %ﬁ + g'%% is the convective term
in which the former term relateg to change in kinetic energy and the latter
relates to potential energy; the term g Sy accounts for the component of
gravitational force in the direction of flow; the term g S¢ accounts for
the frictional force component along the channel; and the term %'q(x,t)
accounts for tﬁe momentum that must be imparted to the lateral inflow by

the water flowing in the channel.

Equations (3-1) and (3-2) give rise to a complete dynamic wave model.

By specializing in Eq. (3-2) the following models can be obtained:

3.1.1 Storage Model
In this model we ignore the momentum equation completely, and
consider only the continuity equation. Thus the storage model i1s represented

as:
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3h . 3Q _
at + BX = q(xst)

If we consider a small reach (Ax) then %% can be replaced by %%; for a

given time interval At and a reach of length Ax we can write 49

Ax
(I - 0)/Ax, where I = inflow and 0 = outflow. The first term %%
can be replaced for small At by %% . Thus we can write:

Y -
I-0=7--0x (3-5)
The quantity Ah - Ax is AS where S = storage. Then

= AS -
I-0-= it (3-6)
If we let At = 0, Eq. (3~6) becomes

_ ds
I—O-'d—t 3-7)

Equation (3-7) is the familiar form of storage model (Yevjevich, 1959),
and is nothing but spatially lumped continuty of mass. One must note

here that I is identical to q(t) and 0 is related to Q(t).

3.1.2 Kinematic Wave Model

The kinematic wave model retains continuity equation given by Eq. (3-1),
and imposes certain restrictions to simplify ‘Eq. (3-2). It is assumed
(Eagleson, 1970) that acceleration, convective and inflow terms are
negligible as compared to bottom slope and friction. This implies a

balance between gravitational and frictional forces, or an equivalence
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between bed slope and friction slope.

represented as:

oh  23Q _
ot + x 1(x, )
So = Sf

Thus the kinematic wave model is

(3-8)

The average boundary shear stress can be written as:

T="{th

where ¥ = weight density of water,

we obtain:

T = Yh 84

(3-9)

Substituting Eq. (3-8) inte Egq. (3-9)

(3-10)

This is a well-known shear stress relation for steady, mniform flow in a

wlde rectangular channel,

:C —
T szg

where C¢ is a coefficient, a function of Reynolds

If we define

(3-11)

number and relative

roughness parameter. Combining Eqs. (3-10) and (3-~11) we obtain:

[2ghso] 0.5

Ct

or

(3-12)

(3-13)

where C = (Zg/Cf)O'S, Chezy's coefficient. Assuming C to be constant (as

a first approximation) Egq. (3-13) can be written as:
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a = ah¥? (3-14)

where o = C(SO)O'S. More accurately, of course, because of the variability

of C we can write:

u = gh" - (3-15)
Q = oh (3~16)

where n = m + 1 because of Eq. (3-3). Equation (3-15) or (3-16) is often
referred to as kinematic approximation to momentum equation, or simply
kinematic momentum equation. We defer further discussion of kinematic

wave model until next section.

3.1.3 Diffusion Model

The diffusion model includes continulty equation given by Eq. (3-1),
and imposes slightly less restrictions to simplify Eq. (3-2) than does
the kinematic wave model. It is assumed (Henderson, 1966) that accelera-
tion, kinetic energy and inflow terms are negligible as compared to
gravitational force, frictional force and pressure force. That is, we
include the potential energy term or pressure term in the kinematic wave
model. Thus the diffusion model can be represented as:

sh . 3Q _
at + X q(x, t)

== =5, - S¢ (3-17)

For wide rectangular channel we can write Chezy's law as:

u = Cvh S¢ (3-18)
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Writing Eq. (3-17) as

3h _ u?
Eri (3-18)
Solving Eq. (3-18) for u
0.5

_ _ any | §
u=C {h(So aX) (3-19)
Substituting Eq. (3-19) into Eq. (3-1) we obtain:
oh |, 0 { oh 0'5}
on L9 LY = q(x,t 3-20
Tt ix Ch[h[so 5 ] q(x,t) (3-20)
Upon simplification Eq. (3-20) becomes:

0.5 1.5
sh , 3 ¢ 5h } 3h Ch 32h
L 2 .2 o - + —
dt +t3¢C {htso ax} 9% { ah}O.S %2 qa(x,t) (3-21)
X

For constant Chezy's C and a wide rectangular channel we know that
c = —-:23—- u (3-22)

where ¢ = wave celerity. Substituting Eq. (3-19) into Eq.(3-22) and then

into Eq. (3-21) we obtain:

2
Sh o 9h _ p 37h 4 q(x,t) (3-23)
Jt ox %2
where K = ———521—735— . The term K is often referred to as the diffusion

S, — 2
3¢ o Bx)
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coefficient. Sometimes K is simply written as:

ch

k=35,

(3~24)

Equation (3-23) 1is also a standard form of wave equation, containing an
extra "diffusion" term K %2%’, whose effect is to make h decrease in the
view of an observer moving with velocity c. In this diffusion term is
summed up the effects of the pressure term, which modifies the kinematic
character of the flood wave and makes it subside.

The great advantage of the diffusion model is that if K and c are
assumed to be constant, Eq. (3-23) has well-known explicit solutions, and

thus the movement of the entire wave profile, however irregular it may be,

can be traced with confidence.

3.2 MORE ON KINEMATIC WAVE MODEL

There is indeed a wide spectrum of problems encountered in hydrology
where the kinematic assumption is valid; that is, the inflow, free surface
slope, and inertia terms of the momentum equation are negligibly small in
comparison with those of bottom slope and friction. An order of magnitude
analysis will show that these conditions are satisfied by overland flow
and certain gradually varied flows (Eagleson, 1970). Theﬁ there exists, to
sufficient accuracy, a functional relationship (considering a one-
dimensional flow system) between (a) the flow Q (quantity passing a given
point in unit time), (b) the concentration, h (quantity per unit distance),
and (¢) the position x. Under these conditions there exist waves that
are referred to as kinematic waves. On the assumption of this functional

relationship the wave property follows from the equation of continuity
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alone (Lighthill and Whitham, 1955). The classical wave motions are in
contrast described by dynamic waves.

One important difference between the kinematic waves and the dynamic
waves is that the former possess only one wave velocity at each point, while
the latter possess at least two (forwards and backwards relative to the
medium). This is because the equation of continuity Eq. (3~1) is of the
first order only (which states that the quantity in a small element of
length changes at a rate equal to the difference between the inflow and
outflow).

Consider the continuity equation without lateral inflow (i.e.,

g(x,t) = 0); that is

R (3-25)

If it is assumed that

Q = Q(h,x%) (3-26)

then, on multiplying Eq. (3-25) by

C = rﬁg] = c¢(h,x) (3-27)
[3h)x constant :

we obtain:

9Q 3Q _ -

e T ¢ x — 0O (3-28)

This implies that Q is constant on waves travelling past the point with

velocity ¢ given by Eq. (3-27). Mathematically, the equation has one
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system of 'characteristics' given by dx = ¢ dt, and along each of these the
flow Q is constant. The wave velocity, ¢, given by Eq. (3-27), is the
slope of the flow-concentration curve for fixed x. This is often referred
to as Kleitz-Seddon Law.

We can express the wave velocity c in terms of the mean velocity u

at a point. That is

.- % (3-29)

a _ au
= (uh) =u+h ih

(2]
1

Thus ¢ > u when the mean velocity increases with concentration, as is the
cage in rivers and channels, while ¢ < u when it decreases with concentra-
tion (as in traffic flow).

Kinematic waves are not dispersive, but they suffer change of form
due to nonlinearity(dependenceof the wave velocity c on the flow Q
carried by the wave) exactly as do the travelling sound waves of finite
amplitude. This might be called 'amplitude dispersion' in contrast to
'frequency dispersion'. Accordingly, continuous wave forms may develop
discontinuities, due to the overtaking of slower waves by faster ones.
This results in the formation of shock and the waves responsible for this
phenomenon are called shock waves.

The law of motion of kinematic shock is derived from equation of
continuity, as was the law governing continuous kinematic waves. If the
flow and concentration take the values Qp, hj on one side, and Qy, h2

on the other side, of the shock wave which moves with speed U, then the



34

quantity crossing per unit time may be written either as Q; - Uhl or as

Q - Uhy. This gives the velocity of the shock wave as:

Q@ -Q

U_hz--hl

(3-30)

This is the slope of the chord joining the two points on the flow
concentration curve (for given x) which correspond to the states ahead

of and behind the shock wave when it reaches x. In the limit when the
shock wave becomes a continuous wave, the slope of the chord becomes

the slope of the tangent and the velocity given by Eq. (3-30) coincides
with that given by Eq. (3-27). We will not dwell upon the shock phenomenon
in this report. For an elaborate mathematical discussion on it see the

reference by Lighthill and Whitham (1955).

3.3 ADEQUACY OF KINEMATIC WAVE THEORY

In this section we show under what conditions the kinematic wave

theory is adequate for application to problems of hydrologic significance.

3.3.1 Kinematic Wave Number

Woolhiser and Ligget (1967) derived a single dimensionless parameter,
later called as kinematic wave number, by which to show the goodness of
kinematic wave approximation. In order to derive this parameter it is
convenient to normalize Eqs. (3-1) and (3-2) by introducing the following

normalizing quantities:

Qnax = 9pax Lo» maximum steady-state flow rate at x = Lo} dpax is

maximum rate of lateral inflow; and Ly, = length of the plane.
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H, = normal depth at x = L, with a discharge Quax and velocity Vg =

Qmax/Ho = C HQ'S 58-5 where C = Chezy's coefficient.

Utilizing these normalizing quantities the following dimensionless

quantities, denoted with asterisks, are obtained,
= h
Xe =73 hx 7 o3 U T %F'; ty = -0 ; R =3 (3-31)

Substituting these dimensionless quantities into Egqs. (3~1) and (3~2) we

obtain:

dhy  3Qsx

—— — = R 3_32
otx Kk ( )

This is the dimensionless form of continuity equation given by Eq. (3-1).

Vo2 9 Vv 2u, oh R
o U + o Y au* + g H_O * gso(l _ _s_f_) _ qmax Vou* (3_33)
LO at* Lo 8}{%& LO BX* SO Ho h* ‘
Recalling F = -~96 5 3 Sg = u? ; where F is Froude number; we
(gHoy " Ch
can write Eq. (3-33) as:

duy du 1 % 2
— 4wk e+ p—xoSolo g M, Ruy (3-34)
tx 0Kk F° 3%x  F2H, hx hx

This is a dimensionless form of momentum equation given by Eq. (3-2).

Then the kinematic wave number, K, is defined as:

K= 22 (3-35)
F2H,
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This parameter reflects the effects of length and slope of the plane as
well as the normal flow variables. Woolhiser and Ligget (1967) showed
experimentally that for K > 20 the kinematic wave approximation was very
good, and for 10 < K < 20 the errors introduced by the kinematic wave

approximation would be small and acceptable for most engineering purposes.

3.3.2  Froude Number

In a natural flood wave both kinematic and dynamic wave movements
are present. The bed slope, S,, 1s by far the most important slope term;
the major bulk of the flood wave moves substantially as a kinematic wave,
even if the other three slope terms (acceleration and convective terms)
are not negligible. The presence of these less significant slope terms
modifies the character of the flood wave, but its speed may be expected
to approximate to that of the kinematic wave., Unless these three slope
terms are absolutely negligible (which they seldom are) they will produce
dynamic wave fronts moving at speeds u t%@? in front of and behind the
main body of the flood wave as shown in Fig. 3-1.

In contrast with single wave speed of kinematic waves, dynamic waves
have two speeds, indicated by the two characteristic directions on the
x~t plane. The physical implication is that a dynamic disturbance will
propagate in both the upstream and downstream directions; while a
kinematic disturbance will propagate only in the downstream direction.

For a wide rectangular channel with constant Chezy's C we see that
c=2q (3-36)

where ¢ = kinematic wave speed. This is less than the speed of the leading
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Dynamic wave Main body" of flood wave
moving upstream “kinemetic" in nature

Dynamic forerunner

Rapidly attenuating leading and trailing wave fronts

Fig. 3-1. Movement of the natural flood wave (after Lighthill
and Whitham, 1955).
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dynamic wave, u + /Eﬂ; provided that % u < VEE; that is, F < 2, a condition
which is fulfilled in most natural rivers except mountain torrents. If
this condition is fulfilled the leading dynamic wave will be ahead of the
main (kinematic) wave; the other dynamic wave will be behind the main wave,
since (u - VEE) must always be less than c.

The above explanation establishes that the leading dynamic wave acts
as a forerunner of the main wave. The question arises whether it will
bring about any appreciable rise of the water level before the arrival of
the main wave. If F < 2, a positive wave of this kind will attenuate
as it moves downstream in most cases. In the normal natural flood the
dynamic forerunner will attenuate rapidly unless F > 2, When F > 2, the
kinematic wave should overtake the dynamic forerunner; clearly, such an
event would lead to the steepening of the dynamic wave front. This
particular interpretation gives a deeper significance to the criterion
F R 2, for it suggests an actual mechanism by which the wave front

steepens when F > 2.

3.3.3 Escoffer's Criterion

The analysis by Escoffer shows that the general form of the criterion,

Fz22,is

du

— > 1

dw < (3-36)

where u, = uniform flow velocity appropriate to a given depth, and w =

stage variable, defined by

dw = Cd.gé (3-37)
A
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where Cy = VgA/B , dynamic wave velocity relative to the water, A = cross-
sectional area of flow, and B = width of the section. Then the kinematic
wave speed will be greater or less than the dynamic wave speed according

to

>
B LS‘

2 cq - (3-38)

where u has been replaced by ug because the existence of the kinematic

wave postulates a uniform flow relationship between u and A.
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CHAPTER 4

KINEMATIC WAVE MODELS OF SURFACE RUNOFF
FROM IMPERVIOUS SURFACES

4,1 GENERAL REMARKS

The traditional formulation of the kinematic wave theory assumes the
kinematic wave friction relationship parameter to be constant. The present
study waives this assumption of parameter constancy, allows continuous spatial
variability in the parameter and develops a more general formulation of the
kinematic wave theory. This concept of parameter variability leads to a
completely distributed model and might eliminate the necessity of utilizing
a complex network model to represent the watershed system. Furthermore, more
general formulation will reduce the complexity of modeling watershed surface
runoff, and will greatly save computational time and effort.

