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DISCLAIMER 
  

The New Mexico Water Resources Research Institute and affiliated institutions make no 
warranties, express or implied, as to the use of the information obtained from this data 
product. All information included with this product is provided without warranty or any 
representation of accuracy and timeliness of completeness. Users should be aware that changes 
may have occurred since this data set was collected and that some parts of these data may no 
longer represent actual conditions. This information may be updated without notification. Users 
should not use these data for critical applications without a full awareness of its limitations. This 
product is for informational purposes only and may not be suitable for legal, engineering, or 
surveying purposes. The New Mexico Water Resources Research Institute and affiliated 
institutions shall not be liable for any activity involving these data, installation, fitness of the 
data for a particular purpose, its use, or analyses results.  
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ABSTRACT 
 
 This report summarizes efforts to improve groundwater recharge estimates using the 
Python Recharge Assessment for New Mexico Aquifers (PyRANA) model by developing new 
methods to parameterize soil-water holding capacity (SWHC, also called total available water – 
TAW) and rainfall-runoff relationships in mountainous portions of northern New Mexico. The 
PyRANA model is a soil-water-balance model that runs on a daily time step and at a 250 m grid 
resolution across the state of New Mexico, tracking precipitation inflows and evapotranspiration 
(ET), runoff, and deep percolation outflows at each grid cell. Parameters that partition rainfall 
into runoff and infiltration, and the amount of water storage available in each cell (i.e., SWHC) 
were identified as the most poorly constrained of the highly influential model parameters in 
previous research efforts. 

 
The SWHC parameterization effort explored a depletion-tracking method, which uses 

independent estimates of precipitation and ET to track soil-water content through time and 
assumes that the vegetation root zone is naturally adjusted such that SWHC meets the maximum 
water demand over a medium time range. In this effort, we found that two of the best available 
monthly ET products, the operational Simplified Surface Energy Balance model (SSEBop) and 
the Priestly-Taylor-based Jet Propulsion Laboratory product (PT-JPL), were not in adequate 
agreement with precipitation estimates from the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) for use in this exercise. In an effort to parsimoniously correct the ET 
biases, we scaled the two ET products so that long-term ET matched long-term precipitation 
from PRSIM. This led to plausible SWHC estimates in natural upland landscapes (non-
agricultural and non-riparian) using the scaled PT-JPL, but not using the scaled SSEBop. In an 
effort to use an ET estimate that is limited by water availability as well as energy availability, we 
also explored a recursive and iterative approach that employed the ET estimate from PyRANA 
itself in the depletion-tracking SWHC estimation method. This led to plausible values of SWHC, 
but spatial patterns that are unverifiable at this time. Finally, we explored an ecosystem-based 
approach to map SWHC, using landcover classification and a vegetation greenness index 
(normalized difference vegetation index – NDVI). This approach would require extensive field 
validation to determine appropriate relationships between NDVI and SWHC for unique 
vegetation types. But our preliminary exploration yielded promising maps of SWHC that are 
plausible in both magnitude and spatial variation. 

 
The rainfall-runoff parameterization effort first explored potential biases in the PRISM 

precipitation dataset. Earlier research had found that PRISM accurately models total seasonal 
rainfall, but it under-predicts the magnitude of high-rainfall days and over-predicts the number of 
days with small rainfall amounts during monsoon season in the Walnut Gulch Experimental 
Watershed (WGEW) in south-east Arizona. In this report, we found a similar, but slightly less 
pronounced, pattern of bias in the Sangre de Cristo mountains of northern New Mexico. In both 
WGEW and northern New Mexico we only observed a bias during the monsoon season; winter 
storms have clear agreement between PRISM and local rain gauges. Next, we used runoff data 
from small (~ 1 km2) gauged watersheds in the Jemez and Sangre de Cristo mountains to develop 
a multiple linear regression to predict runoff using rainfall magnitude and intensity. We found 
that unlike the experience with WGEW, intensity was not a significant predictor of runoff. 
Instead, the daily rainfall amount alone was an adequate predictor of runoff for use in PyRANA. 
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OVERVIEW 
Motivation 
 In most basins in New Mexico, groundwater resources are being utilized faster than they 
are recharged (Rinehart et al., 2015; Rinehart et al., 2016; Rinehart and Mamer, 2017). In order 
to better define a sustainable usage rate, water managers need information on current rates of 
aquifer recharge. However, estimating recharge is extremely difficult because it is a small 
component of the hydrological budget at any given point. In New Mexico, the hydrologic budget 
is dominated by precipitation and evapotranspiration (ET), leaving a small residual of these two 
large terms to account for both runoff and aquifer recharge. Small errors in estimates of ET or 
precipitation will lead to large errors in estimates of runoff and recharge (Gee and Hillel, 1988; 
Hendrickx and Walker, 1997; Kearns and Hendrickx, 1998). Previous research conducted as part 
of the NM WRRI Statewide Water Assessment determined that PRISM (Parameter-elevation 
Regressions on Independent Slopes Model (Daly et al., 2008; Daly and Bryant, 2013) is an 
adequate daily precipitation product, at 800 m resolution, in determination of annual 
precipitation depths, but no adequate product for spatially continuous ET was found (Schmugge 
et al., 2015). In order to achieve the goal of estimating recharge, development of a new ET 
model was therefore determined to be a requisite first step, leading to the combined ET and 
Recharge Model (ETRM) (Ketchum, 2016) and its successor, the Python Recharge Assessment 
for New Mexico Aquifers (PyRANA) model (Xu, 2018). 
 
 The PyRANA model is a soil-water-balance model that runs on a daily time step and at a 
250 m grid resolution. Each cell tracks the depletion of water in the root zone of the soil, with 
“depletion” referring to extractions of water from the soil-water reservoir that deplete it below 
the maximum holding capacity of the soil. Tracking the depletion involves accumulating water 
inflows from PRISM precipitation and outflows to deep percolation, ET, and runoff. Partitioning 
of precipitation into these three outflows is the core function of PyRANA. It should be noted that 
there are no lateral flows in PyRANA; runoff is considered lost to the soil, and we have not yet 
incorporated attempts to track it through the channel network. Hence, there is no run-on of water 
from neighboring cells, no subsurface water inflows, and no water sources other than 
precipitation. This limits application of the model somewhat, excluding its use in riparian zones 
and irrigated agriculture, but it makes the calculations tractable and efficient. PyRANA can 
model thirteen years of daily data for the entire state of New Mexico in six hours, running on a 
basic desktop computer. Another important result is that PyRANA reports only diffuse recharge, 
that is, recharge through the soil. Focused recharge, for example through channel beds and 
playas, must be calculated separately, such as by estimating a percent of the modeled runoff that 
recharges aquifers rather than being transpired by riparian vegetation or evaporated from lakes. 
 
