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DISCLAIMER 

The purpose of the NM Water Resources Research Institute (NM WRRI) technical reports is to provide a 
timely outlet for research results obtained on projects supported in whole or in part by the institute. 
Through these reports the NM WRRI promotes the free exchange of information and ideas and hopes to 
stimulate thoughtful discussions and actions that may lead to resolution of water problems. The NM 
WRRI, through peer review of draft reports, attempts to substantiate the accuracy of information 
contained within its reports, but the views expressed are those of the authors and do not necessarily reflect 
those of the NM WRRI or its reviewers. Contents of this publication do not necessarily reflect the views 
and policies of the Department of the Interior, nor does the mention of trade names or commercial 
products constitute their endorsement by the United States government. 
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ABSTRACT 

This report explores the possibility and plausibility of developing a hybrid simulation method combining 
agent-based (AB) and system dynamics (SD) modeling to address produced water management (PWM) 
issues. We start by developing a conceptual diagram to capture the extent and scale of the complexity of a 
PWM model. We use literature, information characterizing produced water in New Mexico, and our 
preliminary interviews with subject matter experts to develop this framework. We then conduct a 
systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and 
techniques. Our research reveals there is a small but growing volume of hybrid modeling efforts that 
could provide some foundational support for PWM modelers. We categorize these efforts in four classes 
based on their approach to hybrid modeling. Class A includes models with two separate sets of AB and 
SD modules that work independently but talk to each other through a protocol. Class B includes models 
with AB modules that directly contain SD (stock, flow, and feedback) structures. Class C includes models 
with SD modules that directly contain AB (heterogenous behavioral rules and agent interaction) 
structures. Class D includes the most sophisticated hybrid AB-SD models that fully integrate both 
approaches where AB modules contain SD structures and SD modules contain AB structures and 
simultaneously there is a seamless communication at the aggregate level between AB and SD modules. It 
appears that, among these classes, PWM requires the most sophisticated approach (Class D), indicating 
that PWM modelers will need to face serious challenges of breaking new ground in this realm. The report 
concludes with an outline for future research. 

Keywords: produced water management, hybrid modeling, simulation, system dynamics, agent-based 
modeling, geospatial analysis, cross-scale complexity 
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1. INTRODUCTION

We report here our exploration of the necessity of developing a hybrid system dynamics (SD) and agent-
based (AB) simulation approach for evaluating the impacts of produced water policies and management 
decisions on a regional water budget. Our contemporary problems are becoming increasingly complex, 
and we need to equip ourselves with modern analytical tools to approach them. Hybrid simulation 
approaches are needed to advance our understanding of future problems and to solve them effectively 
while mitigating the unintended consequences of our solutions (Neuwirth, Peck, and Simonović 2015; 
Anderson 2019). In this regard, the primary goals of this research are to (1) identify the main dynamic 
characteristics and complexities that a comprehensive produced water management (PWM) model should 
take into account, (2) review the current body of literature where such complexities could be addressed 
using the particular hybrid simulation modeling approaches, (3) assess the necessity and usefulness of 
hybrid modeling to PWM issues, and (4) provide recommendations for future hybrid modeling of PWM. 
A secondary goal of this research was to bring together common terminology used in the modeling 
literature in order to guide future hybrid modeling efforts.  

Produced water, the brine water in a geological formation and flow-back water from the hydraulic 
fracturing process that is a coincidental byproduct of oil and gas production, has high variability in 
volume and quality. The volumes of produced water commonly range between a produced water to oil 
ratio of 3:1 and 13:1 (Scanlon et al. 2017), and contain varying levels and composition of dissolved solids 
(Chaudhary et al. 2019), making it expensive to treat and dispose of (Ma et al. 2018), and thus it has 
remained a major challenge for policy makers, industry, communities, and environmental protection 
agencies (Sullivan Graham, Jakle, and Martin 2015). Total dissolved solids in produced water in the 
western United States ranges from 1,000 mg/L to greater than 400,000 mg/L (Benko and Drewes 2008) 
and samples taken at different times from the same well can vary more than 100,000 mg/L (Chaudhary et 
al. 2019). In 2017, the volume of produced water in the United States was 160 billion gallons (Scanlon et 
al. 2020), and oil and gas production has since increased in some regions such as in the Permian Delaware 
Basin. The six common disposal options for produced water are: discharge, underground injection for 
disposal, underground injection for reservoir pressure maintenance to increase oil recovery, evaporation 
ponds, offsite commercial disposal, and beneficial reuse (Clark and Veil 2009). In New Mexico, direct 
discharge currently not allowed, however, a Produced Water Research Consortium is currently working 
with industry and regulators to establish regulatory guidelines for potential beneficial reuse outside the oil 
and gas industry. Management and policy decisions regarding the choice of produced water disposal can 
have both local and regional impacts on the volume and quality of freshwater resources, on seismicity 
levels, transportation infrastructure, oil and gas production costs, soil quality, and ecosystem health, as 
well as having societal effects such as employment, quality of life, environmental advocacy, and 
agricultural sustainability.  