The traditional formulation of the kinematic wave theory has been as
follows:
The continuity equation for a plane section,

Eh-+ u Kl + h du

3t % 5..; = Q(Xﬁt) (4-1)

and the kinematic approxiamtion to momentum equation,
Q=on” (4-2)
where h = local depth, u = local average velocity, q(x,t) = rate of effective
lateral inflow per unit area varying in time and space, Q = outflow per unit
width, x = space coordinate, t = time coordinate, n = exponent, and o =
kinematic wave friction relationship parameter.

Equations (4-1) and (4-2) constitute the traditional formulation of kine-
matic wave theory. A close examination of Eqs. (4-1) and (4-2) can easily
show that the structure of a kinematic wave model of watershed surface runoff

will depend on the characterization of parameter o and the geometric configura-

tion chosen to represent the natural watershed geometry. It is apparent from
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Eq. (4-2) that in the traditional formulation the kinematic wave friction
relationship parameter is treated as constant. One approach that partly
relaxes the assumption of parameter constancy is to employ a network model
which considers the parametér to be different for different elements in the
network. Although a network model may be made so complex as to provide an
almost perfect representation of the watershed system, it will be taa cémplex
and too time-consuming to be of any operational value.

Four geometric configurations have been hypothesized in the literature
to represent the geometry of a natural watershed. Accordingly, kinematic
wave models of watershed surface runoff can be classified into four groups:

1. Converging overland flow model as shown in Fig. 4-~1.

2. Wooding's model as shown in Fig. 4-2.

3. Composite section model as shown in Fig. 4-3.

4. Cascade model as shown in Fig. 4-4.

These models involve varying degrees of geometric abstractioms, and are
either lumped or at most quasi-distributed depending upon the characteriza-
tion of parameter o . The converging flow model (Woolhiser, 1969; Singh,
1974, 1975a, 1975b) is a lumped parameter model. Of all it has the highest
degree of geometric abstraction. Wooding's model (Wooding, 1965a, 1965b,
1966) has relatively lesser degree of abstraction. This is also a Llumped
parameter model, or at most quasi-~distributed if the parameter o is allowed
to vary from one element to another in the network geometry. The composite
section model (Singh, 1974) - a combination of the two previous models -

has even lesser degree of abstraction. This will be quasi-distributed if the
parameter o is allowed to be different for different elements in the network
geometry. The cascade model (Brakensiek, 1967; Kibler and Woolhiser, 1970;

Singh, 1974) has the least order of abstraction and hence more close to reality.
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Fig. 4-1. Geometry of a converging section.

Fig. 4-2. Geometry of Wooding's runoff model.
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3

Fig. 4~3. Geometry of a composite section model.
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The cascade network geometry can even be made so complex as to provide an
almost perfect representation of the watershed geometry. Allowing the
parameter g to vary from one element to another will make the cascade model
as a quasi~distributed model.

A consideration of watershed runoff dynamics will suggest that the
watershed surface roughness characteristics have more predominant inflﬁence
on the runoff generation process thanm the geometry as such. In the present
context, the roughness characteristics are being represented by the parameter

¢ . It then follows that the above geometric configurations have been
advanced primarily to better represent the spatial distribution of the
parameter o ; and that the necessity of a complex geometric configuration

can be eliminated by simply allowing the parameter o to vary continuously

in space. By so doing, the resulting model will be simple and completely
distributed. It is interesting to note that this concept.of parameter
variability is not artificial, but is consistent with runoff dynamics. This
is the hypothesis that the proposed study attempts to develop and test by
considering its application to natural agricultural watersheds. It must,
however, be made clear that by no means we are suggesting here that geometric

details will have no influence on runoff process at all.

4.2 DISTRIBUTED KINEMATIC WAVE MODELS
The kinematic wave equations of continuity and momentum can be rewritten

in most general one-dimensional form as:

%h , 3h . Bu_ _
e T U TR 7x = 4(x%:t) (4-3)
Q = a(x,t) h" (4-4)

Here the parameter o is a function of both space and time. For a specified

rainfall duration T, q(x,t) =0 when t > T. We assume n > 1. Substituting
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Eq. (4~4) into Eq. (4-3) we obtain:

n—-1 oh

3h + P so(x,t) =

5L oy + a{x,t) n h

= q(x: t) (4—5)

Equation (4-5) holds in S = {0 < x < Lp» t?> 0}. Depending upon the dis-
tributional characteristics of a(x,t) and q(x,t) we can have sixteen
special cases of Eq. (4-5):

When a(x, t) = o, a constant then

[

(1) q(x,t) = q, a constant
(2) a(x,t) = q(x)

(3) alx,t) = q(t)

(4)  q(x,t)

When a(x,t) = a(x), then
(5) a(x,t) =¢q

(6) q(x,t) = q(x)

(7)  ax,t) = q(t)

(8 alx,t)

When a(x,t) = a(t), then
(9) ax,t) =¢q

(10) q(x,t) = q(x)

(11) q(x,t) = q(t)

(12) q(x,t)

When a(x,t) = a(x,t), then
(13) q(x,t) = ¢q

(14) q(x,t) = q(x)

(15) q(x,t) = q(t)

(16) q(x,t)

However, it may be interesting to note the two special cases:
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1. When the parameter o is constant then Eq. (4-5) becomes:

o, .n-13h _
5t + nah ronll q(x,t) (4-6)

This is the familiar case which has been extensively investigated.
2. When the parameter a is a function of space only, then Eq.(4-5)
takes the form:

Sh oy yn 2a()

ot X

n-1 dh

+n a(x) h = q(x,t) (4=-7)

dx
This case has not been investigated before. The present study attempts to
investigate it. It is obvious that the former case given by Eq. (4~6) is

also a special case of the latter given by Eq. (4-7).

4.3 MATHEMATTCAL SOLUTIONS OF NONLINEAR WATERSHED DYNAMICS
We desire solution to Eq. (4-7). In the context of watershed surface

runoff problem it is reasonable to assume the following boundary conditions:

h(o,t) o, 0<t<T

[ A
iA

(4~8)

h(x,0) L

o

It

o, 0

| A

X

PA

These conditions represent an initially dry surface. It is physically plausible
that h(o,t) should not be specified for t > T, that is, the solution of Eq. (4-5)
in S below t =T subject to Eq. (4~8) should extend intoc S above t = T.
This will be seen to be true in the ensuing mathematical discussion.

It must be pointed out that here q(x,t) forms input to Ehe model. Its
hydrological significance is twofold:

(1) Rainfall or any other source of lateral inflow will directly contri-
bute to input. This implies that the watershed surface is impervious, and in-
filtration is disregarded. This is true for parking lots, highways, runways, etc.

(2) Rainfall-excess forms the input to the model. Here infiltration is

considered, and subtracted from rainfall to yield rainfall-excess. An important
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implication of this notion of rainfall-excess is that infiltration is allowed
to take place only during the period of rainfall. As soon as rainfall ceases
to exist, infiltration is assumed to cease simultaneously. This assumption,
although far from reality, has been and continues to be utilized in most
studies on hydrologic modeling.

In developing solutions to Egs. (4~7) and (4~8) we employ the method of
characteristics. According to this method, the characteristic curves of

Eq. (4-7) are the solutions of:

dt _

ds 1

Zay o (x)h™ T

ah _ _ .0 dax)
dS - q(x,t) h dx

where s 1is a parameter.

Through each point of space (x,t,h) there passes a unique characteristic curve.
Therefore the solution of Eqs. (4-7) and (4-8) is the surface formed by all

the characteristic curves passing through the segment t = o0, 0 < x E-Lo and
and the segment X = 0, 0 < t < T (in appendix A we show that this solution
extends into all of S above t = T). Figure 4-5 shows the projections of
these characteristic curves onto the (x,t) plane. To obtain the surface formed
by characteristic curves we may prefer to take x, instead of s, as inde-

pendent parameter. Then we may write:

a1 (4-9)
dx na(x) h

dh___qlxe) W da(x) (4-10)
dx n o(x) hn_1 a{x) n hn—1 dx
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The initial conditions are:

t(o) =t ; h(o) = o

or

t(xo) = 03 h(xo) = o

The solutions of Egqs. (4-9) and (4-10) will be the solutions of Eq. (4-7).

To obtain the solutions of Eqgs.(4-9) and (4-10) we distinguish two cases:

1. Case A. The characteristic curve t = t(x,0) through the origin (o0,0)
intersects x = L, (the downstream boundary) before it intersects t = T
(the duration of rainfall q(x,t)). This case will result in equilibrium
hydrograph, and is shown in Fig. 4~6. Thus t* < T. The characteristic
issuing from the origin is called as the limiting characteristic. Here t*
is identical to watershed equilibrium time.

2. Case B. The characteristic curve t = t(x,0) through the origin (o0,0)
intersects t = T before it intersects the downstream boundary x = LO.
This case will result in partial equilibrium hydrograph, and is shown
in Fig. 4-7. Thus t* > T for this case. Here t* will depend on T, and
is not equal to t* of Case A,

The solutions to these two cases will completely characterize the sur— -
face runoff hydrograph. We will develop mathematical solutions to these

two cases.

4.3.1 Case A: Equilibrium Situation

We can write the input q(x,t) as:

a(x,t) 0<t<T ; T>tk
q(x,t) = S =
o}
t>T
where T = rainfall duration, and t* = time taken by the characteristic to

travel from the origin to the downstream boundary. It must be noted that here
t* is independent of T , and may be characterized as the watershed equilibrium

time. For this case we divide the solution domain into four subdomains as
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8
t
Q
T "I >
3
o
A %= 1( L,,0)
t=t{x,0)
D,
D3
o o
0 Lo X

Fig. 4~6. Solution domain for equilibrium hydrograph.
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D,

L, *

Fig. 4-7. Solution domain for partial equilibrium hydrograph.
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as shown in Fig. 4-6. First we wish to obtain the surface formed by the
characteristics passing through the t—-axis. We have:

Domain. Dy. For this domain we can write our initial conditions as:-:

t(o)

t , 0<t

< T
o =

o}

h(o) 0

The solution surface is then expressed in terms of x and t0 where:

t = t(x,to)
h = h(x,to)
X = X

We will assume that, under appropriate conditions on o(x) and q(x,t), the curves
t = t(x,to) do not, for distinct values of tos intersect in S. It will be seen
in appendix B that this is true for q(x,t) = q, a constant. t(x,to) is an in~
creasing fu?ction of x for fixed to since h(x) > o in S (from Eq.(4~12) below)
and, by our nonintersection assumption, it is .an increasiﬁg function of to. Thus
we can solve for tO in £ = t(x,to) and we can, therefore, express h as a func-
tion of x and t.

We can write Eq. (4~10) as:

d(aG) W) _
dx

Q(X,t)

Integrating and using the condition h(o) = o we obtain:

X

a(x) b = | q(E,t(E,t)) dE
0

Thus we have:

* 1

n
h(X,to) = Q(E,t(g,to)) dg . (4~12)

)
(2}

Inserting Eq. (4~12) into Eq. (4-9):
 1-n
dt 1 1 Jx n
0

& " a0 laey | 4B eE.tg)) dE
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or X 1 i l1-n
n

n
E(x,t5) = to + & { L ] q(E,t(E,t.)) dE}  dn (4-13)

n a(n)

Equation (4~13) is a nonlinear integral equation for t(x,to) whose solution
will depend on the functional form of & in space and that of q in time

and space. Inserting the solution of Eq. (4-13) into Eq. (4-12) we get
h(x,to). We now examine seven special cases:

1. If q(x,t) 1is constant then we get explicit solutions:

)
n

h(x,ty) = {a X } (4-14)

g B 1. \1 n .
t(x,ty) = ty + 7 {az"j} {E} e (4~15)

2. If q(x,t) wvaries in space only, then we obtain:

X 1
h(x,ty) = {&f%$ J q(&) da}n (4-16)
o
X Lo I
1 1 in bl
O (8]

3. 1f q(x,t) varies in time only, then we obtain:

X 1
1 n -
hix,t)) = {EZET q(t(E,te)) dE} (4~18)
(o]
* L m i-n
t(x,ty) = tg + % [&f%j]n { q(t(E,ty)) dg} " dn (4-19)
o} (o]

4, If o(x) and q(x,t) both are constant then we get:
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1
n
h(Xsto) = {95-{} (4_20)
1-n %
tx,ty) = t; +q " (’a“] (4-21)
5. If o(x) is constant but q{x,t) varies in both time and space, then
we get:
. . % 1
heoto) = {3 J (e, (6t df® (4-22)
o
Lox 0l 1-n
1 (1}n n
tlx,tg) = to + 3 13 q(E,t(E,t,)) dE dn (4-23)
0 o
6. If ofx) is comstant but q(x,t) varies in space only, then we obtain:
" 1
1 n
h(x,to) = {a J a (&) da} (4-28)
o
| = 1-n
1 1 n n
t(x,t ) = to + § (a} q(g) dg dn (4-25)
0 o
7. If o(x) is constant but gq(x,t) varies in time only, then we get:
X 1
1 n
h(x,ty) = {a J q(t(&,to)) dE} (4=26)
0
i M i-n
t(x,t,)) = tg + a ['&] { q(t(E,t0)) dE} dn (4-27)
o] o ‘

From the above discussion it is clear that in the strip {oZxZL,,

t(X,O) __<__ t

and

t , depends only on x if q(x,t)

< T} = Dy , the surface h , as a function of x

is constant or varies in space

only regardless of the functional form of a(x). Also, the characteristics

issuing from the

by EQ- (4"9)’

t-axis will have t-axls as their tangent. This is implied

that is, gi +>» at x=o0, t,=o0.
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Domain D3. To obtain the surface containing the x-axis, that is h in D3,

we solve Egqs. (4-9) and(4-10) subject to the boundary conditions:

t(x) =0 , o<x <L

(o] o

h(xo) o

Then the solution surface is expressed in terms of x and xo:

t = t(x,xo)
h = h(x,xo)
X=X

We again assume that the curves ¢t = t(x,xo) do not intersect for distinct
values of X, - Thus t(x,xo) is, for fixed xo, an increasing function of x

and, for fixed =x, a decreasing function of X - This nonintersection pro-

perty will be proved in appendix B under the condition q(x,t) a constant and

a(x) an increasing function of x.