Deep percolation 

The first of the three water-budget outflows mentioned above, deep percolation, occurs 
when the soil-water holding capacity (SWHC) of the soil is exceeded in any given day’s water 
budget. At these times, the depletion goes to zero, and all excess water is modeled to percolate 
below the root zone. Conceptually, this water is assumed eventually to recharge the underlying 
aquifer. The term SWHC is synonymous with total available water (TAW) and many other 
similar terms (see Parrish et al., 2017 and Parrish, 2020, for a complete discussion). This deep 
percolation is the target outflow of the PyRANA model, but it depends on the accurate 
calculation of the other two outflows, ET and runoff. 
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Evapotranspiration 
 The second outflow, ET, is calculated in PyRANA using the dual crop-coefficient 
method (Allan et al., 2005a; Allan, 2011). This method relies on first calculating a reference ET 
(ETref), which for our method is the ET that would result from the given weather conditions for a 
well-watered, healthy alfalfa crop (Allan et al., 1998; ASCE-EWRI, 2005). This is similar to 
some definitions of the commonly used term ‘potential ET’, although other dissimilar definitions 
are widespread, so we avoid its use here. We utilized a daily reference ET product that was 
generated by the Gridded Atmospheric Data downscalinG Evapotranspiration Tools (GADGET) 
(Revelle, 2017) at the native resolution of PyRANA. GADGET takes in daily radiation and 
atmospheric data from NLDAS and METDATA (Abatzoglou, 2013) and downscales them, 
while accurately representing the influence of topography and elevation. In particular, GADGET 
calculates insolation and shading adjustments due to topographic effects on direct, diffuse, and 
reflected radiation (Revelle, 2017). 
 
 The dual crop coefficient method then takes this ETref, which is the ET from healthy 
alfalfa, and adjusts it to account for different types of vegetation cover, and for stress due to 
limited soil moisture, using the equation 
 
 𝐸𝐸𝐸𝐸𝑎𝑎 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝐾𝐾𝑐𝑐𝑐𝑐𝐾𝐾𝑠𝑠       [1] 
  
where ETa is actual ET, Kcb is the crop coefficient, and Ks is the stress coefficient. The crop 
coefficient is estimated using the normalized difference vegetation index (NDVI) on the day 
being calculated, based on observations from the MODIS satellites. NDVI is a commonly used 
satellite remote sensing-based proxy for some combination of vegetation density, health, and 
vigor. Gaps due to limited satellite coverage (satellite overpasses occur approximately every 
other day) and cloud cover are filled by interpolation. NDVI typically ranges from 0.1-0.7 in 
natural land cover, and Kcb is calculated as 
 
 𝐾𝐾𝑐𝑐𝑐𝑐 = 1.25[𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁]       [2] 
 
as proposed by previous researchers (Rafn et al., 2008; Appendix G in Jensen and Allen, 2016). 
The stress coefficient, Ks, ranges from 0 (for totally dry soil) to 1 (for unstressed vegetation). 
When soil moisture is greater than ~ 75% of its capacity, vegetation is expected to transpire at its 
reference rate (Manabe, 1969) and Ks = 1. This threshold can also be defined in a complementary 
way, instead describing the fraction of SWHC that a crop can extract from the root zone without 
suffering water stress (Allan et al., 1998). This maximum unstressed water extraction, p, varies 
with crop type, and for natural vegetation we use p = 0.4, following recommendations of the 
United Nations Food and Agriculture Organization and the American Society of Civil Engineers 
(Allan et al., 1998; ASCE-EWRI, 2005). As soil moisture drops below this level (i.e., as 
D/SWHC > 0.4, where D is the soil-moisture depletion), then vegetation begins to respond to 
water stress by closing stomata and reducing transpiration below the reference rate. Following 
Allan et al. (2005a), we assume a linear decrease in Ks from 1 to 0 as D/SWHC increases from p 
to 1. Additionally, PyRANA estimates evaporation from the soil surface, which is distinct from 
the transpiration calculated above, using the methods described in Allan et al. (2005a, 2005b) 
and Allan (2011) and described in previous technical reports (Hendrickx et al., 2016). 
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 As can be seen from the above discussion, the estimated value of SWHC for each grid 
cell will have a first-order influence on the estimated Ks, and therefore the calculated ETa. 
Accurate estimation of SWHC is therefore critical for producing accurate estimates of deep 
percolation (i.e., groundwater recharge). Previous versions of PyRANA used SWHC values from 
Natural Resources Conservation Service (NRCS) soil maps and soil property databases. More 
precisely, SWHC was calculated as the difference between volumetric soil moisture at field 
capacity and at the permanent wilting point (𝜃𝜃fc - 𝜃𝜃wp) multiplied by the rooting depth, all three of 
which are estimated in the NRCS soils databases. However, the NRCS soil maps are created at a 
much coarser scale than the 250 m grid used in PyRANA, based on widely separated sampling 
points, and are not intended for use over such small extents (as described by a warning on the 
NRCS web data viewer). Rooting depth can vary greatly within a single mapped soil taxonomic 
unit. Since the beginning of this modeling effort, we have been searching for more suitable 
estimates of SWHC. The first chapter of this report, SWHC Calibration, explores three 
independent approaches to generating a high-resolution map of SWHC across New Mexico. 
 