These interactions are difficult to model across space and time because of the dynamic nature of many of 
the variables involved. For example, water demand for hydraulic fracturing occurs only in the beginning 
of the well life cycle and is on the order of days, whereas produced water volumes typically follow a 
logarithmic curve throughout the well life on the order of years. Injection wells are not evenly distributed, 
and the geochemistry of produced water must be compatible with the geologic formation the saltwater 
disposal well is drilled into. Produced water treatment facilities can be centrally located, but options for 
mobile treatment units are becoming more prevalent. Similarly, transporting the produced water, either to 
a treatment facility or injection well, is done either by trucking or pipelines, – with each form of 
transportation having its own set of feedbacks into the larger system. Selection of treatment options for 
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produced water is primarily driven by the treatment type, feedwater quality and volume, energy cost, and 
the intended water use.   

Analysis of these individual factors alone does not lead to solutions that account for the multiple levels of 
interaction either driving or affecting the outcomes of produced water management. In fact, the body of 
scientific literature is rich with disciplinary research addressing the many facets of produced water 
management, for example, policy (Sullivan Graham, Jakle, and Martin 2015), treatment technology 
selection (Ma et al. 2018), geochemical composition (Chaudhary et al. 2019), risk assessment (Torres, 
Yadav, and Khan 2016), and increases in seismicity (Rubinstein and Mahani 2015). The literature is also 
rich with examples of a growing interest in utilizing a hybrid modeling approach to support natural 
resource management decisions – for example, Nikolic, Simonovic, and Milicevic (2013). However, 
applications that consider all key attributes of a typical social-ecological system such as feedback, 
nonlinearity, cross-scale dynamics, and heterogeneity in a single package for water management problem 
is nonexistent (Gain et al. 2020).   

 To address the cross-scale dynamic complexities of PWM, we needed research methods and tools that 
can characterize and represent nonlinear system-level, as well as heterogenous and spatial, interactions 
over time. Single-method analytical solutions are not adequate for this purpose because they cannot 
seamlessly integrate these system and individual levels of analysis. Advanced dynamic simulation 
approaches are needed to fill the gap (Anderson 2019). In this report we explore the potential for applying 
a hybrid dynamic simulation approach to PWM. We ask what the minimum boundary is for a 
comprehensive model of produced water that aims to capture its important dynamic complexities. By 
using the literature, produced water data from New Mexico, and our preliminary interviews with subject 
matter experts, we develop a conceptual framework of the problem to guide us through this inquiry. Then, 
we explore our methodological options to examine whether single-method) dynamic simulation 
approaches, such as ABM or SD, are sufficient to tackle the issue. We then ask if a hybrid modeling 
approach would add any net value (benefits minus costs) to this area of research. We carry out a 
systematic literature review to answer these questions and to facilitate our exploration of deploying a 
hybrid model, using water-scarce southeastern New Mexico as a case study.   

This report is organized into six remaining sections. Section 2 presents the history and background of 
produced water in New Mexico. In Section 3, we develop and use a conceptual framework to explain the 
different levels of complexities in decision-making processes for managing the issues associated with 
produced water, and its impact on local and regional areas. Based on this framework, we discuss in 
Section 4 why a hybrid modelling approach could be effective for understanding the complexities around 
PWM. Section 5 describes our literature review approach that identifies previous efforts of hybrid 
modelling in various contexts. Section 6 presents the results of this review and the insights we gained 
through this process. Based on the findings, we categorize distinct approaches for hybrid modelling that 
should be most applicable for future research. Section 7 then concludes the report by summarizing again 
the nature of the issues associated with produced water, and it also provides modelers with guidelines for 
proper integration of system dynamics, agent-based modeling, and geospatial data for the specific 
problems associated with produced water. 
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2. OIL AND GAS PRODUCTION IN NEW MEXICO

Oil and gas production in New Mexico began as early as the 1920s using conventional drilling techniques 
and remains a substantial source of the state’s revenue. For instance, oil and gas production accounted for 
23.8 percent of the state’s revenue in 2008 (Peach and Starbuck 2011); this percentage varies by year and 
fluctuates with the price of oil and gas. New Mexico oil production peaked temporarily during the 1960s, 
however, a new boom starting in 2011 has made the state the third largest oil producing state in the U.S., 
yielding 329.4 million barrels of oil and 1.8 billion MCF of natural gas in 2019 (Figure 1).   