The solution of Eqs. (4~9) and (4-10) subject to the above specified boun~

dary conditions is:

* 1

1 n
h(X,XO) = { Cl(E,t(EsXO)) dg}

o(x)

* 1" 1-n
o n

coxo) =5 | [zm) [ ar@n atf e

X0

Equation (4-29) is a nonlinear integral equation for t(x,xo). We get

(4-28)

(4-29)

h(x,xo) by inserting the solution of Eq. (4-29) into Eq.(4-28). For this do-

main the seven special cases are:
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1. If q(x,t) is constant then we get explicit solutions:

h(x,%0) = {Eé%i§gl}ﬂ (4-30)
iI-n x 1 i-n
tenxg) = 3 [ {a%ﬁy}n (n-x) " dn (4-31)
XO

2. If q(x,t) wvaries in space only, then we get:
X

1
h(x,x,) = {;{;5 q(E) da}“ (4-32)
Xq ' ’
* 1 [ i-n
1 1 n n
t(x,%p) = = [ETET} { q(&) dE} dn (4-33)
) X0

3. If q(x,t) varies in time only, then we get:

L :
h(x,xo) = {m X J q(t(E,Xé)) dg} v (4-34)
(o]
X 1 n 1-n
n n
t(x,x5) = % [ {aéﬁ)} { Jq(t(i,xo) da} dn (4-35)
X X

(&)

4. If of(x) and q(x,t) both are constant then we obtain:

1
n
hi(x,x,) = {% (x—xo)} ’ (4-36)
I 1
t(x,%,) = {fﬁfg} q” (4-37)

5. If ox) is constant but gq(x,t) varies in time and space, then we

obtain:
(x 1
hxxo) = {2 l NERIERIRY (4-38)
1 (X m © 1-n
1 {1 n o
t(x,xg) = 1 [a] {1 e x da} an (4-39)
XO X
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6. If a(x) is constant but q(x,t) varies in space only, then we obtain:

fx 1 :
h(x,%,) = {é J (&) dg}n (4-40)
XO
1 X n }%B
£(x,x0) = & [&1-]“ { a(E) dé;} an (4-41)
Xo Xo

7. If o(x) is constant but q(§,t) varies in time only, then we obtain:

X 1
H .
h(X,Xo) = {% q(t(£9xo)) dg} . (4~42)
xo
L X X »]:___1-.1
= n
tnng) = § (37 | { | aeemo) as) " an (4-43)
XO XO

It is clear from the above discussion that h , as a function of x and t ,
now depends on both x and t .

Domain Dy. We must modify Eqs. (4-9) and (4-10) subject to q(x,t) = o for

t > T . Thus we have:

dt 1
— = ——— - 4-b4
dx 1 a(x) e 1 ( )

dh h da(x) 4-45)
dx = n a(x) dx ( ’

T (4-46)
h(xg) = h(xg,T) = ho (4~-47)

t(xﬁ)

where h(xé) is obtained from Eqs. (4-11) and (4-12). The solution in domain D

will be expressed in terms of x and x*:
o

]

t t(x,xg)

h

[]

h(x,xg)

X =X
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The solution to Egs. £4~44) - (4-47) is:

fon =
h(x,xg) = {hon %%;%2}n (4-48)
’E:} x 1
1-n| 1 nl 1 n
€653 = T {a(x*@} SRt R
. x:

By substituting the solution of Eq. (4-49) into Eq. (4-48) we obtain h(x,xﬁ).
We now examine the seven special cases:

1. If q(x,t) i1s constant then the solution is:

1 . :
q x¥\n : {4~50)
r - {3} ‘
1 1
n a(x*) n oAl ‘ - 4; 1
he) = {bo =) - (&5} 4-51)
1I-n (x 1
o n .
by = 1+ (D) {z&s} an | (4-52)
X0

2. If q(x,t) varies in space only, then the solution becomes:

«*
B, = {&'(?'7 J q(8) da}“ ¢4-53)
© O
1 . 1
* n X n
haxd) = (" SEB) - [ ) az) (4-54)
o]
x¥ Inox 1
p 1 " 1" (4-55)
t(x,x5) = T+ 3 { q(&) dE} {&TﬁT} dn
o/ x¥
(o]
3. If q(x,t) varies in time only, then we get:
3 1
1 n
h, = {5T§§§ q(t(g,t5)) di} (4-56)



xS

h(x,xg)

1
a(x)

0

S

t(X,X’B)

X
1 1
x§

4, If a(x) and q(x,t) both are constant then we obtain:

1
n
q(t(a,to)) da}

1 %o
n

(o]

1
_ {q xﬁ}n
o o
1
N AL
h(x,x‘{g) = hO = {""’a—u}
a = (x-x%)
N = n o
t(x, x5 T + {q x?} s

60

{J q(t(E,t4)) dE}

1-n

n

L4-57)

(4-58)

(4~59)

(4-60)

(4-61)

5. If o(x) dis constant but q(x,t) varies in both time and space, we get:

xg
J q(g,t(E,
(o}

h

R §
ped ]

=
~~
4]
E%
S~
it

-
P
>
>
Q
I
i

6. If a(x) 4is comstant but q(x,t) varies in space only,'then we get:

*
x5

(x~x2)

t(x,xgﬁ =T + o

1
£)) da}n

*

X0
[ q(E,t(E,t5)) di}
)

1

L
q(&) de}

1 n
{a a (&) da}

i-n
n

(x-x%)

(4-62)

(4—63)

(4-64)

{4-65)

(4~66)

(4-67)
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7. 1If oa(x) 1is constant but gq(x,t) wvaries in time only, then we obtain:
*

X5 .]:
1 n
h, = {a a(t(E,ty)) de} (4-68)
(0]
h(x,xg3) = ho . (4-69)
Fo 1-n
t(x,xg) = T + Ezéggz {é q(t(E,to)) dg} n (4-70)

o

It is clear from the above discussion that in domain D;, h depends
on both x and t . The curves t=t(x,xo) fill out the entire domain D;
as xg ranges from o to Lo . We now summarize the case A , t* < T,

(1) 1In domain D3 the solution is given by Eqs. (4-28) and (4-29).
Here the parameter x, assumes values on the segment o < x E_Lo, t = o.

(2) In domain D, the solution is given by Eqs. (4-12) and (4-13).
Here the parameter to assumes values on the segment x = o0, o < t < T.

(3) In domain D; the solution is given by Eqs. (4-48) and (4-49).
Here the parameter xg assumes values on the segment o < x ﬁhLo , £t =T,

We consider now, in case A with q(x,t) = q , h as a function of ¢t
for fixed =x , that is, we want to know the appearance of the curve cut out
of the surface h(x,t) by a plane perpendicular to the x-axis. In domain

D3 we have:

h(x,t) Bh(x,xo) on Gh(x,xo)/BXO

ot axo 3t at(x,xo)/axo
From Egs. (4-30) and (4-31) we see that %%(x,xo) < 0. From these
)

equations it also follows, although the discussion is more complicated, that

dt(x,x))

EE(X’ £) -
8xo 0. Thus 5t >

if (x,t) € D3 . In domain D,

h(x,t) is independent of t for time-invariant input, and for space-variant

dh(x,x¥) |

input. In domain Dj we have, from Egqs. (4-51) and (4-52), Fy o
o
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*
and %iix’xo) < 0, hence %%ﬂx,t) < o . FromEq. (4-52) t + o for fixed
o

x 1is equivalent to xg + o0 for fixed x , and from Eq. (4-51) h{(x,t) - o
as t —+» . It then follows that, for a fixed value of x , the function
h(x,t), due to a pulse input, has the appearance as shown in Fig. 4-8. We
may obtain the approximate behaviour of h(x,t) for large (and therefore
small xg) by setting xg = o 1In the integral in Eq. (4~52) and the eli-

minating xg between Eqs. (4-51) and (4-52):

1~n <
1
(qx¥) B 1 &
t(x,xé‘) = T + “‘“-I“l'-—"-‘— [m) dn
o
Then we obtain:
B
¢ yi-n
n
gk = L | (t~T) ,
o dq 1 X 1

1 ]
[ a(n)] dn
° J

Substituting for xg into Eq. (4-51) we obtain h(x,t):

h(x,t) = —J—(—f—i—
(t_T)n~l
where 1
X 1l -1
{J(a(n)]n dn}
V(x) = i T
nn~l(a(x)] n

We note that the decline of h to o as t <+ « 1is not exponential. Thus
if n = 1.5, h(x,t) goes to zero as t=2 ., TIn Table 4-1 we summarize the con-

ditions leading to explicit analytical solutions.
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Fig. 4-8. A typical hydrograph of depth of flow for-equilibrium case due
to steady input.



64

SUOT3INTOS JO Wi0oJ oyl
upwIslap T4 (3)b 3o
WI0J [RUOTIDUNT 3YJ

SUOTINTOS JO WIOF ay3l
surmialap TTTA (X)b 3o
W03 jrUOTIOUNI BYF,

SUOTINTOS

JO wioy 3Y3 [UTW
-3933p IITA (3°X)b Jo
WIOY TBUOEFIOUNT Y],

SUOE3Nyos
JO WI0Z °2Y3J SUTWIASISP
TITa (3)b pue (x)» 3O
SWIOI TBUOTIOUNI 3T

SUOFINTOS JO

WI03J 9Yl sUTWIajap
TTEs (%)b pue (x)n 3o
SwWioj TRUOTIDUNI BYfJ,

SUOT3INTOS

30 wioj °Yy3z suluw
-1239p TTTH (%) 3O
WIOY TRUOTIOUNI oYyJ

SUOTINTOS IO WI0J
93 sulmwasjlep TIIA
(3¢x)b pur (X)» jO

SWIOY TBUOEIOUNI SYJ

X

sy IeWwey

1384

@397dwo)

BWI} pue
20eds yizoq

ATuo swrly
utr 3urdiep

ATuo soeds
ut 3urdaep

JUBISUOY

soeds
ur Burdiep

JUB3SU0Y

SUOTINTOS

TeOT34TeUY

ut Surdiep

(3°%)Db

anduy

(X)) as3swmeaRg

Iaqunu
ase)

sydea8oapiy wntaqrirnbe [eriaed pue uniiqiTEnbe 1oy suorinyos TeOT3LTBUR 03 SuppesT SUOT3IFPUC) *T-% @2TqBL



65

It may be instructive at this point to determine the equilibrium time
and the equilibrium depth; these quantities will be given when the characteris-—
tic curve t(x,0) passing through the origin (0,0) intersects the downstream
boundary x = Lo. For case A equilibrium time will be the same as t* in

Fig. 4~6, and will be independent of the rainfall pattern and duration. Thus

we have:
Lo 1

1 n -

hy = {; q(E,t(6)) da} (4-71)
)
Lo 1l-n ’
t - = 2 (g,£(8)) d& " (4-72)
e " ay |y | T+

where vy = the value of a(x) when x=L, » h, = equilibrium depth, and

t, = equilibrium time. Let us now consider the seven special cases:

1. If q(x,t) is constant then we obtain:

ho= {g_ég}n | (4-73)
e Y
1-n Lo 1l 1l-n
T 1 n _1'—1—
te = & et ) " e (7
0y -
2. If q(x,t) varies in space only, then we obtain:
1 Lo % |
he = {7 | 4w af . (4-75)
)
Lo 1 1-n
1 1 \® - n _
Le = ¢ [&Zﬁj] { q(&) dE} dn v (4-76)
o o

3. If q(x,t) wvaries in time only, then we obtain:
L

o 1
: ; 4-77)
h, = {; 9 (£(E)) da} | | o
L
Tk 1= |
te = rl; [&'(%7‘] { q(t(&) dE} dn (4-78)

(o} [o}
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4, If a(x) and q(x,t) both are constant then we get:
1

g L in
e

5. If o(x) is comstant but q(x,t) varies in time and space then ve get

Lo 1
1 5
h, = {& q(E,t(E)) dE}
O
Lo m L-n
b)Y n
te = & [é] { Q(E,t(E)) da} dn
[e] (4]

6. If o(x) is constant but q(x,t) varies in space only, then we obtain:

L 1
. 1
l n
hg = {a J q(&) dﬁ}
o]
1o M 1-n
n n
t, = % [%] { q () da} dn
(o] O

(4-79)

(4-80)

(4-81)

(4-82)

(4-83)

(4-84)

7. If oa(z) is constant but q(x,t) varies in time only, then we obtain: .

Lo 1
_f1
h, = {a qa(t()) da}“
N
1 -
1 (1)n Yo n lﬁn
te = 1 [a J { J q(&) d&} dn
/0 o]

4.3.2 Case B: Partial Equilibrium Situation

We can write the input as:
{q(x,t) 0o<t<T, Tc<tk

(}(X,t) =
o otherwise

This case 1s somewhat more complicated. The quantity t* will depend on T.

The solution domain is shown in Fig. 4-7, and is divided into four parts.

N

(4-85)

(4-86)
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Let x° be the solution of T = t(x ,0) . Let D;j; be the domain above
the line t = T and above the curve t = t(x,x*) . The curve ¢t = t(x,x*)
is just the propagation of t = t(x,0) beyond t =T . Let D;» be the
domain bounded by t = t(x,x*) y, =T, and x = L, - The domain D; is

bounded by t =T, x =0 and the curve ¢t = t(x,0) . The domain Dy is

bounded by t t(x,0) , t=T, t=o0, and x = L, -
Domain Dp. The solution is given by Eqs. (4-12) and (4-13).

Domain D3. The solution is given by Eqs. (4-28) and 4-29) .,

Domain Dj;. Let o < xo% < x* , t =T , then the solution is given by Egs.
(4-48) and (4-49).