Runoff 

The third outflow, runoff, was originally estimated as the amount of water falling at 
intensities exceeding the saturated hydraulic conductivity of the soil (Ksat). In this procedure, the 
Ksat of each cell was downloaded from the NRCS soils databases STATSGO and SSURGO, and 
intensity was calculated assuming a 6-hour storm duration (for the full daily water input from 
PRISM) during the monsoon season (July-Sept), and a 12-hour storm duration during the rest of 
the year. There are issues with both assumptions. First, as previously described, the NRCS soil 
maps are not suitable for use at such a detailed scale. Furthermore, the hydraulic conductivity 
and related parameters are calculated from estimated regression functions using percent sand, 
silt, and clay of the soil as inputs. In reality, soil texture is not uniform across the extent of a 
mapped unit, and again, it is inappropriate to use these soil data at a 250 m resolution. Second, 
the assumption that daily precipitation occurs steadily over six hours in the monsoon season is 
clearly a gross simplification. 
 

To address these weaknesses in runoff estimation, MS student Esther Xu analyzed 
rainfall and runoff data from the Walnut Gulch Experimental Watershed in southeast Arizona 
(Xu, 2018), using Walnut Gulch rain-gauge data that were not part of the PRISM network. First, 
she found that the annual totals agreed with the gauge record at Walnut Gulch, but that the 
distribution was subtly different. PRISM missed the largest rainfall events and overestimated the 
number of days with small amounts of rainfall. In response, a PRISM precipitation adjustment 
was implemented in PyRANA. Second, she found that the intensity of rainfall had a moderate 
but significant correlation with the daily total amount of rainfall, with greater totals falling at 
higher intensities on average. Finally, she found that runoff from small, high-order watersheds (< 
2 km2) could be predicted based on the daily amount and intensity of rainfall measured at rain 
gauges within the watershed. Therefore, we implemented a regression-based runoff module in 
PyRANA. For each day, an intensity is estimated based on the probability density associated 
with the daily rainfall total, and this intensity and the total amount are used to predict runoff. 
Different regression models were fit for the monsoon season and the remainder of the year. 
 

This runoff calibration is expected to be appropriate for low-elevation rangelands in 
southern and central New Mexico because it was calibrated at Walnut Gulch, which is 
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climatologically similar. However, we expect a different calibration will be needed for 
mountainous areas and northern New Mexico. The second chapter of this report, Rainfall-Runoff 
Relationships, presents an analysis of rainfall and runoff from study watersheds in the Santa Fe 
River basin and in Valles Caldera National Preserve. Additionally, rain gauge versus PRISM 
precipitation analyses were conducted using northern New Mexico data, including from a 
weather station at Taos, NM. These new relationships are used to implement new predictions of 
runoff in those portions of New Mexico for which the Walnut Gulch data are inappropriate due 
to climatological differences. 
 
Report organization 

For clarity and ease of communication, we have divided this report into two chapters: 
SWHC Calibration, and Rainfall-Runoff Relationships. The two chapters of this report present 
two distinct improvements to the PyRANA recharge model, and address what we, the model 
developers, perceive to be the two most significant sources of uncertainty in prior versions of the 
model. In the process of addressing these uncertainties, we have: 1) reviewed existing remote-
sensing ET products and found them incompatible with the PRISM precipitation product for the 
purpose of soil water depletion tracking, 2) generated new estimates of SWHC, a fundamental 
soil property, for the state of New Mexico, and 3) developed simple new expressions describing 
watershed hydrology in the mountainous areas of northern and central New Mexico. 
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Chapter I: SWHC Calibration 
Introduction 

To model soil-water content through time, it is vital to quantify the fluxes, such as 
precipitation, evapotranspiration (ET), runoff, and deep percolation at appropriate time scales. It 
is also vital to know the amount of storage available, that is, the total available water (TAW), 
also known as the soil-water holding capacity (SWHC). Yet SWHC is rarely measured, perhaps 
due to the difficulty of measuring it at an adequate spatial resolution. The extreme heterogeneity 
of soils and rooting depth means that direct physical quantification is only possible for 
unrealistically simple scenarios. 
 

The zone of soil and weathered bedrock through which vegetation extends roots, and thus 
maintains the potential connection between infiltrated water and the atmosphere, can vary greatly 
in its capacity to hold water. Higher rates of drainage (i.e., in circumstances of high infiltration 
and low field capacity) will tend to promote deep percolation at the expense of transpiration. 
Even when no vegetation is present, evaporation from the surface soil varies, as pore size and 
structure affect the ability of water to move upward from the deeper soil layers via capillary 
action or vapor diffusion. And where vegetation does extract water, from soil pores into roots, 
the tension the plant can exert and the spatial distribution of the root network influence the 
minimum soil water content that can be achieved. For all these reasons, an upscaled view of 
SWHC is likely to be more useful for soil-water-balance models, and parameterizing SWHC by 
calibration is more likely to be successful than parameterizing SWHC by direct measurement of 
soil properties at discrete points. A purely measurement approach would require tens or even 
hundreds of soil pits to be dug to obtain a representative value for a single 250 m pixel. We 
propose that calibration, for example trying a range of SWHC values in the model and selecting 
the value that leads to the best agreement of some key flux such as ET with independent 
observations, is the more efficient approach, with some degree of field-verification via soil pits. 
 

In the PyRANA model, and the dual crop-coefficient method of ET estimation that it 
employs, SWHC affects results in two main ways. First, it determines the amount of storage that 
must be filled before percolation below the root zone is initiated and aquifer recharge can begin. 
A very large SWHC, due either to deep rooting depths or abundant storage between field 
capacity tension and the maximum tension of the local vegetation, will rarely be filled, meaning 
very little water will be displaced below the lowermost roots and continue to the water table. 
Second, ET is expected and modeled to respond to relative moisture (i.e., % of capacity) rather 
than absolute moisture (i.e., mm of water). So, if SWHC is very large, for example 1000 mm, a 
depletion of only 50 mm will not lead to significant drought stress and transpiration will remain 
high. In contrast, if SWHC is small, for example 100 mm, then a depletion of 50 mm may lead to 
major reductions in ET as the vegetation cover responds to the loss of water resources. However, 
if the soil is beginning from a nearly dry state, then a 50 mm rainfall event absorbing into a 1000 
mm SWHC soil will hardly increase the water content enough to increase the ET, whereas a 50 
mm rainfall event absorbing into a 100 mm SWHC soil will increase the water content enough to 
raise ET rates suddenly. 
 