Approximately 97 percent of oil and gas production in New Mexico occurs in the southeastern corner of 
the state. The discovery of what is currently considered the world’s largest unconventional oil play within 
the Permian Basin (Scanlon et al. 2017), and advancements in drilling and production techniques, have 
renewed the importance of Southeast New Mexico for energy production in the national arena. 
Particularly, Lea and Eddy counties (Figure 2) are two of the top oil and gas producing counties in the 
United States. In 2016, there were 46,232 oil wells and 8,045 gas wells operating in these two counties.  

Figure 1. Annual oil and gas production in New Mexico between 1925 and 2019. (Data Source: 
Ron Broadhead, New Mexico Bureau of Geology). 
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Figure 2. Oil and gas production in Eddy and Lea counties, New Mexico. 

The Permian Basin Province is a 75,000 square mile basin that covers parts of southeastern New Mexico 
and western Texas. A recent assessment by the United States Geological Survey estimated 46.3 billion 
barrels of oil and 281 trillion cubic feet of gas are recoverable in the Permian Basin’s Wolfcamp shale and 
Delaware Basin’s Bone Spring Formation (Gaswirth et al. 2018). Estimates from the New Oil 
Conservation Division stated that in 2018 there was over 42 billion gallons of produced water generated 
(NM OCD 2021). Various outlets for treated produced water have been suggested, such as agriculture, 
potash mining, energy production, surface water discharge, and managed aquifer recharge (Scanlon et al., 
2020), however, the current regulations and public concern prohibit produced water use outside the oil 
and gas industry. The volumes of oil and gas in the region all but solidify the oil and gas industry’s future 
in the region for the foreseeable future. The increasingly large amount of oil production brings with it a 
byproduct, produced water, that imposes significant economic and environmental challenges to oil 
producers and to society generally. 
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3. CONCEPTUAL FRAMEWORK

The conceptual framework presented in this section emphasizes the multiple aspects of the PWM problem 
that are key to our understanding of important issues such as the impact of PW on the dynamics of 
regional water budgets. To understand how PW can change dynamics of water budgets in a region, we 
need to take the full complexity of the problem into account. Otherwise, disjointed information, even 
though in the same language, may not provide much insight. Produced water management decisions are 
made and being influenced at multiple levels of complexity. Environmental regulations and water quality 
requirements change as public perception of PW environmental risks change. These changes impose new 
constraints on PW management options by altering the cost functions of PW treatment, disposal, 
transportation, etc., thus affecting oil and gas production strategies including the geographical location of 
wells, capacity utilization, and so on. Changes in production patterns will affect future trajectories of PW 
volumes, where they are generated, where they are disposed, and how they affect the dynamics of 
quantity and quality of water resources. Dynamics of the water budget then feed back to the system to 
drive both regulatory and management decisions that further drive changes in the system. The illustrative 
interactions described involve three key characteristics (described below), which require a hybrid SD-AB 
modeling to address the question of how PWM will affect water budgets. 

a) Being dynamic: the key variables of the system such as oil production, water use for hydraulic
fracturing, produced water used in secondary recovery and reservoir pressure maintenance,
and decisions for treatment and disposal all change over time.

b) Being spatial: it relies heavily on spatial information and data, as managers must make
decisions on where to drill a new oil well (where the produced water is generated), where to
dispose of the produced water, and where to inject treated produced water.

c) Being heterogeneous: agents representing stakeholders, wells, or well owners act differently
based on their different input, analysis, and interests; this heterogeneity also adds to the
complexity of the problem.

In addition, our framework should accommodate and clarify the mechanisms by which particular 
stakeholders make their decisions and how they are impacted by those decisions. In order to achieve this 
integrated model, we find there is a need to study these decision-making processes with respect to their 
impact on at least three distinct areas of interest:  

1. Business: At this level, there could potentially be two types of agents (Figure 3). First, there are oil
companies that impact the system by making decisions such as where to drill new wells and how to
deal with the produced water at each location. Second, there are oil wells with different
specifications regarding the volume of produced water and associated geological formations. The
main attribute that differentiates oil companies as different groups of agents in our model is their
size. According to our interviews with research and industry experts, major oil companies are
socially driven to explore options for using less freshwater, to treat and reuse produced water, and
to reduce impacts to the environment. Compared to large players in the system, independent oil
companies usually have more immediate considerations and fewer resources for long-term
investments such as large-scale produced water treatment. At this level, although many factors are
considered for PWM, cost is the ultimate driving force behind management decisions, followed by
the need to maintain a positive public perception. Specifically, when the profit margin of
production drops and remains below a certain threshold for long enough, production ceases and the
well is closed (Clark and Veil 2009). On the other hand, for agents representing the wells,
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geospatial attributes such as their distance from proper disposal areas and the transportation cost of 
the produced water will drive the management decisions.   