%
Domain Djs. Let X, be the solution of T = t(x,x,) , that is, the value

of x where the curve t = t(x,x,) given by Eq. (4-29) intersects the

line t = T . Then along the segment x* < xg <L, t=T, we have,
from Eq. (4-28): *
XO ;
h(xg,x,) = 4= (&, £(E,xg)) dES
Xy ¥y G(Xfﬁ)‘ 4 *“o (4-87)
*o

Now we solve the two differential equations given by Egs. (4~44) and (4~45)

subject to the initial conditions:

t(xg) =T , (4-88)
h(xg) = h(xg,xo)
Then the solution follows: .
1 o 1 1
* * a(x*) n n{f 1 in
h(XixoaXo) = h(xo’xo) {"'&"("%‘)‘} = { Q(g,t(&::xo)) dg &'("x‘)‘ (4-89)
b4
o
n-1 (X 1
« l % 1-n 1 —n._ nﬁ
t(x3%5,%,) =T + > {h(xo,xo)} {a(xg)} * {a(n)} dn (4-90)
X
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%*
Here x, and x, are bounded by the relation:
®

*o 1 n 1-n
=1 1| t(E,x dﬁ} " an -91
T=3 [a(n)] { q(E,t(E,x,)) (4-91)
X, X, .
Thus, in Eqs. (4-89) and (4-90) we may think of x. as the parameter, in which

0
case we have to replace X, Wwhich appears in these equations by its solution
in Eq. (4~91) in terms of xz - On the other hand we may think of X, as
the parameter in Eqs. (4-89) and (4-90); in that case we have to replace
xﬁ in these equations by its solution in Eq. (4~91). Since, in Eq. (4-91)

* . s . *
Xo 1s an increasing function of X, » the correspondence between X, and

X, 1s one to one. Now we examine the seven special cases:

1. If q(x,t) 1is constant then we obtain:

(o))
* = {1 Fo/n 4-92
h(xosxo) - { a(}::)'.') } ( )
(x|
Lk _ [alxqa—x ) 10
hGg,ng) = {1z (4-93)
In [* 1
3 1 n l n
t(x;x;,xo) =T+= {q(xg~x0)} {a(n)} dn (4-94)
%
%o
2. If q(x,t) varies*in space only, then we obtain:
%o 1
hxhio) = {zny | a() g} (4-95)
oo Ci(Xs q .
Xo
*
h(X;X:,XO) = {a—gg)- q(&) dt‘;}n (4-96)
%o
W
[Fo 1n (¥ 1
tx3x % ) =T+ q(g) dg B ';L‘}n dn (4-97)
7ot n a(n)
*
%o X0



3. 1If

% 1
o) = (et

1

h(x;xz) = {ETES

t(x;x:,xo) = T +

4, If a(x)

and q(x,t)

X5
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1—\

q(t(&,%,)) dg}“

%o 1

oo

H o~

a(t(Ex,)) da}“

ES
X
(o)

1

n
h(xz,xo) = {g (xz - xo)}

P *
h(x;xo,xo) = h(xo,xo)

is constant but

t(x;xﬁ,xo) = T + %
5., If a(x)
obtain:

h(xﬁ,xo) = {&

X

(o]

*
X
o

1

1
(B, t(E,x,)) da}“

* k3
h(x;x,,x,) = h(§o,xo)
”

t =T+

Bl

*o

6. If a(x)

% 1
h(xo,xo) = {a

X

is constant but q(x,t) wvaries in space only, then we get:

X
o]

(o}

X

o

1o

1
n
q(&) dé}

i 1-n
\ k)
[éJ {q(xg - xo)} (x = xg)

q(x,t) varies in time and space then we

1
{ q(£) de} NS [a

1—m

e
q(t(g,ty)) dE}

|

=

*

*o

q(x,t) wvaries in time only, then we obtain:
*

both are constant then we obtain:

(4-98)

(4~99)

(4-100)

(4~101)

(4-102)

(4-103)

(4-104)

(4-105)

(4-106)

(4-107)
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%
h(x;xg,%,) = h(x),x) (4-108)
o In -
t(x;x:,xo) =T+ i { q(&) dE} (x - %) [‘]n (4-109)
%o
7. If o(x) is gonstant but q(x,t) varies in space only, then we get:
XO —]:
% 1 n
hixg,x)) = {a q(t(€,%,)) ds} (4-110)
X
¢}
% *
h(x;x,,%,) = hixg,x,) ' (4-111)
¥
"o 1-n 1
1 n % n
t(x;xg,xo) =T+= { q(t(g,x)) dE} (x-x) [%]n (4-112)
*o

We summarize the case B , t* > T

(1) 1In domain D3 the solution is given by Eqs. (4~28) and (4-29). Here

the parameter X, assumes values on the segment o < x <L t=o0.

0o ?

(2) In domain D, the solution is given by Egqs. (4-12) and (4-13). Here

o @assumes values on the segment x =0, o0<t <T.

(3) 1In domain Dj; the solution is given by Egs. (4-48) and (4-49) where

. . . % *
Xo is replaced in these equations by x, . The parameter X, assumes

* *

values on the segment o < x5, <x", t=T.

we may regard X

0 —

(4) 1In domain Dj, the solution is given by Egqs. (4~89) and (4-90). Here

*
o ©f X, as the parameter.

As in case A, we consider h as a function of t for fixed x when

q(x,t) = q . In case B this behavior of h(x,t) is the same as in case A

for o < x < x* as shown in Fig., 4-9 . 1If x*.i x < L, then h(x,t) is an

increasing function of t if (x,t) €& D3 , and it is a decreasing function

of t if (x,t) e Dj; ; the arguments are the same as in case A. Tt remains
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Fig. 4-9. A typical hydrograph of depth of flow for partial equilibrfium
case due to steady input.
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to consider the behavior of h(x,t) when x is fixed and (x,t) ¢ Dy 3
the maximum of h(x,t) , for x fixed, will occur in Dy» , possibly on

%
t=T oron t=tX,x ) . We have:

dh(x,t) _ Bh(x;xz(xo),xo) 3% | (4-113)
ot - ex, ot -

We can write in a more compact form:
* % ‘
he(x,t) = hxo(x;xo(xo) ,xo)/txo(x;xo(xo) 1 Xg) (4-114)

We can also write:
*
v dx

o *
02 Xg) . +h o (x5x,% ) (4-115)

%
hx (x,xo(xo),xo) = hx*(x,x
o Xo o

¢}

To demonstrate the above it will be more useful to consider a special case

when q(t,t) is constant. Then from Eq. (4~93) :
1

1 % = *
L% _ n J¥o T Xoln 1 1 dx

By (3% (%0)5%0) = 9 {“"‘“‘“‘“‘““a(x) } nat | ax, Tt (4-116)

Thus the sign of hxo(x;xg(xo),xo), and therefore also the sign of

ht(x,t), is determined by

{52
dx
o
The value of the derivative dxi/dxO will depend on the functional form of
a(x) . If ofx) is taken as constant, it is easy to show that the maximum
of h(x,t) will occur on t = T . Table 1 summarizes the conditions
leading to analytical solutions for this case B.

We must, however, dete%mine % bhefore we can hope to détermine the
partial équilibrium hydrograph. This quantity can be determined by solving
for the limiting characteristic curve t(x,0), passing through the origin,

at the point in (x,t) plane where it intersects the segment t = T
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That is,

* 1-n

>4 {H ~E,
- J [ ! ]“ { J q<a,t(a)>de} dn (4-117)

[l

n a(n)
0 o
We shall now consider all the seven special cases:

1. If q(x,t) is constant then we obtain:

In  * 1 il »
n (% 1 \n n
T = 2 ———-} {n] dn ' (4-118)
n a(n)
)
2. If q(x,t) varies in space only, then we obtain:
X I i1n :
1 1 Yn n
T3 { [u<n>) { J q(g)dg} an | (4-119)
o )

3. If q(x,t) varies in time only, then we obtain:

x I i
1 1 n o)
ool [ ] { (e (E)) dg} dn C (4-120)
n a(n) ‘
0 o
4, If both o(x) and gq(x,t) are constant then we get:
1-n "1 1
T=qB [é]n L (4-121)

5. If af(x) is constant but q(x,t) wvaries in both time and space, then

we get
1 X" n l-n .
1 (1" ( =
T=3 [&} { Q(E,t(ﬁ))dﬁ} dn (4-122)
of Lol

6. If a(x) is constant but q(x,t) varies in space only, then we obtalm:
1 * 1-n

1 mn [F n Ky
T=35 [a] { q(€)d£} , (4-123)
o} o] :

7. If a(x) is constant but gq(x,t) varies in time only then we obtain:
%
X 1l-n

. 1 n 1-n
n . n
T = % [é} J { J q(t(&))ds} dn (4-124)
o} 0



74

In the beginning of this case we indicated that ¢t~ depends on T ,

%
and is not exactly equal to t of case A. We will try to establish the

functional relationship between t* and T . From Fig. 4-7 we see that

t*

* .
=T+ At where At is the difference between t and T , or the time

of propagation of t(x,0) beyond t =T until the downstream boundary.

Hence our interest is in the determination of At . Thus we have from

Eq.

%
t

We

(4-49):

X 1-n L,

1 n
=T+ ~ { Q(E,t(g))dﬁ} [
n o *

X

1
1 n
dn (4-125)

a(n)
shall give the quantity t* for all seven cases:

L. If q(x,t) is constant then the solution is:

. 1-n 1
(ex)77 (for 1 3&
=T+ n {m] dn (4-126)
<&
2. If gq(x,t) varies in space only, then we obtain:
%" lI-n L, 1
1 n 1\n
=T+~ q(E)dg [ ) dn (4-127)
n % a(n) .
o X
3. If q(x,t) varles in time only, then we obtain:
%" lm 1, 1
1 n L Yn
=T+ =4 qee)ae [ ] an . (4-128)
D #| la(n)
o be
4. TIf both o(x) and q(x,t) are constant then we obtain:
n-1
ey n (L. - x*)
-7t wﬁﬁJ So = %) (4-129)
Q% an

5. If o(x) is constant but q(x,t) varies in both time and space,

then we get:

1 © 1
" { q(a,t(g))da} DLy - %) (4-130)

(o}

n (o
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6. If o(x) is constant but q{x,t) wvaries in space only, then we get:
1 * 1-n )

* by X
ey llo=x) [}]n { q(E)ds} " (4-131)
n o4
o

7. If oa(x) is constant but q(x,t) varies in time only, then

we obtain:
1 * 1-n
% (L, - x9 (Ma ([ ry
th = T 4 e U { | q(a,tcs))da} (4-132)

(o}

n

4+3+3  Criterion to Distinguish Equilibrium and Partial Equilibrium Situations
One question arises: how can we distinguish cases A and B beforehand?

It turms out that there is a simple criterion, when q(x,t) = q , which

distinguishes cases A and B. From Eq. (4~15) we obtain, by setting t, = o

and the left side equal to T ,
X
1-n 1 i-n

_gq" _1 " n -
et | [T e (153

Equation (4-133) has a root x* between o© and L0 in case B and does not
have a root in case A. Since the right side, F(x), of Eq. (4~133) is an increasing
function of x , it is sufficient to determine the value of F at x =1L, :

&}

F(L,) < T, case A ; F(Ly) > T, case B.

4+3+4  Definition of t*

We define t  as the time of intersection of t = t(x,0) with x = Lg
in case A, and as the intersection of t = t(x,x*) with x = L, in case B.
Thus t* is a function of T . Let q(x,t) = q , and define T, = F(L,);
here ¥F(x) is the right side of Eq. (4-133). Then t*(m) = T, when
and when T < T, , t*(T) is defined through x* by T = F(x*) .

T > T,
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We have: Lo
1o 1
* M 1"
t =F + =
=) n {qx} {a(n)} dn
*
X
Since

at* _de* ax*
dT dx* ar

and since dx*/dT > 0o, the sign of dt*/dT is the same as the sign of
%,k . . ®,. % * .
dt™/dx” . It is easily checked that dt /dx* X o . Thus ¢t (T) is a
decreasing function of T when o < T < T, - As T >0, x* +~ 0 , and
we see from Eq. (4-134) that t* + < s as shown in Fig. 4-10.
Two application examples are worked out in appendix C to show how the
above mathematical development can be utilized in computing surface runoff

hydrograph. Both equilibrium and partial equilibrium cases are considered.

(4-134)

(4-135)
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T

Fig. 4-10. Variation of the time, when the characteristic
issuing from the origin intersects the downstream
boundary, with rainfall duration.



78

CHAPTER 5

KINEMATIC WAVE MODELS FOR INFILTRATING WATERSHEDS

5.1 GENERAL REMARKS

The overland flow and infiltration have been extensively studied.
as separate components of hydrologic cycle (Woolhiser and Ligget, 1967;
Woolhiser, 1969; Kibler and Woolhiser, 1970; Singh, 1974; Lane, 1975;
Philip, 1967; Hanks and Bowers, 1962; Whisler and Klute, 1965; Rubin,
1966). A combined study of these phases is required for modeling over~
land flow. Barring a few exceptions,; motably the work by Smith (1970)
and Smith and Woolhiser (1971), the conventional approach (Wooding,
1965; Lagleson, 1972; Singh, 1975f) to combine these phases has been
through the familiar notion of so-~called rainfall-excess.. In this
approach infiltration is independently determined and subtracted from
rainfall; the residual is termed as rainfall-excess, which forms input
to overland flow model. It seems that this concept of ralnfall-excess
is more of an artifice than a reality. The processes of infiltration and
runoff occur simultaneously in nature during and after the occurrence of
rainfall and, therefore, warrant a combined study. In this chapter we
develop a combined treatment of infiltration and overland fiow. The
combined treatment will be useful in studying the effect of infiltration
on nonlinear watershed runoff dynamics. It goes without saying that
unlike the conventional approach, the present approach does not require
an independent, apriori determination of infiltration; rather by
specifying an infiltration function, infiltration and overland flow are
simultaneously determined. Interestingly enough, this evolves into a free

boundary problem.
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5.2 MATHEMATICAL SOLUTIONS FOR OVERLAND FLOW ON INFILTRATING PLANE SURFACES

In the previous chapter, infiltration of water through the ground
surface was either disregarded or considered through rainfall-excess.
Now we treat infiltration and overland flow simultaneously. Let f(x,t)
be the rate of infiltration per unit area; f is dependent on the dépth
of flow, h , in the following sense:

f(x,t) > o if hx,t) > o
f(x,t) = o if h(x,t) = 0

We will assume further that

A
A

qx,t) > £(x,t) , o=t

A

T , o L

e}

X
where q = lateral inflow per unit area, T = duration of q , Ly =

length of plane surface, and x and t are space and time coordinates.