Thus, if SWHC is overestimated, we may expect recharge to be undercalculated and ET 
variation through time to be excessively subdued. In contrast, an underestimated SWHC could 
lead to exaggerated swings in ET following rainfall events and an overestimated recharge. The 
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differences in ET are likely to balance out over a long time period, but the recharge errors would 
accumulate and represent a major problem for the intended use of PyRANA.  

 
As described above, in the earliest versions of the PyRANA model, SWHC was extracted 

from NRCS soil maps and their associated soil-property databases. Because these soil-property 
values were selected and vetted by soil scientists, this had the advantage of preventing any 
patently unrealistic values from being used. However, it also led to a surprisingly narrow range 
of SWHCs being mapped, some of which may be unrealistically small. It also produced a patchy, 
blocky texture in the SWHC map due to the large map units and the horizontal and vertical 
bounds to the individually published maps (Figure 1). In general, we had little confidence in any 
specific model cell’s SWHC value. Therefore, we have made every effort to explore alternative 
means of developing the best available estimates of SWHC, and to define a defensible range of 
uncertainty for its values. 

 

The calibration, rather than measurement, of SWHC has been attempted previously, and 
we build from these efforts, especially those of Wang-Erlandsson et al. (2016) using a 
‘depletion-tracking’ method. In this approach the cumulative depletion is tracked over a long 
period of time, summing monthly estimates of precipitation, which reduce the depletion, and 
monthly estimates of ET, which increase the depletion. Based on the assumption that vegetation, 
especially forest vegetation, will extend its roots deep enough to access an adequate store of 
water to survive the largest local drought (consistent with Budyko, 1956), the depletion-tracking 
method then finds the maximum depletion in the time series and assumes that this provides an 

  
Figure 1. Soil-water holding capacity (SWHC, also known as total available 
water – TAW) within the root zone, extracted from NRCS databases for New 
Mexico (Ketchum, 2016). An alternative version, with a color ramp consistent 
with later figures of SWHC, is presented in Figure 4. 
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accurate estimate of the SWHC. In grasslands, droughts may periodically kill the vegetation, 
meaning the maximum depletion may at times exceed the SWHC. But if drought kills the grasses 
every ten years on average, we may infer that the ten-year-recurrence depletion will be an 
accurate estimate. We also note that desert shrubs have been documented to dry out the vadose 
zone for many meters below their maximum root depth (Sandvig and Phillips, 2006), thereby 
producing a SWHC greater than even multiple years of precipitation. In this case, the maximum 
depletion observed in a few decades of data will provide only a lower limit on the actual SWHC. 

 
Methods 
Depletion tracking to estimate SWHC 
 The first SWHC calibration we present here is based on the Wang-Erlandsson depletion 
tracking method (Wang-Erlandsson et al., 2016). We tracked depletions within the soil over the 
period 2000-2013, which is the time period for which we have full PRISM, GADGET, and 
remotely sensed ET data for the state. Following Wang-Erlandsson et al. (2016), we began with 
zero depletions, then each month added the monthly total ET and subtracted the monthly total 
precipitation. If this caused the depletion to become negative, it was reset to zero (since any 
negative depletions will become runoff or recharge). We also explored what would happen if we 
allowed depletions to go negative, but this became unnecessary when we adjusted the ET 
products to scale with precipitation as described below. 
 
 For the precipitation input of water (subtraction from depletion) we used downscaled 
monthly PRISM data. For the ET output of water (addition to depletion), we first used monthly 
Simplified Surface Energy Balance operational (SSEBop) ET estimates (Senay et al., 2011; 
2013) based on MODIS data. Second, we used monthly ET estimates from a Priestly-Taylor-
based product from the NASA Jet Propulsion Laboratory (PT-JPL) (Fisher et al., 2008). A 
detailed description of the physics and assumptions underlying each product is presented in 
Parrish (2020). In both cases, we found that there were many cells for which annual ET 
consistently exceeded annual precipitation from PRISM, leading to steadily rising depletions, 
often exceeding 5 m of soil-moisture deficit by the end of the 13-year analysis (or only ten years 
for PT-JPL due to data only being available from 2002 onward and excluding 2013 due to 
excessive data gaps). This clearly breaks with the conceptual model of Wang-Erlandsson, 
suggesting an error in either the precipitation or ET products. Because we found that the 
cumulative PRISM data agree well with independent rain gauges (see Chapter 2 of this report as 
well as Schmugge et al., 2016), we concluded that the ET remote-sensing products are biased 
high in these areas. We also found, for both ET products, cells in which depletions stayed at zero 
for the base method, or if we allowed depletions to go negative, had steadily declining depletions 
throughout the 13-year analysis period. It is possible that these cells could be areas that produce 
very large volumes of runoff or recharge, but the extreme behavior and broad extent of these 
areas, especially in low-elevation desert shrubland, suggests that these are more likely to be areas 
where the remote sensing ET products are biased low. 
 
 Because our initial analysis led us to question the validity of these ET products, and 
because they are unusable in the depletion-tracking method if they do not match the net 
precipitation in the long term, we elected to apply a linear adjustment. We forced the total 13-
year ET (or 10-year ET for PT-JPL) at each grid cell (ETtot) to equal the total 13-year (or 10-
year) precipitation from PRISM for that cell (PRISMtot), multiplying each monthly ET value by 
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the ratio PRISMtot/ETtot. Adjusting ET in this way means that the effect of runoff and recharge is 
missed in this calibration, but these fluxes are expected to be much smaller than ET, and missing 
their contribution to the cumulative depletion will minimally alter the estimated SWHC. And 
other than a small change to the SWHC, this omission in no way affects their proper calculation 
in the future running of the PyRANA model. With ET adjusted to be of the same long-term 
magnitude as PRISM precipitation, there was then no further need to allow negative depletions, 
and we could proceed with the conceptual model of Wang-Erlandsson. 
 
 This ET adjustment assumes that the physical basis for estimating ET and the relative 
variations in ET are valid for the remote-sensing methods, but that each remote-sensing product 
has a consistent linear bias. This is probably not strictly true for either of the ET products, but it 
gives maximum credence to the products while permitting them to be used with PRISM for 
depletion tracking. Previous work conducted as part of the New Mexico Statewide Water 
Assessment has suggested that PRISM is more reliable than any of the reviewed ET products, 
which included SSEB but not PT-JPL (Schmugge et al., 2016). 
 