Figure 3. Decision-making process and its impacts on the produced water system at the Business Level. 

2. Local: The impact of produced water can be seen mostly at the local level where resulting pollution
directly impacts the environment (Figure 4). For example, some produced water may spill during
transportation, or it may be partly responsible for an increase in the seismic activity in nearby areas;
such examples may impose significant challenges to the local population. One of the main drivers
of the changes in regulations regarding produced water is the public pressure on regulatory
institutions. Each new regulation requires the oil companies to modify their decisions toward better
environmental outcomes. These decisions change other spatial variables such as quantity and
quality of available water, seismicity risks, environmental pollution, and so on. These changes drive
economic and system-level changes such as the water budget, environmental regulations and
policies, and carry societal costs. These factors then feed back into the decision functions of
produced water managers as informational inputs for their cost-benefit analyses.
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Figure 4. Decision-making process and its impacts on the produced water system at the Local Level. 

3. Aggregate (regional): Treatment of the produced water can potentially reduce the amount of water
available for other activities such as agriculture or industry (Figure 5). For example, based on the
quality of the treated produced water, it can be reused for fracking. This process could reduce the
need for freshwater, and therefore, reduce the extraction of water from almost all non-renewable
groundwater aquifers in the region. Because of the level of aggregation, more research is needed in
order to connect the cause and effect processes. This goal can only be achieved by using integrated
tools such as hybrid modeling.
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Figure 5. Decision-making process and its impacts on the produced water system at the Aggregated 
Regional Level. 

 An overview of our PWM conceptual framework can be seen in Figure 6, which also shows the potential 
inputs and outputs of the model.  

Figure 6. Integrated conceptual framework for synthesized produced water hybrid model. 
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4. WHY A HYBRID MODELING APPROACH?

Hybrid modeling has many different forms and types, and there is currently no clear and cohesive 
definition for it (Sargent 1994). Two examples of differing hybrid modeling definitions found in the 
literature include “an approach that merges recent advancements in nonparametric analysis with standard 
parametric methods” (Hamilton, Lloyd, and Flores 2017), and “mathematical models that can handle 
various types of information and combine diverse theoretical methods on multiple temporal and spatial 
scales” (Chamseddine and Rejniak 2020). Eldabi and others (2016) attribute this lack of consensus to “the 
very nature of hybridization where models are based on mixing several paradigms, making it difficult to 
be housed within one.” Here, we simply use the term “hybrid modeling” to refer to a process of 
combining two or more dynamic simulation methods, in particular, system dynamics (SD) and agent-
based (AB) modeling. In a broader context, hybrid simulation, also known as multi-paradigm simulation, 
is usually defined as any combination of the three main simulation paradigms, that is, SD, ABM and 
discrete event simulation (DES) (Barbosa & Azevedo, 2019). 

To address the dynamic complexity of PWM, we can take different dynamic simulation approaches. The 
main approaches to consider are system dynamics (SD) and agent-based (AB) modeling. In theory, pure 
SD or AB models could be applied to any dynamic problems. Each of these approaches has its own 
strengths and weaknesses. SD models are efficient computationally, have great clarity of exposition, and 
provide easily tractable analysis (Lamberson 2018). AB models, on the other hand, have an advantage 
with respect to expressing and characterizing heterogeneity, and can also include spatial interactions 
within and between agents and their environment (An 2012). SD models could be designed to take 
heterogeneity into account by the use of subscripts or arrays. Ruth (1995) provides one of the earliest 
examples of this kind of modeling. However, this approach is inflexible in terms of interactions between 
agents as explained in detail in BenDor and Kaza (2012). As an alternative approach, Rahmandad and 
Sterman (2008) show how system dynamics could be used to represent an approximate AB model. Roach 
and Tidwell (2009) applied a spatial variation of the Compartmental SD (CSD) approach to groundwater 
resources management. However, it was shown that the simulation results of an AB model that fully 
accounts for network structures differ significantly and substantially from a CSD that does not 
(Lamberson 2018).  