Then the countinuity and momentum equations are:

%% + %ﬁuh) = q(x,t) - f(x,t) -

u = a(x) hn-l

(5-2)
where u = local mean velocity and o« and n are kinematic wave parameters.

As before q(x,t) = o when t > T , and n > 1 . The boundary conditions

are:

A

h(x,0) =0, o2xS51L,; h(o,t) =0, of£t=2T (5-3)

It is plausible on physical grounds that there will be a curve

A

t =t% %) in{t2T, ofx3 L,} , starting at x=o0, t=T, and
such that h(x,t°(x)) = o . This curve gives the time history of the water
edge as it recedes from x = o to x =L, . The equations (5-1) and (5-2)
are satisfied in the region S = {o < t < t%(x), o < x < Ly} . Thus

t = t9(x) 1is a free boundary, and Eqs. (5-1) to (5-3), and h(x,t%(x)) = o

form a free boundary problem. In the domain above the curve t = t°(x) ,
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h(x,t) = o . The determination of the free boundary t = t9(x) is, as
we will see, relatively simple when q and f are constant (see Fig. (5-1));
in this study we will discuss only that case in detail.

Eliminating u between Egqs. (5-1) and (5~2) we get:

n-1 3h + p? 3a(x)

oh
— + na(x) h e ™

3t = q(x,t) - f(x,t)

(5-4)

The characteristic equations of Eq. (5-4) are:

dt

-..L:l

ds

dx
ds

1

na(x) n

dh
ds

q(x,t) - £(x,t) - o (x) b

o (x) = %E(X) = %’;(X)

where s = parameter, and
The solution of Egs. (5-4) and (5-3) is the surface h(x,t) formed by all
the characteristic curves through the segment t = o , o S x <L, and the
segment x =0, 0S5t ST . The free boundary t = t°(x) is the locus ’
h(x,t) = o in the (x,t) plane. If we take x as parameter then the

characteristic curves are given by:

dt _ 1 5 (5-5)
dx na(x) o

dh _ qlx,t) - £f(x,t) _ o' (x)h . (5-6)
dx no(x) hn“l no(x)

and the initial conditions are:

A
t

h(x) = t5 , h(o) =0, o 0o =T (5-7)
or

(5-8)

4
[o}

IA

e
@]

t(xg) = o , hi(xg) =0 , o
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Rainfall

v

/lnfilfm?ion

\

T t

Fig. 5-1. Rainfall and infiltration, constant in time and space.
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We assume that the curves ¢t = t(x,ty) , which are the solutions of
Egs. (5-5) to (5-7), do not intersect for distinct values of t, « Similarly
we assume that the curves ¢t = t(x,x,) , which are the solutions of Egs.
(5-5), (5-6) and (5-8), do not intersect for distinct values of x, .
This is true when q and f are constant; it is known from chapter 4 when
£t <T, i.e. indomains D, and D3 (Fig. 5~2), and, when t > T , it is
proved in appendix D.

We distinguish three cases A, Bj and B, which depend on the relative
disposition of the three curves t =t%(x) , t=7T, and t = t(x,0)
(t = t(x,x¥) 1is the prolongation of t = t(x,0) to the right of
x = x*) , as shown in Figs. 5-2 - 5-4.
Case A: t9%(x) > T > t(x,0) , o<x £ L..

Case By: t9%x) > T and t°(x) > t(x,0) » but t =T and t = t(x,0)

]

*

x" , i.e., T *

t(x*,o) and o < x™ <L, .

It
L]

interscct at x
Case Bp: t%x) > T ;» but t =T and t = t(x,0) intersect at x = x°
and t = t%°(x) and t = t(x,x*) intersect at x = x, i.e., to(E) = t(x,x%)
and o < x < Ly -

Since t°(x) and t(x,0) are not known until we have solved the
problem, it appears that we cannot distinguish these cases beforehand.
But in the special case which we consider in this study, q(x,t) and
f(x,t) Dboth constant, we can distinguish these cases beforehand. The
domains Di, Dy, and N3 in case A, and the domains Dyi, D12, Dy, and Dy

in cases Bj and B, are indicated in Figs. 5-2 - 5-4,

5.2.1 Case A: Equilibrium Situation
In case A the solutions in domains Dy and D3, when q and f are

constant, are obtained from discussion in chapter 4. Then in domain Dy
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t=1°(x)
Dy
D,
t=1(x,0)
D5

Fig. 5-2.

Solution domain for case A.
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t A
t=1°(x)
fat(x,x*)
Dﬂ
D2
T .
D, f
t=1(x,0) | D3
|
E
0] x*

Fig. 5-3. Solution domain for case Bj.

xY
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| >

DH

t=1°(x)

1

A

Solution domain for case Bj.

Fig. 5-4.
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the solution is given by Egs. (4-14) and (4-15), with ¢

1
n
h(x,t,) = {£ﬂ~;(£3*§}
I ¥ I ke
t(x,ty) = tg [q - f} " % [ugz)}n [n] "
o]

If o(x) = o , a constant, then we have:
1

—

n
h(}{, to) = {(.S__:._EH}

a

im 1
. n Xin
t(x,ty) = t, + [q - f} [&]

In domain D3 the solution is given by Egs. (4-30) and (4-31),

with q replaced by (g - f)
1
<q—ﬂ@“xgp

h(X,tO)= { a(X) J

1-n x 1 1-n

=, ) ot
t(x,xo) = [q - f] n = {Efﬁj}n[n - xo] n dn

If a(x) = a , a constant, then we get:
1

Yq~ﬂm—x@r
hix,ty) =

o4

ln 1
= o= 7 £33

In domain D; we solve Egs. (5-~5) and (5-6), with q(x,t) = o

f(x,t) = £, subject to

and

replaced by (gq-f):

(5-9)

(5-10)

(5~11)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)
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% &
. {(q - £)x_ |n
txg) = T, h(xh) = h(x¥,T) = 2 (5-17)
a(xo)
Then the solution is:
* L
qx.. - fx |
* (o]
= e 5-18
h(x,x%4) { ey } ( )
- F i i-n
ko 1] 1" * n ~ 5
t(x,x,) = T+ = . [Efﬁj] {qxo - f n} dn- ( »19)
o
If o(x) = o , then we obtain:
N 1
qx_ - f£x|n
LN o4 520
hix,x_) = { - } ( )
1
n
* *
. L@ - ) - xgla - D)
t(X,XO) =T + f l
n
)

%

The curves t = t(x,xo) do not intersect in domain Dj; the curves

t o= t(x,to) do not intersect in domain D,; and the curves t = t(x,xy)
do not intersect in domain D3 (appendix B). The free boundary ¢t = £© (x)

is now determined by:

qxg ~ fx = o (5-21)

and Eq. (5-18). Eliminating x: between Egqs. (5-18) and (5-21) we get:

1-n (x 1 1-n

n n o
tox) =T + g [Ef%j] {x - n}~ dn (5-22)
P(x)

where y(x) = gx
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As in chapter 4, for fixed x, h(x,t) is an increasing function of t
in domain Dg, independent of t in domain Do, and a decreasing function
of t 4in domain D; (see Fig. 5~5).

The criterion for distinguishing between case A and cases B; and B,
is, as in chapter 4, obtained from:

}:E X 1 1—m

- f n l “l';. T
T = Lg_.n___._l [&“(7?)“] [n] dn (5-23)

(@)

If o(x) = o , then we obtain:
In 1

-

n a0
e lo-o -2

If Eq. (5~23) does not have a root between o and L, then we are in

case A; if there is such a root x* then we are in case By or By, If

F(x) 1is the right side of Eq. (5-24) then case A occurs if and only if

F(L,) £ T, and case B} or B, occurs if and only if F(L,) >T . To
distinguish between cases Bj and Bo we note, referring to Eq. (5-17), that

qx* -fx=o0 (5—25)
does not have a root between o and L, in case B and does have such a

root X .in case By, 1In case B, the intersection of the curves 't = t(x,x*)

and t = t9(x) occurs at:

X = % x (5-26)
l-n _. i 1-n
E A n n
— f 1
= = - 5-2
£=7T+ = [a(n)] X -7 dn (5-27)
*®
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h(x,t)

max

tnax (X)
region

_—— Y

ey
g

T

t (x,0) T to(x)

Fig. 5-5. The depth of flow, h(x,t), as a function of t for fixed x for
case A.
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5.2.2 Cases Bj and Bp: Partial Equilibrium Situation

In both cases the solution in domain D;; is given by Eqs. (5-18) and

(5-19), in domain D, by Eqs. (5-9) and (5-10), and in domain D3 by Egs.

(5-13) and (5-14).

It remains to determine the solution in domain Djs.

As in chapter 4, we define xg by T = t(xg,xo); here x* §=xg 2L .
Thus from Eq. (5-14),
1—11 * l 1-11
( f)“ﬁ' o 1 n o n
= ._.S.,.....,—___,-_.. JO— - d _
' n [a(n)] [n XO} .an (5-28)
X
o
If a(x) = a , then we obtain:
1
It ok ls
0 o
T = [q - f} b (5-29)

Then from Egs.

*
h(x;xo,xo)

t(x;x%,%0)

If a(x) =

%
h(x;xg,%,)

%
HCIEING 3y

I

(4~93) and (4-94) we obtain:
1

q(xg - xo) + f(x0 - x)|n
o (%) (5-30)
* 1 1-n
1 1 in % ’
T+ e [a(n)] [q(xo - %)+ £k~ m) dn (5-31)
%
*o0
, then we get:
. 1
q(xg - Xg) + f(xo - x) n
o . (5“'32)

-

i
n

r 1 1
L{q(xz - x5) + £(x, - x)}n - {q(xz - xo) + f(xo—xg)}n

(5-33)
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It is proved in appendix D that the curves defined by Eqs. (5-30) and
(5~31) do not intersect in domain Dis.

In case By, part of the boundary of domain Dyp; is t = t°(x) . This

is obtained by eliminating X, and xg between Eqs. (5-28) and (5~31)
and from Eq. (5-30),
q(xy - xg) + £(xy - x) = 0 (5-34)
From Eq. (5-26) we obtain:
X5 = (K, xg) = xg - g (% - %) (5-35)
Thus t = t9(x) 1s defined by:
Ion b, x%) 1 1-n
(q - £) © 1 ) n
T =2 —_ -x \ -
= e n - Xg dn (5-36)
XO
x 1 1-n
1 1" n
t(x,xo) = T + = {EYET] {f(xo - n) - fxy ~ x)} dn (5-37)
Y(x,x )

In Egs. (5-36) and (5-37) x < x <L, ; when o <x <x, t9%x) is defined -
by Eq. (5~21).

The behavior of h(x,t) as a function of t for fixed x , o0 < x < x*,
is the same in cases B; and By, as in case A (Fig. 5-5). In cases B; and B,
he(x,t) > o when (x,t) € D3 and hi(x,t) < o when (x,t) e Djy; the
arguments are the asme as in case A. The maximum of h(x,t) occurs
therefore when (x,t) € Do (Fig. 5-6), but it can occur on the boundary

of domain Dj, as in chapter 4.
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Fig. 5-6.

T t°(x)

Depth of flow, h(x,t), as a function of
fixed x for cases By and Bj.

t for
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CHAPTER 6
SOLUTION TECHNIQUES
6.1 GENERAL REMARKS
Since its formulation by Lighthill and Whitham (1955), its application
to watershed modeling by Henderson and Wooding (1964) and Wooding (1965a,
1965b, 1966), and the subsequent demonstration of its applicability, in
general, to problems of hydrologic significance by Woolhiser and Ligget
(1967), the kinematic wave theory has been increasingly utilized in numerous
investigations on watershed modeling (Brakensiek, 1967; Woolhiser, 1963;
Woolhiser, et al, 1970; Eagleson, 1972; Singh, 1974). Depending upon the
type of input (rainfall pattern) and representation of watershed geometry,
two types of solutions to kinematic wave equations have been developed in
these investigations: (1) analyticél, and (2) numerical. Analytical
solutions have been obtained for time invariant (steady or pulse) input,
and simple geometric configurations (for example, rectangular plane section).
The assumptions leading to anmalytical solutions are so restrictive that
their practical utility is greatly diminished. Numerical solutions, even
though applicable to a wide spectrum of input and geometric configurations,
are time-consuming. In this chapter we attempt to develop an approach called
"hybrid approach" which is part numerical and part analytical; The fusion of
numerical and analytical solutions combines in this approach their individual
advantages. The hybrid approach is, therefore, useful where analytical
solutions are not feasible, and computationally far more efficient than a
numerical approach. We will formulate the current kinematic wave models of
watershed runoff in terms of the proposed approach. Finally, this approach
will be applied to a set of rainfall-runoff events on a natural agricultural

watershed to demonstrate its computational efficiency.
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6.2 KINEMATIC WAVE MODELS OF WATERSHED RUNOFF
The development of a kinematic wave model will depend on the type of

input and the representation of watershed geometry.

6.2.1 Input Pattern

Rainfall-excess usually forms input to the model. It may be of two types:

6.2.1.1 Time-Invariant. Rainfall-excess is constant in time. It is also

referred to as steady rainfall, and may be of either pulse or impulse type.

6.2.1.2 Time-Variant. Rainfall-excess changes in time, and is typically in
the form of a hyetograph. It is made up of a combination of pulses of varying
magnitudes. It is also referred to as unsteady, or complex rainfall-excess.
It is this type of input that we are primarily concerned with in the present

study.

6.2.2 Representation of Natural Watershed Geometry

Normally, the geometric structure of a natural watershed is very complex.
The only perfect representation of watershed geometry is, of course, the
watershed itself. It is, therefore, necessary to transform the complex
geometry into a simpler one having a similar hydrologic response. In recent
years, four alternate forms of geometric configurations have Eeen proposed
to represent a given watershed geometry, and have been incorporated in
kinematic wave models of watershed runoff, as described in the previous chapter.

It is apparent from Figs. 4-1 to 4-4 that these alternate, simplified
configurations are formed by combinations of the following three elemental
sections: (a) linearly converging section of a cone, (b) rectangular plane,
and (c¢) channel.