Recursive depletion tracking to estimate SWHC 
 From the beginning of its development, PyRANA has been motivated by a need to 
calculate a statewide ET product that is constrained by both the energy budget and the water 
budget. Because it uses the dual-crop-coefficient method to estimate ET, the model is unable to 
estimate ET that is significantly greater than precipitation in the long term. PyRANA is thus not 
subject to the ET-bias problem we found with SSEBop, and to a lesser extent with PT-JPL. Thus, 
we attempted to develop a procedure that could take advantage of PyRANA’s well-constrained 
ET estimation in the depletion-tracking approach to calibrating the SWHC that is used in 
PyRANA itself. Clearly there are potential issues with circular calibration, but these are 
minimized by the non-linear response of ET to changes in SWHC and by the observation that 
errors in ET estimation caused by inaccurate SWHC values tend to balance in the long term. 
 
 In this method, we began by setting SWHC to a large value, for example, 1000 mm, 
across the entire state of New Mexico. Then, beginning with zero depletions, we ran the 
PyRANA model on a daily time step from 2000-2013 (Ketchum, 2016; Xu, 2018). Because the 
soils initially held a great deal of water, the first few years of the simulation showed a rapid 
drying of the soils, especially in vegetated areas. Following this, depletions rose and fell with 
seasonal and annual variations in precipitation and ET. We then selected the maximum and 
minimum depletion, excluding the first two years of spin-up, and used this range of depletions 
that reflects the depth of soil-moisture storage utilized by the vegetation community as the next 
estimate of SWHC. We then reran PyRANA with this new SWHC map, again starting with zero 
depletions. For most cells, there was initial dry-down as in the first iteration, but because the 
storage was smaller, this spin-up period completed more quickly. For the remainder of this 
second simulation, the depletion rose and fell as before, following climate trends, but usually in a 
more constrained range of values, because the storage was smaller. There began to be recharge 
events following large precipitation inputs, because in places the SWHC was beginning to be 
small enough to be filled and therefore to allow the onset of deep percolation. Again, we 
analyzed the time series in each cell for the maximum and minimum depletion and used this 
range as the SWHC for the next iteration of the model. The decrease in the SWHC in this 
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iteration was in almost all cells much less than the decrease following the first model run.  
 

We repeated this process ten times. In almost all cells, the SWHC declined with each 
iteration until it reached a minimum value and there plateaued. The rate of decline from one 
iteration to the next declined as well, even before the plateau was reached. Most cells had 
reached a constant value by the seventh iteration, so for simplicity we used the SWHC map from 
this iteration as the final result for this method. 
 
Vegetation-based SWHC estimation 
 Given the issues regarding independent ET products available for SWHC calibration, we 
also explored approaches for estimating SWHC using other observations. The most promising 
one that we pursued utilizes remote sensing observations of vegetation cover to map SWHC. 
This approach is likely to be superior to the soil-property-based method because satellite imagery 
has been used to produce detailed vegetation maps at high spatial resolution (Cihlar, 2000; 
Homer et al., 2004; Rollins, 2009), whereas soil-property maps are based on quite sparse data. 
We began with the assumption that each vegetation community or ecosystem will have a 
characteristic soil-moisture demand, and depending on the soil and subsurface hydrology, it will 
extend its root zone to meet that demand. We also assumed that not every patch of that 
community will fully meet its water needs every year, and that this failure (inadequate SWHC) 
will be manifested in reduced vegetation abundance and vigor, and increased plant spacing and 
bare soil exposure. These effects should be visible in long-term average NDVI values. Thus, 
SWHC should be a function of vegetation community and NDVI. Determining the exact form of 
this function and calibrating the subsequent parameters is beyond the scope of this exploration. 
Instead, we assumed a linear variation in SWHC from zero to a community-specific maximum as 
long-term average NDVI varies from a lower to an upper limit (see Parrish, 2020 for details). 
 
 To classify the entire state of New Mexico into vegetation community classes we used 
the LandFire pre-existing vegetation product (Rollins and Frame, 2006; Rollins, 2009). This is a 
trained classification that uses Landsat multispectral imagery to group each 30 m pixel into a 
vegetation class, of which 97 are present in New Mexico. These 97 classes are excessive for this 
exploratory exercise, so we grouped them into seven communities: bare ground, arid shrubland 
(mostly creosote), low elevation grassland and rangeland, piñon-juniper woodlands, ponderosa 
and mixed conifer forest, montane grassland and meadows, and riparian zones and agricultural 
lands. For each community, we selected an estimated maximum SWHC based on average 
rooting depths reported by Sandvig and Phillips (2006). These rooting depth values were: 0 m for 
bare ground, 3 m for creosote, 2 m for grassland, 4 m for piñon-juniper, 3 m for ponderosa 
forest, 2 m for montane grassland, and effectively unlimited SWHC for riparian zones and 
agricultural lands (PyRANA is not intended for use in such areas). For simplicity, these rooting 
depths were multiplied by a uniform field capacity to wilting point difference (𝜃𝜃fc - 𝜃𝜃wp) of 0.2 to 
estimate SWHC. These maximum SWHC values should be subject to adjustment based on future 
research. Also note that PyRANA does parameterize total evaporable water (TEW, storage 
capacity in the evaporative layer) using the NRCS soils databases. So, although the rooting depth 
may be zero for cells classified as bare ground, the minimum allowed TAW equals TEW. 
 
 For each of these seven communities, we needed to identify NDVI thresholds to associate 
with zero SWHC and maximum SWHC. To do so, we extracted the long-term (2000-2013) 
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average NDVI for each 250 m grid cell classified as part of each community, and analyzed the 
probability distribution functions. Based on visual inspection, we selected the 5th percentile 
NDVI value to be the lower threshold, and the 75th percentile NDVI value to be the upper 
threshold. Cells within that community that had NDVI less than the lower threshold were given a 
SWHC of zero, characteristic of bare ground, while those with NDVI greater than the upper 
threshold were given the community’s maximum SWHC. Cells with NDVI between the 
thresholds were given SWHC that scaled linearly between zero and the maximum. 
 