 AB models could also be applied to any dynamic problem. Like SD models, they can take feedbacks and 
nonlinearities into account. However, unlike SD models that treat feedback loops as the main unit of 
analysis (Forrester 1971), AB models focus on agents as the unit of analysis (Railsback and Grimm 
2011). Also, compared to SD models, they are more difficult to validate and verify, and lack effective 
architectures and protocols to represent agents and their interactions (An 2012).  

To justify a hybrid modeling effort, these aspects should be important for the research question 
(Anderson, Lewis, and Ozer 2018):  

• explain how relationships emerge and evolve among agents (e.g., the geospatial distribution
of disposal or injection wells)

• explain how these relationships affect the state of the system (e.g., total cost, oil production,
water levels, and so on as influenced by dynamics of geospatial distribution of oil and water
wells)
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• explain how the state of the system affects the relationships (e.g., distribution of oil and water
wells as influenced by oil production and groundwater levels)

As discussed in Section 3, our research questions include all of these three aspects, thereby suggesting the 
need for a hybrid modeling approach.  
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5. LITERATURE REVIEW METHOD

Our literature review started with a series of trial and error searches and readings in the realm of 
geospatial system dynamics. The main goal was to identify which methods or combinations thereof, 
among all the dynamic simulation approaches, would be suitable for our problem. We presumed that we 
needed a dynamic simulation approach (e.g., system dynamics) that could explicitly take into account 
feedback at the system level, and at different geographical locations. Therefore, our initial review started 
with several potential search terms for locating relevant literature for hybrid modeling approaches. We 
paid particular attention to the literature of spatial dynamic modeling, for example, Roach and Tidwell 
(2009), BenDor and Kaza (2012), and Neuwirth, Hofer, and Schaumberger (2016), which led to the idea 
of combining Cellular Automata (CA) with SD in order to capture spatial dynamics (Han et al. 2009). 
However, as we described earlier, we had another layer of complexity to consider and that was individual 
decision-making processes. Since AB modeling could be used as an advanced platform for CA modeling 
(Neuwirth, Hofer, and Peck 2015), we came to the conclusion that a SD-AB hybrid modeling approach 
would most likely provide the minimum technical complexity that we needed to deploy in order to 
achieve our goal. Consequently, we focused on these two dynamic simulation methods in our next round 
of literature review.   

The method and application papers were assessed for usefulness based on the criteria of containing 
methodological conceptualization, practical technical guidelines, or model codes or equations. The goal 
was to identify the current state-of-the-art of hybrid SD-AB modeling and to provide a useful guideline 
for those who want to model produced water management issues. The literature reviewed for this report is 
the result of searching the Web of Science for publications that contained both the terms “system 
dynamics” and “agent based.” The initial resultant 211 papers were reviewed to determine if the papers 
were describing a hybrid modeling approach, and if so, they were first sorted into one of three categories: 
review paper, method paper, or application paper. A full listing of the 211 initially selected papers is 
provided as a supplementary spreadsheet that accompanies this report (see Appendix). Among these 
papers, we identified 77 papers as relevant to the purpose of our research. These papers provide useful 
information for how a hybrid SD-AB model can be developed including guidelines for identifying the 
kinds of problems that could benefit from a hybrid approach, the conceptualization of generic structures 
that could be applied to some specific problems, and example applications including codes or equations 
that could inform modelers as to how they might implement the method for their problem.  
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6. HYBRID DYNAMIC SIMULATION FOR PRODUCED WATER
MANAGEMENT 

Here, we analyze the outcome of our literature review by focusing on the 77 relevant papers identified in 
the previous step. The temporal distribution of these papers is presented in Figure 7. The historical trend 
shows an exponential growth of SD-AB hybrid modeling efforts. A meaningful interpretation of this 
growth, however, requires a comparison with the general trend of scientific publications, and possibly an 
analysis of impact factors for the journals in which these publications appeared. In general, entering this 
area of research (hybrid simulation modeling) is considered challenging, and sometimes, daunting 
(Swinerd and McNaught 2012) mainly due to a lack of formal training or educational material or 
textbooks available to participants at the outset (Sargent 1994; Borshchev and Filippov 2004), the need to 
acquire sufficient computer programming skills by subject matter experts (Garro and Russo 2010), and 
the limited availability of software packages that can adequately and easily handle the integration of 
multiple approaches (Anderson, Lewis, and Ozer 2018).  

Figure 7. Frequency of articles illustrating the historical trend of number of papers published with 
relevant hybrid SD-AB modeling content. 