It will be convenient to develop the hybrid approach for these elemental

sections and point out the conditions leading to amnalytical solutions for them.
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6.3 DEVELCPMENT OF HYBRID APPROACH FOR PLANE

The hybrid approach is part analytical and part numerical. The rising
limb of runoff hydrograph is computed numerically while the recession 1imb
analytically. Numerical solutions will be based on a simple-step, second-
order, explicit, Lax-Wendroff finite difference scheme (Houghton and
Kasahara, 1968) which has been found satisfactory in many investigations on
kinematic wave modeling (Woolhiser, 1969; Kibler and Woolhiser, 1970; Singh,
1974, 1975e, 1975f, 1975h).

For a detailed mathematical treatment of this numerical scheme for all
the elemental sections see the reference by Singh (1974). We will present
both dimensional and dimensionless solutions for the special case when

a(x,t) = 0. , a constant.

6.3.1 Dimensional Sclutioms
The kinematic equations for the plane section are:

the continuity equation

oh oh ou _
é—t':-l'u-é;-c-f-hg{—q (6-1)
and the kinematic momentum equation
Q=uh=ah" (6-2)

The solution to the above system of equations will characterize the overland
flow over the plane. For rainfall of pulse type analytical solutions have
been obtained (Wooding, 1965b; Kibler and Woolhiser, 1970; Singh, 1974, 1975h).
However, for complex rainfall analytical solutions are not feasible. The

hybrid approach is, therefore, formulated.

6.3.1.1 The Rising Hydrograph. The Lax—Wendroff scheme (Houghton and
Kasahara, 1968) can be easily derived for the kinematic wave equationms.

Combining Eqs. (6~1) and (6-2) we obtain:
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dh n-1 dh _
Evs + anh Frelie

(6-3)

The depth of flow, h , is a function of both space and time coordinates.

Exapanding h by Taylor series in time:

3h 3%h (At)?

= i
h{x,t + At) hix,t) 3t At + ?3—1.:‘2 3

where HOT denotes higher order terms.

We can obtain g% directly from Eq.

Differentiating Eq. (6-5) with respect to

3%h 3 n-1 oh 9q
5?2 - o ox [n h 5EJ * ot

+ HOT

(6~3) as:

t we obtain

2

3%h
ot?

as

Substituting Egqs. (6~5) and (6-6) in Eq. (6-4), neglecting HOT , and

rearranging the terms we obtain:

h(x,t + At) = h(x,t) + At {- anhnml %2 +
We can further write:
hix,t + At) = h(x,t) + At {— anhn“l %g +

~ _n-1 3%h dq
l: anh = + q:“ + Bt}

) -
)+

@2

2

5%
2

-
-

[nhn_l

{nhn—l

3h

ot

(6-4)

(6-5)

(6-6)

aq
] *ﬁ} (6-7)

(6-8)

Following the notation in Fig. 6-1, Eq. (6-8) can be written in the finite

difference form as:

h?+l = h% - At o -lié;———l:l - q% + —
J J J

Ax

. (n=-1)

2 1
(At) no hj+l :

4 (@-1)

+ h.
J

2
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0 40 i i ’ i(n—l) i(n—l) [ ;0 {0
h - h; + q. h, + h, h’, - h,
J O . Y o A | A i i1 o - i=1
Ax 2 Ax 2 [ Ax
i i i+l i
4a Ty q, -~ 4.
JU RN SN Y I QT (6~9)
2 At -

Consider N mnodal points along the x—-axis at which the depth of flow is to

be computed. The boundary conditions are:

U

h(x,0) o

h{o,t)

o
Equation (6-9) will give, when used in conjunction with the boundary conditions,
the depth of flow at the nodal points j =1, 2, 3, ... (N~1). The depth of

flow at the outlet (j = N) can be obtained using the first order difference

scheme:
{0 {0
h§+l = h; + At - o ?E——Z—EEZE + qé (6-10)
X

6.3.1.2 The Recession Hydrograph. The lateral inflow, q , will be zero
for the recession hydrograph. Equation (6-3) can then be written as:

oh n-1 9h _
-a—-E+anh s}—(—o

(6-11)
Although Eq. (6-11) is a nonlinear partial differential equation, it camn be
solved analytically by standard procedure of the separation of variables.
Consider:

h = X(x) T(t) (6-12)

Substituting Eq. (6-12) in Eq. (6-11) and rearranging the terms we get:

I

(6-13)
™ d¢ dx
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+0— &

i+1

Fig. 6-1.

Notation

for finite difference scheme.
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Writing Eq. (6-13) as:

lnﬂ:—unxn_z.d—nx-z—-uz

I= (6-14)
where 2 is some constant which mathematically can take negative, zero or

positive values. In our case it can only take positive values, to be

consistent with physical realism of the problem Thus we have:

1 4T

Fn a—t + 1.12 = 0 (6-15)
n-1 dX - 2 _ _

on X =W =o (6-16)

This system of equations can now be easily solved. Thus we obtain:

I-n
T =+(1l~n) (C; - ut) (6~17)
L
S 1) RPN (6-18)
B on 1 Hx)

where C; and C, are the constants of integration. The following boundary
conditions can be utilized to solve for these constants:

h(o,t) = o

h(Ly,te) = by

The quantities, t, and h, , will be obtained from the rising hydrograph
and will correspond to the point where recession starts, that is, h, will

equal the peak runoff depth and t, the peak runoff time in a single

peaked hydrograph. Then we have:
L
- 2 n—-1
LoD (e + ) (6-19)
(1I-n) an (C; - uzt)

Substituting the boundary conditions we obtain:
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2 WL

C1= uto_

n-1

hq on
C2=O
Then we get:

L
% n~1 ’

h = h, (6-20)

n-1

6.3.2 Dimensionless Equations and Solutions

One of the advantages of normalized solutions is that the number of
parameters is reduced. The following normalizing quantities for the plane
section can be defined:

X, = Ly

(n-1) 1
n

T

inflow rate. T

n
To = [ 1 ] [%f] , where Uax is the maximum spatially uniform lateral

is the time required to traverse the distance X, at the

velocity V, corresponding to the normalizing depth H, ; V, = o Hg-l .

(e}

Q =Ho Vo = q 0 L, , total steady state outflow from the section divided

by the mean width of the section.

V = I‘—O
0 ']_‘0
- HO VO
qo = Lo
qmax = q0

The dimensionless variables, designated with asterisks, are thus given by:

h q t X u Q
h = — = + £t = e 2 Y =™ — 1 = e— Q =

Substituting these dimensionless quantities in Egqs. (6~1) and (6-2) we obtain:
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ah oh Ju
—% 4y, =k + h,K —F = q
oty * 9%, > *

_ _
Qg = ughy = hy

Equations (6-21) and (6-22) are the dimensionless form of Egqs. (6-1)
(6-2). Note that the parameter o mno longer appears in the dimensionless

equations. Now we present derivation of the normalizing quantities.

6.3.2.1 Definition of q, - Substituting the normalized quantities in

Eq. (6~1) and simplifying we obtain:

oh dh Ju
kit u, =% 4+ h, =% = g
at,, % 3%, * 0%, * Hy ¥V,
Ho V
In Eq. (6-23) if we choose 4§ =

(o]

be eliminated and its dimensionless form will be given by Eq.

6.3.2.2 Definition of T, . According to its definition,

n-1

We know that V, = a H » and Hy Vo = Loy
1 0 Inax

Then we have:

n-1

1
oo i) o
® | Ypax o

6.3.2.3 Definition of qmax . We know that

Then we can write:

(6~-21)

(6-22)

(6-23)

2 , then the normalizing quantities will
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and hence

pax ~ %o

6.3.2.4 Definition of Q, . The area of plane per unit width is L, . Then
. . ; - . . F
the steady state discharge per unit mean width at x, =1 is D s L0 . or

the plane Qy = Hy V, .

6.3.2.5 Dimensionless Sclutions. Following the same procedure as outlined
for the dimensional solutions we obtain the numerical solution for the

rising hydrograph as:

;0 ;0 ) . {0 i
- . h*'+1 - h*' . ’ (At*) n h*-+1 + h*‘
hi. = hi. - At v J= 4.q1‘ + - = ]
J J 2hx, J 2 Ax, 2
i it i i i® it i® i
b, - hy q - q, n h, + h, hy - h,
i+l IS S . S I OO DU SN o B B
Ax* 2 Ax, 2 Ax*
i i+l i
Qe T+ dy Qe ~ 9%
SRR N SRS st ) N P N S | (6=24)
2 At,, :
for j = 1,2, (N-1)
i i
{+1 . h*N 1 - h*N .
i i - i
h, = = h; - At, ="+ q (6~25)
N N Ax* N
for j =N

For the recession hydrograph the analytical solution takes the form:

(6-26)
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where h, and t, correspond to the dimensionless peak depth of flow
o o

and the peak time, and will be given by the solutions of the rising hydrograph.

6.4 DEVELOPMENT OF HYBRID APPROACH FOR CONVERGING SECTION
The kinematic wave equations for the converging section, as derived by
Singh (1974), are:

the continuity equation

sh dh ou _ uh

e + u = + h & = q + W(LO"X) (6-27)
and the kinematic momentum equation
Q = uh = o™t (6-28)

where L, is radius of flow region, and other symbols retain their same
meaning. The solution to the above system of equations will completely
characterize the overland flow over the converging surface. For pulse lateral
inflow, q , analytical solutions have been obtained by Woolhiser (1969) and
Singh (1974), but for complex lateral inflow analytical solutions do not

seem tractable. The hybrid approach is, therefore, formulated.

6.4.1 The Rising Hydrograph
Following the same procedure as outlined for the plane section the
Lax-Wendroff scheme for the converging section can be easily derived: Using

the notation in Fig. 6-1, it can be written as:

r in in in\ i
+1 h'+1 - h.ﬂ_1 i o h. (At)?2 onh,
ALY S . M 3 S S B R T
d J 2A% b, - %D
\ J
[ (n-1) . (n-1) n 1) .
2 i _.i i _ i i i
. (At) na bl b . h, . - b %4 tagl .
2 Ax L 2 Ax 2
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n n (n-1) (n-1) n .n
bt o+ nl na |nt +h nt - nt
441 I j-1 o J=1 1 _
i i
2L, -~ (Xj+l + x) Ax 2 Ax
L ) 1\
. . .0 .1 . ,
q% + q% a[h% + h} ] q%+l + q% .
I % B O i+1 B Q| ] (6~29)
i
- +
2 2o - G+ At
for 3 =1, 2,...(N-1) . The boundary conditions are:
h(x,0) = o
h(o,t) = o

Equation (6-29) will give, when used in conjunction with the boundary
conditions, the depth of flow at the nodal points j = 1,2,3,... (N-1)
The depth of flow at the outlet (j=N) will be given by the first order
schenme:

o] s

i 4
e il B *agt

— (6-30)
Ax (L, - XN)

6.4.2 The Recession Hydrograph
For the recession hydrograph gq = o , and the boundary conditions are:
h(o,t) = o
h(Ly(1-1), tgy) = hg
where r denotes the degree of convergence, and Lg(l-r) the length of

flow. Then the solution for the recession hydrograph is:

1
(n-1)
r(n—l)/n (Lézn-l)/n -, - X)(Zn-l)/n) o
hon : -31
(Lo—x)(n“l)/n (Lo (1-r (Zn—l)/n) + (t-ty) o r(n—l)/n(Zn—l) hon—l))
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For an elaborate discussion of these solutions see the reference by Singh

(1975e).

6.4.3 Dimensionless Solutions

Equations (6~27) and (6-28) can be written in dimensionless form as:

oh Ju, oh ughyg
—f 4+ h, =% g ——% = q A B+ N (6"‘32)
at,, * 9x, * 9%, * 1 -x,)
n
Q = u, h, = h, (6-33)

where the dimensionless variables, designated with asterisks, are given by:

h
* T Hy

5,

=4 = 3
o

j—'x—i'Q:
Ty 0 TR oxo Tk Qg
For derivation of the normalizing quantities see the reference by Singh (1974).
Only their definitions will be presented here.

H, 1is the normal depth for a discharge equal to the total steady state

outflow from the converging section divided by the mean width of the section.

Xy = Lo(l-1)

n-1 1

1 | ® Lo~ (™

Tnax ¢

T, dis the time required to traverse the distance X

Ty =

o at the‘velocity Vo

corresponding to the normalizing depth H, ; V, = a Hg-l 3 and Upax is
the maximum spatially lateral inflow rate.

= Ho Vo

q
© Ly (1-1)

Q - Hy, V,(1+r)
2r

Then the dimensionless numerical solution of the rising hydrograph will be

expressed by:
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LI .Td n

i i i 2
i+l _ i h*'+1 " 1 i 0 B e
= - = J=t 1 J
h*‘ h*. Ay T at, +
j h 20%,, i - (1nx, ) 2
3
. (n~1) . n-1 . n
i i
(1-r) n by (bt )2 n  [by  + b [hi - h, g - q
j 4 N j+1 j j+1 L T
(1 - (1I-v) x*‘) 2 bx, 2 1 Ax, 2
]
I . Tt . n-1 .n n N .0
i i i . i
(1-r) (hy  +hy) n |hy +h; hy -hy G -4
a2 SO N R N S o J -1 _3 -1 _
(2 - (1x) (xy +x.)) bx, 2 bx, 2
J+1 3
it it i-1 i
(1-r) (hy + hy l) Ay 7 Yy,
N + — J (6-34)
(2 - (1-r) (x, +x; ) At
3 j-1
for j=1,2,...(N-1) , and
in iIl in
- - h, - h*N L (1-r) hy
By o= hy - oap, T g o AL (6-35)
N N Ax, N Q-Q-n)xg ) ‘
N
for j=N

The dimensionless analytical solution for the recession hydrograph will take

the form:
1
2n-1 —_—
. (n-1)
r(n~1)/n [1- (1~ (1-r)x,) n
h, = h
o Jamene) PP B s e, ) @eeb o) By (1) /g
o
(6-36)

6.5 DEVELOPMENT OF HYBRID APPRCACH FOR CHANNEL SECTION
The channel is an important element in the geometric network representing

a natural watershed. The lateral inflow to it will always be time dependent.
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Hence, the numerical approach is perhaps the most practical way to obtain
the solutions. The Lax-Wendroff scheme will be given for the channel
geometry as shown in Fig. 6-2 (where a is some arbitrarily chosen constant
t, convert a triangular section into a trapezoidal ome).