Results 
Depletion tracking to estimate SWHC 
 The comparison of long-term PRISM to SSEBop (2000-2013) and PT-JPL (2002-2013) 
shows major incompatibilities between the products, especially between PRISM and SSEBop 
(Figure 2). It is normal and expected for there to be much more ET than precipitation in riparian 
zones and irrigated agriculture. And it is also normal and expected for high alpine areas to have 
less ET than precipitation, since these are areas where runoff and aquifer recharge will be 
important components of the water budget. But both products show much greater ET in forested 
mountains than there is precipitation to supply that ET, especially in areas where shading is an 
important component of the energy budget, suggesting a possible source of error. And SSEBop 
estimates nearly zero ET in many arid rangelands of New Mexico, for example in the creosote 
community in the Chihuahuan desert. We know from eddy covariance flux tower data available 
in the AmeriFlux climate data network that ET in these areas is not in fact zero, and that annual 
ET approximates annual precipitation. Overall, PT-JPL does well in most parts of the state, 
especially the rangelands, but appears to overestimate ET in the mountains, which is the 
dominant locale where recharge occurs and where we particularly desire accurate SWHC 
estimates. In contrast, SSEBop does not perform well in any portions of the state, with the 
possible exception of riparian zones and irrigated agriculture (which we are unable to evaluate 
accurately), leading us to doubt its capability to assist in estimation of SWHC in natural 
vegetation. 
 

Nonetheless, we conducted depletion tracking using both unadjusted and adjusted 
SSEBop and PT-JPL ET estimates. The resulting SWHC maps show wide variations across the 
state (Figure 3). Recall that maximum depletion is interpreted as a minimum SWHC estimate 
assuming the vegetation community does not die of drought stress. In the unadjusted maps 
(Figure 3A and 3C), riparian zones are shown as having extremely high SWHC because the 
imported water sustains more ET than precipitation alone can explain, leading to continually 
increasing calculated depletions. In most of the state, SSEBop estimates little to no ET ever, 
meaning the depletion never increases beyond a tiny value before rainfall refills the depletion. In 
forest-covered mountains, however, the uncorrected SSEBop estimates ET that far exceed 
PRISM precipitation (Figure 2) leading to unrealistically high SWHCs.  
 

In the adjusted SSEBop depletion tracking SWHC estimate, many rangeland areas have 
very high maximum depletions. This is because SSEBop only estimates ET to occur on a very 
small number of days with all others being zero, and when these ET values are scaled up to 
match the total PRISM precipitation, all the ET piles on to these few days. The adjusted ET 
estimates for these few days are completely unrealistic (meaning our assumption that ET errors 
are uniformly biased is wrong), and these lead to a saw-toothed pattern in the cumulative 
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depletion through time: depletions are filled by precipitation over many months, then a single 
day of unrealistically high ET depletes the soil by a proportionally large amount, followed by 
slow refilling and eventual re-depletion. For those few cells with no ET ever in the 13-year 
record, the SWHC is zero, leading to speckled high and low (red and blue) cells in the SWHC 
map (Figure 3B). 
 

 
Figure 2. Ratio of long-term unadjusted ETa to long-term PRISM precipitation for two remotely sensed 
ET products: PT-JPL and SSEBop. 
 

The unadjusted PT-JPL ET product slightly overestimates ET in much of the lower 
elevation regions of the state, typically by less than 50% (Figure 2). This nonetheless leads to 
steadily increasing depletions that results in maximum depletions in excess of 1000 mm (Figure 
3C). But in mountainous areas, the unadjusted PT-JPL ET is less than PRISM precipitation, 
leading to seasonal cycles in depletion and ‘runoff’ (depletion values that would have become 
negative had they not been reset to zero according to the method) that might be expected in these 
areas, especially during snowmelt. These values might reflect reality. 

 
When the PT-JPL ET is adjusted to match total PRISM precipitation, however, these 

mountainous areas no longer produce runoff. Rather, due to the proportionally increased ET, 
they have larger seasonal swings in cumulative depletion (high depletion at the end of the 
summer season, low depletion at the end of winter and spring melt). This leads to larger 
maximum depletions than in the unadjusted version (Figure 3C and 3D), approaching and 
exceeding 1000 mm. Yet in the low-elevation areas, the linear adjustment of PT-JPL ET to 
match precipitation leads to very reasonable depletion cycle range and variability, which in turn 
produces plausible SWHC estimates. This is especially true in the eastern plains, where the 
ETPT_JPL/PPRISM ratio was between 0.8-1.2. 
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Figure 3. Maximum soil-water depletions after tracking precipitation inputs with PRISM and ET outputs 
with A) unadjusted SSEBop, B) SSEBop adjusted to match total PRISM precipitation, C) unadjusted PT-
JPL, and D) PT-JPL adjusted to match total PRISM precipitation. 
 
Recursive depletion tracking to estimate SWHC 
 The recursive depletion tracking method resulted in a SWHC map (Figure 4) that broadly 
agrees with the NRCS soils database SWHC map (Figure 1 and 4B). However, the precise 
locations of relatively high SWHCs are not perfectly consistent between the two. The recursive 
method finds high SWHCs in the mountainous areas, where large seasonal swings in depletion 
are estimated, as well as in the southern high plains. Note that because ET is limited by 
precipitation in the PyRANA calculations, there are no run-away depletions as in the SSEBop 
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and PT-JPL cumulative depletions. Rather, the range of depletions are a function of: 1) the 
seasonality of precipitation and ET (more winter precipitation leads to larger swings and larger 
SWHC estimates in order for the vegetation, mostly forests, to stay alive), and 2) the abundance 
of green vegetation (more vegetation leads to higher Kcb estimates and greater ET, assuming the 
soil-water is available). Hence, mountains with forests produce the largest SWHCs using this 
method. Irrigated and riparian areas do not stand out because the only water input in PyRANA is 
rainfall, and so the ET in these areas is capped in a way that does not represent the reality of 
water imports. 

 
Figure 4. A) Range of soil-water depletions in the seventh recursive depletion tracking iteration using 
PRISM for water influx and PyRANA ET for water outflux. B) For comparison, the NRCS soil database 
SWHC map is presented at right, using the same color ramp. The seventh iteration is our preferred SWHC 
map for New Mexico using the recursive Wang-Erlandsson depletion tracking method, though future 
research and SWHC evaluation may prove that another number of iterations is more consistently reliable. 
 