The majority of the 39 relevant papers focus on the application of hybrid modeling in different contexts; 
28 papers investigate the hybrid modeling methodology; and the rest, 11 papers, review the literature. The 
relatively large amount of method and application papers was a promising sign that we might be able to 
find some practical instructions for how a hybrid model could be effectively and efficiently developed for 
the case of PWM, especially because a majority of these applications were in the realm of natural 
resources management. Figure 8 shows that 15 papers were applied to natural resources and 
environmental issues; 11 papers to energy issues; and 7 papers to water. Of these papers, only one 
investigated a water-energy nexus problem that is potentially more relevant to PWM.  

0

2

4

6

8

10

12

14

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Fr
eq

ue
nc

y o
f a

rti
cl

es



13 

Figure 8. Breakout of reviewed papers according to their research application area. 

The reviewed papers mainly provide a comparison between the dynamic simulation methods and how and 
when each of these methods or their combination will be more useful. For example, Lattila, Hilletofth, 
and Lin (2010) discuss the possible ways of combining SD and AB modeling. They identify five different 
situations where it will be useful to do so. Depending on the characteristics of a given problem, the paper 
tries to suggest the most suitable approach. For another example, Brailsford and others (2019) explore the 
possibility and plausibility of hybrid modeling applications in the realm of Operations Research (OR). 
They investigate the challenges of application and hybridization and provide a conceptual framework for 
how to integrate these methods for OR cases.  

The methodology papers are useful for providing theoretical foundations for hybrid modeling. For 
example, Anderson, Lewis, and Ozer (2018) develop a framework for how SD, AB, and network 
modeling and analysis could be combined using VensimTM software, a system dynamics modeling 
platform (Ventana 2020). Another example is Duggan (2008), which introduces a method for integration 
optimization in an agent-oriented SD framework in the context of supply chain management. The 
language used for this work is XMILE (Eberlein and Chichakly 2013).  

The application papers are useful by providing real-world examples of hybrid modeling so users can learn 
about the practical challenges involved in the process. An example of applied hybrid modeling papers is 
Kieckhaefer, Volling, and Spengler (2014), which presents a SD-AB hybrid model to analyze electric 
vehicle markets in Germany. The model is implemented in AnyLogic (AnyLogic 2020), which is a hybrid 
modeling platform. Swinerd and McNaught (2015) provide another example of applied SD-AB hybrid 
modeling. They created their model in NetLogo (Wilensky and Rand 2015), a modeling platform 
primarily used for agent-based modeling (ABM), to analyze the problem of diffusion of innovation in an 
international setting.  

The 77 papers in our list provide useful information for developing hybrid SD-AB models. However, the 
level and type of usefulness of these papers varies depending on how deep they dig into the actual 
modeling processes. We previously discussed how different types of papers (literature review, 
methodology, and application) can provide different kinds of guidance for practical modeling. The papers 
could also be broken down by the level of detail they provide for practical modeling. Figure 9 shows that, 
out of the total 77 papers reviewed, 53 papers provide some sort of technical guidance, usually in the form 
of a conceptual framework. Among these papers, 48 provide partial technical help such as detailed 
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diagrams or some coding or equations. Only 31 papers provide a complete listing of model codes or 
equations.   

We paid particular attention to the papers that provide detailed technical instructions because these papers 
are the most useful for those who are seeking to develop hybrid SD-AB models. However, the models 
presented in these papers are not all similar in terms of structural and methodological design.  

Figure 9. Breakout of reviewed papers by their level of usefulness for practical hybrid SD-AB modeling; 
note that every inner set is a subset of every outer set. 

Inspired by Shanthikumar and Sargent (1983), Swinerd and McNaught (2012) classify hybrid simulation 
models into three broad classes: interfaced, sequential, and integrated. The interfaced models are those 
that have modules of different methods that work in separate environments. The only connection between 
these modules is an interface that integrates their outputs. Venkateswaran and Son (2005) provide an 
example of this kind by combining SD and discrete event simulation (DES) modules. The sequential 
models are those in which a set of modules run first by one method to provide input for a set of modules 
that run by another method. There is no feedback from the latter to the former. Mazzoleni and Massheder 
(2003) present an example of sequential hybridization by introducing a platform that connects a system 
dynamics software (Simile) to GIS. Ahmad and Simonovic (2004) also provide a similar approach. The 
integrated models are the only group of hybrid models in which feedback exists between modules of two 
or more methods. Our work is focused mainly on this group of hybrid models because we believe this is 
what we need in order to address the full complexity of PWM issues.  