The kinematic wave equations for the channel section can be writtén as:

the continuity equation

%A, 30 (6-37)
and the kinematic momentum equation

Q= o AER)T = o A" ()1 (6-38)
Where A = cross—sectional area, HR = hydraulic radius = A/WP , and WP =
wetted perimeter. The Lax-Wendroff scheme for the channel can be written as:
w1 f1 4] @o? (5 [f3 O f [Es Ao
Ay T E ALt st s s T j] -7 [&' j]}’"”l":ir—l
(6-39)

_ i - i . - i i, .

where £, = GAF (hj+l) GAF (hj_l) ; £, = DGA (hj+l) 4+ DGA (hj) 3
_ i _ i . - i i . - .
f3 = GAF (hj+l) GAF (hj) HE ¥ DGA (hj) + DGA (hj_l) s GAF(h) Q

DGA(h) = 8Q/%A ; and DGH(h) = 38Q/dh .

Equation (6-39) will, in conjunction with the boundary conditions: h(x,0) = o,
h(o,t) = g(t), input receiving from the upstream plane, will provide the depth
of flow at the nodal points j = 1,2,...(N~1). The depth at the ocutlet

(j = N) will be computed by the first order numerical scheme:

i+l i i i
+ U GAF(hN) - GAF(hN—l)

i
S O 7 " i (6-40)
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Fig. 6~2.

E|| <

Channel geometry.
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The normalizing quantities for the channel section are defined as they
are for the plane section. The dimensionless solutions will be identical

to those given in Egs. (6-39) and (6-40) and hence will not be repeated.

6.6 HYBRID FORMULATION OF KINEMATIC WAVE MODELS
In hybrid formulation the main emphasis will be to use analytical
solutions wherever and whenever possible. Obviously, it will much depend

on the position of a geometric element in a network model under consideration.

6.6.1 The Converging Section Model

The geometry of this model could be taken to represent a watershed of
any complexity, or it could be used as a basic element in a network model
(Woolhiser, 1969; Singh, 1974), for example, in the composite model. For a
given rainfall event the runoff hydrograph will be simulated using numerical
solution (Egqs. (6-29) and (6-30))for the rising part and analytical solution

(Eq. (6-31)) for the recession part.

6.6.2 The Wooding Model

The hydrograph of each plane will be computed using hybrid approach,
that is, the rising limb by Eqs. (6-9) and (6-10), and the recession limb
by Eq. (6-11). The hydrographs of the planes will form input' to the
channel. The two hydrographs must be added together before putting them as
input to the channel. The hydrograph at the mouth of the channel will be

computed using Eqs. (6~-39) and (6-40).

6.6.3 The Composite Model
The geometry of this model is a combination of the geometries of
converging section and Wooding's model. The hydrograph for the converging

section will be computed as described above, and will form input to the
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channel at its upstream boundary. The hydrographs for the planes will be
simulated in just the same way as described for Wooding's model, and will
form, when added together, lateral input to the channel. The hydrograph at

the outlet will be simulated using Egqs. (6-39) and (6-40).

6.6.4 The Cascade Model

The cascade geometry consists of planes and channels. The arrangement
of planes and channels will be different for different watersheds. Depending
upon this arrangement, numerical and analytical solutions will be utilized.
For example, if the arrangement were the one shown in Fig. 4-4, hydrographs
of the planes will be simulated using hybrid approach, and channel

hydrograph will be simulated using Eq. (6-39) and (6-40).

6.7 APPLICATION OF HYBRID APPROACH TO A NATURAL WATERSHED

To demonstrate the computational efficiency of the hybrid approach the
converging overland flow model was considered. Nine rainfall-runoff events
were obtained on an experimental agricultural watershed, called SW-17, near
Riesel (Waco), Texas. This is a small watershed of about 3 acres in areal
extent. For a detailed description of the watershed and rainfall-runoff
data thereon see the USDA publication entitled "Hydrologic Data for
Experimental Agricultural Watersheds in the United States", pﬁblished
almost every year.

For these events rainfall-excess was estimated (Singh, 1974) using
Philip's equation (Philip, 1957). Optimal values of the parameters were
found to be: L,(l-r) = 400 ft , r =0.01, n = 1.5, and o = 0.90 . A
brief summary of rainfall-runoff data and parameters of Philip's equation
are given in Table 6-1. It must be mentioned that the parameter o was
optimized on hydrograph peak; more on the optimization will be discussed

in the next chapter.
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Table 6~1. Parameters of Philip's equation! for rainfall-runoff events

on watershed SW-17 Riesel (Waco), Texas

Serial| Date of |Rainfall| Runoff Observed Parameter|Parameter
Rainfall| Volume | Volume |Hydrograph Peak

Number| Event (Inches) | (Inches)| (Inches/hr.) A S
1 |3-12-1953| 0.830 | 0.695 1.610 0.01 | 0.3713
2 3-31-1957| 0.590 0.240 0.441 0.01 0.9603
3 4-24-1957| 1.750 1.730 2.900 0.01 0.0062
4 4-13-1957| 1.620 1.360 1.740 0.01 0.1700
5 6-24-1959] 1.990 1.520 2.170 0.01 0.5298
6 6~25-1961| 1.380 0.350 0.604 0.01 4.0349
7 7-16-1961| 1.080 0.280 . 0.348 0.01 1.0993
8 6-09-1962| 2.080 1.670 3.790 0.01 0.5218
9 3-29-1965| 4.990 3.5033 2.440 0.01 1.3470

lphilip's equation for infiltration is:

where f is infiltration in inches/hr., t, time in hours, and

f =

A+5S t

A and S are parameters.

~0.5
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Before comparing the computational efficiency of numerical and hybrid
approaches, the error behavior of the Lax~Wendroff scheme as related to the
number of grid points in space was examined. TFor an arbitrarily chosen
rainfall event of 6/31/1962, the error behavior is shown in Fig. 6-3. Here
the error was defined as: (observed runoff peak-estimated runoff peak) x
100/ (observed runoff peak). Figure 6~3 gives an idea, however, about a
reasonable number of grid points to be chosen in computation if reasonable
accuracy is to be acquired. Tt must be pointed out that because of roundoff
and propagation errors that develop in the computing system the error will
not go to zero even for a large number of grid points; instead it will
start increasing as these errors start dominating the accuracy of the
difference scheme.

For all the nine rainfall events hydrographs were simulated, on IBM
360-44 computer, using both numerical and hybrid approaches. Their
computational performance is shown in Table 6-2. Figure 6-4 gives the
execution time taken by both schemes to perform the same computations.
Figure 6-5 gives the cost of execution (computed at the rate of 250 x 107H
$/sec). TFigure 6-6 gives the total cost (including execution cost,
compilation cost, page cost, printing cost, etc.) of running the computer
programs. From Table 6~2 and figs. 6~3-~6-5, it is quite evi&ent that
hybrid approach is far more efficient than the numerical approach. From
these figures it is also clear that the cost of hybrid approach shows a
very little increase with increasing number of grid points. This tacitly
suggests that it is the recession limb of the hydrograph that requires more

computation because of its usually longer duration than the rising limb.
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CHAPTER 7

APPLICATION TO NATURAL WATERSHEDS

7,1 GENERAL REMARKS

In the previous chapters we dealt with analytical mathematics of non-
linear watershed runoff dynamics by the method of characteristic domains in
that conditions were pointed out regarding the feasibility of explicit analy~-
tic solutions. In this chapter our objective is to apply the proposed distributed
kinematic wave model to predict surface runoff from natural agricultural water-
sheds, examine its performance and reflect on its potential in simulating
watershed surface runoff response.

When analytical solutions are not feasible use is made of hybrid solu-
tions which combine advantages of numerical and analytical solutions. We
will briefly present numerical solutions for the distributed model. The coupling

of the continuity equation and kinematic approximation to momentum equation

yields:
3h n-1 3h n Ja(x) -
S + oa(x)n h 3 T h Py" q(x,t) (7-1)

The Lax-Wendroff for Eq. (7-1) can be formulated as:

oh - dh oo (x
— = - ofx) npt 1 n — ~ h? ——( )

+ ¢ (7-2)
at ax ox a6, t)

Expanding h(x,t+At) by Taylor Series,

oh At)?2 32
oh | (8)7 3D | por (7-3)
3t 2 9t?

h{x,t+At) = h(x,t) + At

where HOT denotes higher order terms. Differentiating Eq.(7-2) with

respect to t ,

L a2
t

93’.‘} _ da(x) o | 3q(x,t) (7-4)
0x

ot ax ot at

Substituting Eqs. (7-2) and (7-4) into Eq. (7-3) and neglecting HOT we obtain:
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hix,t+At)= h(x,t) + At {- al(x) n hn“l -g—z - hn 2——3(}{) + q(x,t)} +

Gk fam [9,1} I NN a0}
2 ax L3t 3x at at

Writing Eq. (7-5) in a compact form,

n
h(x,t+At) = h(x,t) + {- a(x) %%; - n" %E(X) + q(x,t)} {At + (Ag)z

3o (x) - (At)2 [aq(x,
- = - 1]} + 2) [ég(x t) o (x) g; {n p-l (_ ! da(x)

8x
n
a(x) %g; + q(x,t)]}:]

Following the notation in Fig. 6-1 we can write Eq. (7-6) in finite dif-

ference form as:

(7-5)

(7-6)

1 i 1P in »
) . 0 (%541 T 051 . (b4 - hyog . (At)
pitl ool g {~h% [ s = ] - ol [~1~———-1—-] + q%} {At + -
J J J 20% J 24x J 2
. . . . -1 .01
i i i+l i i i
n~1 |a,,. - o (At)2[ q. = - q. n |h; + b’
. + - .
o ni j+1 AR J R IS DG S B 3
20% 2 L' At 3 ax 2
n n i i i i . Lt i i
h]+l 4 hJ Gyp] T O o541 t oy h3+l - hJ q4+1 + q;
2 Ax 2 Ax 2 J
n~1 n~-1 n . n .
nl 4 nd nd o4l 1_4d 14t i - pt
I S j-1 5-1] (% 7 %1 1% T % - ny-1
J Ax 2 2 JERt Ax J L 2 Jj ot Ax
i + i
q5 Q5
I N o (7-7)
2
Assume that the depth of flow is to be determined at N nodal points.
Then the depth of flow at nodal points j = 1,2,.... (N - 1) will be
computed by the scheme in Eq. (7-7) in conjunction with the following
boundary conditions:
h(o,t) = o
(7-8)
h(x.0) = o
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Equation (7-8) represents an initially dry surface. The scheme of Eq. (7-7)

is explicit, second order, and single-~step. The depth of flow at the

downstream boundary (j = N) can be computed by the first order difference

scheme; that is,

ah
hix;t + At) = hix,t) + At 5T (7-9)

Substituting Eq. (7-2) into Eq. (7-9).

T
B(x;t + At)= h(x,t) + At {- " ?‘X) — a(x) E;; + Q(X,t)} (7-10)
X

Writing the difference form of Eq.

i i in in
. . CR|o O s |y = by :
h;—[l L SSPRD LS e NS e Tl 5 g (7-11)
N N Ax N Ax N

These numerical solutions can be combined with analytical solutions in an

appropriate manner to yield hybrid solutions.

7.2 APPLICATION TO NATURAL WATERSHEDS
The distributed model was applied to three agricultural watersheds
near Riesel (Waco), Texas. One of them is SW-12 as shown in Tig., 7~1

small watershed of about 3 acres in area. The other is SW-17 as shown

in Fig. 7-2 , also about 3 acres in area, and another is Y-2 as shown in

Fig. 7-3 , 132 acres in area. Deep, fine-textured, granular, slowly

permeable, alkaline throughout, and slow internal drainage are typical
characteristics of soils of these watersheds. The dominance of Houston
black clay is notable, These soils are also néted for the formation of
large extensive cracks upon drying. Surface drainage is, by and large,
good but no well-defined drainage-ways exist on these watersheds. Usually,

water is drained by rills and poorly defined field gullies.
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7-1. Geometric representation of watershed SW-12, Riesel (Waco),
Texas.
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7-2. Geometric representation of watershed SW-17, Riesel (Waco),
Texas.
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Geometric representation of watershed Y-2,Riesel

(Waco), Texas. .
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Most of the time these watersheds are covered with agricultural crops.
Because of low permeability of the soils. these watersheds respond rapidily
to rainfall, and produce quickly rising hydrograpﬁs. For the rainfall
events under consideration the major portion of rainfall was observed as
surface runoff; and infiltration was only minor. TFor a more complete
discussion of these watersheds and rainfall-runoff data thereon sece tﬁe
USDA publications entitled "Hydrologic Data for Experimental Agricultural
Watersheds in the United States'". These publications are published almost

every year and contain, on an average, one event per watershed.

7.2,1 Determination of Rainfall Excess

Rainfall-excess forms input to the model. Estimating infiltration
is essential for determining rainfall-excess., Philip's equation (Philip,
1957) was employed to estimate the infiltration loss. Philip's equation
can be written as:
f=a+hbt 0.5 (7-12)
wvhere f = infiltration loss rate, t = time, and a and b are
parameters dependent on soil characteristics and initial moisture
conditions. The parameters a and b have the dimensions L/T and
L/ VT respectively; L denotes length dimension and T time dimension.
Note that the parameter a has the same dimension as £ . fheoretically
the parameters will vary from storm to storm on the same watershed, and
from watershed to watershed for the same storm. For practical consider-
ations the parameter a was considered roughly identical to steady
infiltration; thué it was determined from physical characteristics of
the soil. The parameter b was allowed to vary with each rainfall episode,

thus accounting for soil moisture conditions existing prior to its
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occurrence. It was estimated for each storm, ﬁtilizing Newton's numerical
algorithm (Conte, 1965) subject to preserving mass continuity. Tables 7-1 - 7-3
provide values of these parameters for some rainfall events on each

watershed. As can be seen the p;rameter b is quite sensitive to rain-

fall characteristics and antecedent soil moisture conditions.