Vegetation-based SWHC estimation 
 The vegetation-based estimate of SWHC tended to produce larger values than the NRCS 
soil database or the recursive Wang-Erlandsson approach (Figure 5). Only the unadjusted PT-
JPL depletion tracking and the adjusted SSEBop depletion tracking produced higher average 
values of SWHC. It captured the high effective SWHC of riparian and agricultural lands, and 
also estimated higher SWHCs on the eastern plains, where there are grasslands and shrublands 
with relatively high average NDVI values for the state. The low SWHC values in the San Juan 
basin, Rio Grande Rift, and southwestern lowlands of New Mexico reflect the relatively low 
average NDVI values of these areas. Similarly, the high SWHC values in the Sangre de Cristo, 
Gila, and Sacramento mountains (really all mountainous areas) reflect high NDVI of these 
forests compared to the same communities in the foothills, as well as the high estimated rooting 
depth of piñon-juniper (4 m) and ponderosa pine (3 m). The fringe of piñon-juniper around most 
mountain ranges is visible as a high SWHC area due to our assignment of the highest rooting 
depth to this vegetation community. Clearly, the parameters selected for use in this method 
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significantly affect the results, and further refinement and calibration of field measurements is 
required. 
 

 
Figure 5. Estimated SWHC across New Mexico using the vegetation 
community and NDVI estimation method. 

 
Discussion 
 This attempt to use depletion tracking to estimate SWHC has revealed weaknesses in the 
SSEBop estimates of ET in native vegetation land cover in New Mexico (Figure 2). The PT-JPL 
product performed better in all natural land covers, yet was still inadequate for use in the 
depletion tracking method for most areas. The exception appears to be mountainous areas, where 
unadjusted PT-JPL depletion tracking gave reasonable values, which were quite similar to those 
produced by the recursive depletion tracking using PyRANA ET. When PT-JPL was adjusted to 
match PRISM, the lowland SWHC estimates (mostly grassland and shrubland) became more 
spatially consistent (i.e., smoothed) and also more consistent with the soils database and 
recursive methods for these areas. In spite of the improvement in the lowlands, the SWHC 
estimates in the mountains were not improved by the adjustment to match PRISM. Rather, the 
estimates grew larger than expected, especially in the high alpine areas. Because most aquifer 
recharge occurs in these areas, an overestimation of SWHC in these regions would be especially 
problematic for accurate recharge modeling, and would lead to an underestimated recharge.  
 

Though the PT-JPL depletion-tracking SWHC maps each have issues, they are an 
improvement over the SSEBop maps, which do not appear to be usable for this application. The 
strong overprediction of ET in the forested mountains (up to two times the long-term 
precipitation) and the strong underprediction in the low-elevation shrublands (the vast majority 
of days with zero estimated ET) may be due to the calibration of SSEBop in agricultural areas as 
well as more humid portions of the United States (Senay et al., 2013). Many of the areas where 
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both SSEBop and PT-JPL appear to overpredict ET is in shadowy canyons and slopes of 
mountains. This suggests that the topographic radiation corrections used in GADGET are vital 
for predicting ET and recharge in mountainous terrain. Though SSEBop may do well in riparian 
and agricultural areas, where PyRANA does not function, it was not useful for the purposes of 
this research project. 

 
 The use of PyRANA ET in a recursive manner to conduct depletion tracking was 
attempted because our application was clearly inappropriate for PT-JPL and SSEBop. However, 
in spite of the presumed increased ET accuracy of this approach, there are potential conceptual 
problems with using the model to calibrate itself. If we continue to repeatedly select the next 
iteration of SWHC based on the range of used soil storage, it will shrink until both complete 
drying and recharge occur. However, due to the stress coefficient, Ks, and its declining value as 
the depletion approaches the full SWHC, it is nearly impossible to completely dry the soil. 
Hence, the SWHC should continue to shrink by a small amount with each iteration. Yet this does 
not always occur in practice, primarily because of our method of ignoring runoff and recharge in 
our depletion tracking. Because infiltrated water can be less than precipitation during any 
particular day in the PyRANA model run, and in most cases really is slightly smaller, ET is able 
to deplete the soil fully. This full depletion and full filling lead to stabilization in the iterative 
SWHC. 
 
 This ignoring of runoff and recharge in the depletion tracking is a key weakness of this 
work. Yet we have no choice, because for the PT-JPL and SSEBop depletion tracking, there is 
no way to estimate these fluxes on a monthly basis. The recursive method could be modified to 
take them into account using PyRANA, but then it would produce an always declining SWHC 
estimate with each iteration. This perpetual decline could be addressed by picking an iteration to 
stop on, but we do not currently have adequate field estimates of SWHC to decide which 
iteration is best. 
 
 Of the methods explored in this report, we are most optimistic about the vegetation-based 
estimate, though it too requires more calibration data. The method produces plausible values, and 
is controlled by what we know to be the main control on SWHC – the vegetation itself. The 
method is easily adjustable. However, it is dependent on good vegetation community 
classification data. LandFire is not intended to be used at the 30 m scale at which it is produced, 
but rather at the small watershed scale or larger, as it is for use in fire behavior models (Rollins 
and Frame, 2006). 
 
 Furthermore, there is a challenge in defining SWHC in arid rangelands, especially with 
creosote. These shrubs pull such a great tension on the soil, that they have effectively dried out 
the sediment below them for many meters over the past several thousand years (Sandvig and 
Phillips, 2006). Thus, the volume of storage that must be filled before deep percolation can occur 
is extremely large, generally in excess of several years of precipitation. However, the amount of 
storage that is actually used, even in the wettest season, is quite small within our decade of data, 
and probably beyond. As a result, depletion tracking can never adequately represent this SWHC 
because: 1) it was depleted over time periods much greater than our analysis, and 2) the creosote 
does not currently use it, which breaks the assumptions of the Wang-Erlansson depletion-
tracking method. Even our vegetation-based method underestimates SWHC in these areas, 
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because they have low NDVI compared to other shrublands throughout the state, so that they fall 
close to the lower NDVI threshold, which is based on the 5th percentile of NDVI for that 
community. This could be corrected by separating out creosote from other shrublands into its 
own community with its own characteristic rooting depth, or by adjusting the lower NDVI 
threshold. Future work is planned to pursue these avenues of research. 
 