The integrated models can be categorized using a finer level of classification to help the modelers better 
understand how the current modeling approaches work. Swinerd and McNaught (2012) suggest three 
subclasses for integrated models: models that include: (1) agents with rich internal structure, (2) stocked 
agents, and (3) parameters with emergent behavior. In the first subclass of models, some agents of the AB 
model contain some sort of stock and flow structure. In the second subclass, some stocks in a system 
dynamics module contain agents that follow some specific behavioral rules. In the third subclass, one 
variable or parameter of a system dynamics module influenced by agents that follow some specific 
behavioral rules.  

The classification of integrated models by Swinerd and McNaught (2012) was not meant to be exhaustive 
but illustrative. As a result, it is too narrow with respect to some aspects, and too broad with respect to 
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others. This classification is too narrow because it omits some important modeling approaches that need 
to be distinguished from others. It is also too broad, because for practical modeling purposes, separating 
subclasses 2 and 3, despite being different technically, does not add meaningful value. Therefore, we 
propose a modification to the Swinerd and McNaught (2012) classification of integrated hybrid models as 
follows.  

Class A: This class is missing from Swinerd and McNaught (2012). In this class, there are two 
separate sets of AB and SD modules that work in parallel. AB modules have architectural design and 
philosophy that are independent of the SD modules, but they can talk to each other through a protocol. 
Schieritz and Größler (2003) provide an example of this kind that can be captured only partially by 
Swinerd and McNaught’s subclass 1. Their hybrid model addresses a supply chain management issue. 
The model’s agents (companies within the supply chain) have two system dynamics modules: ordering 
and evaluation. The AB model is written in eM-Plant while the SD modules are developed in Vensim. 
Then there is a third module that stores and processes the input and output data of the system dynamics 
modules. It also regulates the communication between Vensim and eM-Plant via Dynamic Data 
Exchange (DDE), which is a communication system. In this model, eM-Plant connects to Vensim (the 
DDE server), and the input and output data and commands are transferred via the established channel. 

Class B: This class is similar to subclass 1 in Swinerd and McNaught (2012). That is, agents of the AB 
model contain SD structure. There is a subtle difference between Classes A and B. In Class A, SD and 
AB modules are separate in terms of design and structure. In Class B, in contrast, there is no real 
separation between the modules. SD model codes or equations are written within the AB modules. 
This requires the use of the same modeling platform for both sets of modules. An example of this kind 
is Duggan's model (2008), although the model is fully developed using SD tools and called “agent-
oriented SD” by the author. In this model, each player (agent) within the supply chain has a stock and 
flow structure. The output of these SD models then drives the behavior of the rest of the AB model.  

Class C: this class is a combination of subclasses 2 and 3 in Swinerd and McNaught (2012). That is, 
agents of the AB model are part of a SD structure. Similar to what we described in Class B, there is a 
subtle difference between Classes A and C, which has important practical modeling implications. 
Class C has more flexibility than Class A as changes to the model structure will not require alteration 
of communication protocols between AB and SD modules. However, the AB and SD modules need to 
be written in the same language or at least closely compatible platforms. An example of this kind is 
presented by Anderson, Lewis, and Ozer (2018), which investigates the dynamics of team performance 
in knowledge-based organization. In their model, expertise is modeled as stocks while interactions 
between members and diversity-based subgroups are agent-based. In general, each variable in the SD 
model is subscribed to work as a small AB module.  

Class D: Swinerd and McNaught (2012) do not mention this class explicitly. However, the model they 
provide in their other works (Swinerd and Mc Naught 2014; Swinerd and McNaught 2015), reveal that 
they acknowledge the existence of this class which combines Classes B and C. In this class, some SD 
variables are driven by AB interactions, while some AB variables receive information from SD 
variables. This is, in our view, the most sophisticated approach to hybrid modeling as it involves a 
natural and fluid hybridization that follows a unified modeling philosophy, architecture, design, and 
implementation. For the same reason, this is also the most difficult modeling approach, as it takes a lot 
of preparation in terms of thinking and design before the modeling begins. The only other instance of 
this class in our review is Alfaris and others (2015) that present a model for national energy planning 
in Saudi Arabia.  



16 

We believe that PWM issues require a Class D hybrid modeling, as suggested by our conceptual 
framework (Figure 6), because of the complex feedback structure that connects different levels of the 
system through irregular sequences. For example, oil companies’ decision making that could be an AB 
module is part of a system-level feedback, that is, public perception of risks. This part of the model would 
be Class B. The hydrologic dynamics, which is probably a system dynamics module, would need to be 
replicated in different locations. This part of the model would be Class C. Therefore, the whole model that 
combines these classes will be Class D. This will make our future modeling practice very challenging, as 
very few practical examples are available from the literature to guide us and none of them are related to 
water management issues. Our preliminary analysis of the reviewed literature reveals that only three 
papers present models that could classify as D while a majority of papers (14) offer a Class A model 
(Figure 10).  