7.2.2 Geometric Representation

A simple rectangular sectlon was employed to represent the watershed
geometry as shown in Figs. 7-1 - 7-3. The plane section geometry has two
parameters Ly and W . L, represents length of flow and W width.
With watershed area known we neéd to determine only one quantity, that is
either L, ox W . Thus a topographic map would suffice to transform

the natural geometry into a simple rectangular plane section geometry.

7.2.3 Choice of Objective Function

The following objective function, based on hydrograph peak, was

used in this study:

M 2
F = min JZ=1 {Qp0(3> - Qpem} (7-13)
where F = objective function or error criterion, Qp (j) = observed
o)

hydrograph peak for the jth event, Qpe(j) = estimated hydrograph peak
for the jth event, and M = number of events in the optimization set.
The choice of this objective function is based on findings of Kibler and
Woolhiser (1970) and Singh (1974, 1975a, 1975b, 1975e, 1975f). DBesides
its usefulness in flood studies and its amenability to statistical
implications it has an advantage that it does not suffer from timing

errors resulting from improper synchronization between rainfall and runoff.
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7.2.4 Parameter Optimization

A simple relation between the parameter « and topographic slope
was hypothesized:

a(x) = C; + C,V/S(x) (7-14)
where S(x) = topographic slope varying in space, and .C1 and C, are
constants. These constants will supposedly vary from one watershed to

another. At present we can only hope to obtain them by the technique of
optimization. We must note here that the parameter a(x) varies

continuously in space.

For computational purposes the plane geometry was decomposed into
several segments, for example, 12 segments for watershed SW-12, 11 segments
for watershed SW-17, and 13 segments for watershed Y-2, as shown in
Figs. 7-1 - 7-3 respectively. It was assumed that within each segment the
surface characteristics would remain unchanged. For each segment weighted
slope is known from the topographic map. Two sets of rainfall-runoff
events were selected on each of the three watersheds; one set was called
as optimization set implying that the events in this set were used for
optimization only, and the other set was called as the prediction set
implying that the rainfall events were used for hydrograph prediction only.
These two sets were mutually exclusive implying that they did not have
any event in common. The optimization sets consisted of a set of 3 events
on SW-12, a set of 5 events on SW-17, and a set of 5 events on Y-2.

The prediction sets consisted of a set of 2 events on SW-12, a set of &4
events on SW-17, and a set of 4 events on Y-2. The constants in Eq. (7-14)
were obtained by optimization over the optimization set for each watershed.
The optimization was performed by the Rosenbrock-Palmer algorithm

(Rosenbrock, 1960; Himmelblau, 1972) utilizing the objective function of
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Eq. (7-13). The optimized values of constants for each watershed are:

Watershed C1 C,
SW-12 2.3 2.9
SW-17 2.4 3.0
Y~2 3,6 4.3

7.2.5 Hydrograph Prediction

Utilizing optimized values of the constants C; and Gy hydrograph
predictions were made for the events in the:prediction set of each watershed.
The results of model predictions are shown in Tables 7-1 - 7-3. Predicted hydro-
graphs are shown in sample Figs. 7~4 - 7-7. From the figures and the tables
it is evident that on the whole model has performed quite well, especially
for its simplicity. However, a few points prompt discussion:

(1) 1In predicting hydrograph peak relative error has gone as high
as about 50% in some cases, for example, for two events 5-13-1957 and
3-29-65 on watershed SW~17. Except for these two instances the relative
error has stayed well below 20%. There might be several reasons for
high prediction error. Of all two appear to be most prominent: (a) the
size of the optimization set is very small and, therefore, we cannot hope
to obtain representative values of the constants C; and C, , and
(b) there is difficulty in determining rainfall-excess which, in fact,
generated observed runoff. The determination of rainfall-excess seems to
be the major problem in all rainfall-runoff models. Philip's equation is
too simple to accurately predict time-distribution of infiltration and
then there is the difficulty of estimating its parameters.

(2) Figures 7-4 — 7-7 indicate that the model predicts time-distribution
of runoff fairly well. We must note that the optimization of constants

C, and C, wutilized an objective function based on hydrograph peak
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only. There was no consideration given to the runoff timing, yet the
hydrograph shape and time characteristics are well predicted.

(3) For its simplicity the distributed approach appears to be
promising. The need is for an exhaustive testing of the proposed approach
on a number of natural watersheds in a variety of physiographic and
climatic settings. Another aspect would be to investigate into the problem
of determining the constants C, and C, from physically measurable water-
shed quantities. If the problem of a priori determination of the constants
C

; and C, can be tackled the utility of this approach will be greatly

enhanced.

7.3 CONCLUSIONS

Based on the limited testing it can be safely said that the proposed
distributed model is promising and deserves more exhaustive investigation.
Its simplicity, coupled with physical realism and mathematical rigor, is
sufficient to justify the above statement. On the whole the model is
capable of predicting hydrograph peak, time and shape characteristics well,
especially for its simplicity. There is, however, a need to correlate the
constants Cj; and C, with physically measurable watershed characteristics.
It will also be useful to study the variability of these constants from one

watershed to another.
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APPENDIX A
We will show that the curves t = t(x,ty) , o<t <T, £i11
out all of § above t = t(x,0) . For this purpose it is sufficient

to prove that, for fixed x>0 , t(x,ty) » = as t, >~ T . Together
with our assumption that the curves t = t(x,t,) do not intersect in
S for distinet values of t, » this implies that h(x,t) is defined
throughout § .

We assume that n > 1 ; o] <o(x) <ag ;3 o< q(x,t) <q if

t<T, q(x,t) =0 if t > T . From Eq. (4~12) we obtain:
x 1 1
1 n qx n
o < hix,ty) < o q dg;r = o (A-1)
o
From Eq. (4-13) we see:
1-n
S i-n
dt 1 ax C n
I > awp Y&y =® X (a-2)
1
T
where C; = 4 —
01 G2

Integrating Eq. (A-2) between o and x,
1

t(x,ty) > tg + C X" : (A-3)
Let x*(to) be the solution of T = t(x*,to) . Then, from Eq. (A-3)

we obtain:

n
1
We have, referring to E%. (4-13)
n X" (tg) n

q(gst(g,to)) dg < ng = qx*(to) < q T_E]....E.Q
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Thus we can write

X l-n

G2

LoD
t(x,to) > to + (—%-} [T - t°] }n dn = t, +

o
where C, = -1

azn
It follows from Eq. (A-4) that t(x,ty) - ® as

X >0 . It follows from Eq. (A-1) that

t
o < h(x,t) < |I¥
a

(T - ¢ )n~l (A-4)
o

to > T for fixed

(A-5)

Equation (A-5) implies that h(o,t) = o for t > T.



146

APPENDIX B

When q(x,t) = q the curves t = t(x,t,) do not, for distinct
values of t, , intersect in § . This follows from Eqs. (4-15) and
(4-94); the curves of Eq. (4~94) are the prolongation beyond t = T
of the curves of Eq. (4-15). Equation (4-15) implies that t(x,ty)
is, for fixed =x , an increasing function of to, > and Eq. (4-94)
implies that t(x,xg) is, for fixed x , a decreasing function of xg .

To prove that the curves ¢t = t(x,to) do not intersect in
domain D3 we impose the condition that o(x) = a , a constant; We
also retain the condition q(x,t) = q . Under these conditions we
show that Eq. (4-37) is, for fixed x , a decreasing function of Xy
Similarly, it is clear from Eq. (4-21) for domain D, that t(x,t,)
is an increasing function of t, . In domain D; it is clear from
Eq. (4-61) that t(x,xg) is a decreasing function of xX.

To conclude the discussion we need to prove that the curves
t = t(x; Xgs xg) do not intersect in domain Djp . This indeed is
true from Eq. (4-103) since t (x5 x,, xg) is a decreasing function
of x4, .
This discussion can be extended, without complication, to the
case when o(x) is not a constant. It would simply reqﬁire to impose

the condition that a(x) dis an increasing function of x .
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APPENDIX C
COMPUTATION OF RUNOFF HYDROGRAPHS

C~1 EQUILIBRIUM HYDROGRAPH
Given the following information: L, = 10,000 cm, o =10, q = 10cm/hr,

T = 1,000 sec, n = 2,, and width = 1 cm. We show the computations in steps.

Step 1. Compute the time of equilibrium, t.., to determine whether, in
fact, we are in equilibrium situation. From Eq. (4-80) we obtain:

1
]2 = 600 secs

te =

1
10 Y- 5 (10,000
[3600 10

The duration of effective rainfall is 1000 seconds. This implies that
we are in equilibrium situation.

Step 2. We obtain the solution in domain D,. We have from Eqs. (4-36) and

(4-37):
1 1 1 1
(10 ox - X5) 2 _ 7 2
t(x,xo) = [36001 ?' o } = 6(x - X5)" = (10,000 - XO) 6
1 1 1 1
n( ) [ 10 ]2 {x - XO}Z [l] ( )f 1 10.000 )2
%7 7 13500 10 " o) T *T =5 (40 %o

Remember here x = 10,000 centimeters, OSXOSIO,OOO. Let x, vary between

o and 10,000 at the interval of 1000. We have.

X, t h Q
(cm) (sec) (cm) (cm/hour)
0 600.0 1.67 10
1,000 586.2 1.58 9
2,000 536.7 1.43 8
3,000 502.0 1.39 7
4,000 464.8 1.29 6
5,000 424.3 1.18 5
6,000 379.5 1.05 4
7,000 328.6 0.91 3
8,000 268.3 0.75 2
9,000 189.,7 0.53 1
10,000 0.0 0.00 0
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Step 3. We :btain solution for domain D, . Tor this example the

function h will depend only on x . We have from Egs. (4-20) and (4-21)

1 1
10 } 2 (10,000)2
elx,x,) = £, * {3600] { 10 ] =t + 600
1
10 10,000y 2
h{x,x,) = {3600 . 10 } = 1.67
Remember here t, assumes values on 05tST . We thus have:
to t h Q
(sec) (sec) (cm) {em/hr)
0 600 1.67 10
100 700 1.67 10
200 800 1.67 10
300 900 1.67 10
400 1,000 1.67 10
Step 4. We obtain solution for domain D;. From Eqs. (4-59)-(4-61) we have:
1 1
(100 %)% x,?
By = 13600 Iﬁ} = %0
h(x,x,) = hg
10 3600 (10,000 - Xo) 3
t(x,xo) = 1000 -+ [—— . = — (10,000 - xo)
10 x, 10 x 2 Xq 2

Remember here x_ varies between o and 10,000 cm. Thus we obtain:

X h h Q
(cm) (sec) (cm) (cm/hr)
1,000 1,853.8 0.53 1
2,000 1,536.7 0.75 2
3,000 1,383.4 0.91 3
4,000 1,284.6 1.05 4
5,000 1,212.1 1.18 5
6,000 1,154.9 1.29 6
7,000 1,107.5 1.39 7
8,000 1,067.1 1.49 8
9,000 1,031.6 1.58 9

10,000 1,000.0 1.67 10

This example is graphically illustrated in Fig. C~-1.
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C-2. PARTIAL EQUILIBRIUM HYDROGRAPH
Let n = 1.5 and T = 20 hr; we retain the remainder of
information utilized in the equilibrium hydrograph. Again, we

perform computation in steps.

Step 1. The characteristic curve originating from the origin is

t = t(x,0) , and is obtained by putting Xo = 0 in Eq. (4-37) .

From Eq. (4~133) we obtain:
In 1
-, 0 (xln
T =gq [u

We can also write:

x=a IO qn—l = x*

This gives the point x* where the limiting characteristic hits the
line t=7T . If x* > Lo » we are in equilibrium situation, and

if x¥ < Lo » we are in partial equilibrium situation. Let us now

determine if we are in partial equilibrium situation.
g 1.5 0.5
x” = 10 (20) (10) = 2,828.43 cm

This indicates that we are, indeed, in partial equilibrium situation.

Step 2. We now obtain solution in domain D3 . We have from Egs.

(4-36) and (4-37)

1 2
3 3
10 10,000 - x
e Ao O
t(*:%5) = 13500 10

Win

10 . 10,000 - x
3600 10

h(X,XO)

Remember that o S Xo £ 10,000, o < t £ T . Then we have:



X0
(cm)

10,000.00

9,500.

9,000.00
8,500.00
8,000.00

7,171.

Step 3.

Egs. (4-60) and (4-61):

h(x,xg)

t(x,xg)

00

57

We now obtain solution in domain Dj; .

1

= 20 +

3600

t
(hr)

0.00
6.30
10.00
13.10
15.87
20.00
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h
(cm)

6.00
63.00
100.00
131.04
158.74
200.00

Q
(cm/hr)

2
%13
X9
10
i
3
10,000 - %
10
3600 i0 x 1.5

* %*

Remember here that o < x5, < x° .

X*
(cg)

0.
500.
1,000.
1,500.
2,000.
2,500.
2,828.

Step 4.

Egqs. (4-101) - (4-103).

X*
(cm)

2,828.
10,000.

00
00
00
00
00
00
43

We now obtain the solution in domain Dj, .

43
00

t
(hr)

99.80
80.00
69.50
62.33
56.84
53.81

t
(hr)

53.81
20.00

h
(cm)

6.00
63.00
100.00
131.04
158.74
184.20
200.00

We obtain:

h
(cm)

200
200

Then we have:

Q
(cm/hx)

0.00
0.50
1.00
1.50
2.00
2.50
2.83

Q
(cm/hr)

We have from

We have from
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Lo 5 %o and xg are bound by Eqs. (4-91).

% *
<
X, £

Remember here that x
We now illustrate this example graphically in Fig. C-2.
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Fig. C-2. A typical runoff hydrograph for partial equilibrium case.
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APPENDIX D

It follows from appendix B that the curves ¢t = t(x,t,) do
not intersect in domain D, , and, on the assumption that a(x)
is an increasing function of x , the curves ¢t = t(x,xo) do not
intersect in domain D3 . It follows from Eq. (5~19) that txg(x,kz) < o,
so the curves t = t(x,xz) do not intersect in domain D; (case A)
or in domain Dj; (cases B; and By). Now we prove that the curves

t = t(x;xo,xz) do not intersect in domain Dj, . If we require

a(x) to satisfy that some assumption, it is then obvious from

Eq. (5-31) that tX (x;xg(xo),xo) <o .
o