Figure 10. Breakout of modeling approaches into classes described in the reviewed papers. 

 As mentioned earlier, an important factor that hinders the application and use of hybrid modeling is the 
lack of software packages that could implement such models in a user-friendly environment. The majority 
of current applications are developed using AnyLogic software (AnyLogic 2020), which is a multimethod 
simulation modeling tool that supports agent-based, discrete event, and system dynamics modeling 
(Figure 11). Despite its dominance in the hybrid modeling arena, AnyLogic has important limitations in 
accounting for different types of agent decision-making processes associated with optimizations (e.g., 
resource allocation mechanisms) in a hybrid model with multistage uncertainties (Liu et al. 2018). This 
sort of optimization could be critical for a hybrid model of PWM where modeled company agents are to 
make decisions based upon optimizations that allocate their resources to different investment options 
(e.g., PW treatment technologies, PW-fresh water injection ratios, etc.) at different locations under 
dynamic uncertainties.  

Figure 11. Breakout of reviewed papers by the modeling platform for hybrid SD-AB modeling. 
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7. CONCLUSION

In this report we have explored the necessity and applicability of a hybrid dynamic simulation model to 
address produced water management (PWM) issues. We first developed a conceptual diagram to identify 
cross-scale feedback mechanisms that are in play in an integrated PWM system to see if the cost of hybrid 
modeling could be justified by the level of complexity involved. Our conceptualization was based on the 
literature, the formal data of produced water in New Mexico, and some preliminary interviews with 
subject matter experts. This conceptualization revealed that hybrid modeling could add value to our 
understanding and as a consequence, probably would provide better policy advice. However, the amount 
of value that this effort provides compared to its costs is still an open question. Although the hybrid 
modeling exercise could yield theoretical advantages, the potential benefits from increased understanding 
and superior policy advice may not compensate for the additional costs of introducing more complexity 
into the modeling effort (Berger and Ringler 2002).  

To select the best modeling approach for PWM modeling, we reviewed the literature of hybrid modeling 
in the second phase of the project. The goal was to provide some useful guidelines for modelers who 
would like to work in this area. Our initial exploratory review revealed that a combination of system 
dynamics (SD) and agent-based (AB) modeling could be necessary and sufficient for the purpose of 
comprehensive PWM modeling. Therefore, in our next step, we focused exclusively on a systematic 
review of the SD-AB hybrid modeling literature. We used the Web of Science for our systematic search. 

Our literature review indicated that despite its current small size, the SD-AB hybrid modeling realm is a 
growing area of research. Seventy-seven papers were found to be useful with respect to the explication 
and development of hybrid modeling. Among these papers, 31 provided detailed explanations of how this 
kind of modeling could be performed. However, only one paper was related to coupled water-energy 
issues. We also found that the majority of the models presented in these papers were developed using the 
AnyLogic modeling environment. Although it is considered as the most powerful hybrid modeling 
software, AnyLogic has its own limitations, which underscores the fact that the hybrid modeling is still a 
very challenging practice and in an embryonic stage of development.   

To provide a more meaningful guideline for hybrid modelers of PWM, we classified the current state-of-
the-art hybrid modeling practices into four classes A, B, C, and D. Class A is the simplest form of 
modeling wherein a set of SD modules talk to a set of AB modules using a communication protocol. 
Class B involves AB models with agents that consist of SD models. Class C involves SD models with 
variables that are driven by AB rules. Finally, Class D is a combination of Classes B and C where the 
structure is very flexible with mixed hierarchical design. We tentatively concluded that a comprehensive 
PWM problem is likely to require a Class D modeling approach.  

We would like to reiterate that the selection of a modeling approach depends strongly on the purpose of 
the modeling. Here, we assumed the modeling goal is to provide a complete picture of a comprehensive 
PWM effort. Projects with a narrower focus should first consider using simpler approaches like traditional 
SD or AB modeling. In this context, perhaps a minor modification of the standard models might capture 
sufficient richness without the difficulties and expenses of a highly complex, numerical simulation 
approach. Of course, in that case, the simpler approach is justified.  

This project is still a work in progress. We are currently conducting interviews with subject matter 
experts, produced water managers, policy makers, and other stakeholders to identify the most pressing 
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and complex issues in the realm of PWM and in order to capture the decision rules of the system. We will 
analyze the interview data to refine our conceptual framework and build a prototype hybrid SD-AB model 
of PWM. That model will provide the basis for our future modeling efforts. 
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