Future work 

In addition to improving the vegetation-based SWHC estimation method, we are also 
exploring the use of SWHC optimization based on repeated PyRANA runs using a range of 
SWHC values. This method of optimization has already been explored at the point scale using 
eddy correlation flux tower data (Parrish, 2020). This process involves running PyRANA with a 
SWHC of, for example, 25 mm, 50 mm, 75 mm, and so on through 1000 mm. Then the output 
ET time series is compared against the flux tower ET time series. The SWHC that leads to the 
smallest disagreement (e.g., chi squared error) is the best SWHC. Future work will explore 
optimization of the model against spatially variable ET estimates from the mapping 
evapotranspiration with internalized calibration (METRIC) ET estimation method using Landsat 
imagery (Allen et al., 2007). METRIC ET estimates are labor intensive to produce at present, 
especially in mountainous areas where topographic corrections are needed. So as an intermediate 
step, we will explore the use of PT-JPL as a calibration data set. Although we know that it does 
not strictly agree with PRISM, the bias may be systematic enough that minimization of the ET 
disagreement will still result in the most accurate SWHC. 
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Chapter II: Rainfall-Runoff Relationships 
Introduction 

Modeling runoff based on rainfall has a long history (see Bevin, 2012), but typically this 
exercise takes place on a watershed-by-watershed basis. For PyRANA, we seek a method to 
estimate runoff from the land surface of a 250 m grid cell. Our approach is to base this on the 
foundation of plot-scale experiments, from which we know that both rainfall characteristics and 
soil characteristics play a role. Development of a multi-parameter equation to predict runoff 
based on both rainfall and soil would require calibration sites across the full range of soil types 
and hydroclimate regimes. Unfortunately, runoff data for the small, ephemeral streams necessary 
for this approach are very rare. The best data for this purpose are from the Walnut Gulch 
Experimental Watershed (WGEW) in southeast Arizona, which is located in the foothills of the 
San Pedro watershed, and on which both rainfall and runoff data have been collected for over 50 
years. The WGEW is characterized by low-relief topography that is covered by shrubs and 
grasses with elevations ranging between 4,000 and 5,000 feet above sea level. The desert soils 
and monsoon-dominated rainfall in WGEW are typical of low elevations across southern and 
central New Mexico. Therefore, we elected to develop a rainfall-based equation to predict runoff, 
and assumed that soil properties are of secondary influence in areas where Hortonian overland 
flow dominates. Esther Xu developed the statistical precipitation-runoff correlations for WGEW, 
and developed the code to apply them in PyRANA (Xu, 2018). This approach was described in 
the Overview and Introduction section of this report. 

 
Although this rainfall-runoff regression analysis at WGEW was successful, the specific 

coefficients for the regressions that relate precipitation to runoff are likely different at higher 
elevations in mountainous areas, where most recharge occurs. In part, this is because the runoff 
processes are different. While Hortonian overland flow is dominant in the desert rangelands, 
throughflow may be more common in forested areas (e.g., Dunne and Black, 1970), and this may 
lead to different rainfall-runoff relationships. In fact, the greater infiltration capacity of the forest 
soils may preclude overland flow, unless factors such as hydrophobicity are prevalent. To 
investigate this possibility, and to develop runoff equations specific to this contrasting landscape, 
statistical analyses similar to those done by Xu (2018) were conducted at three high-elevation, 
steep, forested catchments in northern New Mexico. These catchments represent the only 
adequately detailed paired rainfall and runoff measurements we could find for small (< 2 km2) 
watersheds in New Mexico. Two basins are within the Santa Fe municipal watershed, and are 
tributary to the Santa Fe River just upstream of McClure Reservoir. They were studied by Amy 
C Lewis as part of a paired watershed study (Lewis, 2018) to investigate the water-yield effects 
of forest thinning and prescribed burns. The third basin is the La Jara Creek watershed in Valles 
Caldera National Preserve. Climate data were collected as part of the Critical Zone Observatory 
network, and runoff data were collected by an initiative of the National Park Service scientific 
staff at the Preserve.  

 
The scarcity of multi-year stream-gauging data from small watersheds makes it unlikely 

that this technique can be extended to include soil properties in predicting runoff. But given the 
diversity of these three watersheds, we can begin to explore soil and physiographic factors that 
may be important, and to evaluate if they are of the same order of importance as rainfall intensity 
and total amount. 
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In addition to developing an empirical rainfall-runoff relationship, Xu (2018) observed 
that PRISM rainfall data did not perfectly agree with rain gauge data in Walnut Gulch. There 
was a single rain gauge near the town of Tombstone that was often used as a training gauge in 
the PRISM regression algorithm, but the gauges that we analyzed were never used as input 
gauges for the PRISM product. At these locations, PRISM fairly accurately estimated annual 
precipitation, but on a daily basis underestimated the largest rainfall events and generated many 
days of small rainfall for which the gauges showed no precipitation. This is consistent with 
PRISM effectively ‘smearing’ or spreading rainfall through time and space, as would be 
expected of such an interpolation-and-regression algorithm when gauges in the network are 
relatively sparse and convective storm size is much smaller than the gauge spacing. This is a 
problem because the rainfall-runoff regression showed a non-linear increase in runoff with 
rainfall amount, thus implying that missing the largest events and replacing them with small 
events would lead to an underestimation of runoff. To fix this issue, Xu proposed a linear 
adjustment to PRISM, which shifts the probability distribution of PRISM rainfall to match the 
probability distribution of the gauge record. Two such adjustments were developed, one for the 
monsoon season (July-September) and one for the rest of the year. 

 
This PRISM adjustment was larger in the monsoon season, when precipitation is 

dominated by small convective storm cells that may hit one location with heavy rain while 
leaving a location only a few kilometers away completely dry. This short-spatial-scale variability 
in rainfall is especially hard for an interpolation product to describe accurately. During the 
winter, when larger frontal systems dominate precipitation, the difference between PRISM and 
the rain gauges at WGEW was negligible. Following Xu’s work, these two PRISM adjustments 
(monsoon and non-monsoon) were applied throughout the state of New Mexico. However, it is 
not clear that PRISM needs to be adjusted in the more mountainous portions of the state. 
Monsoon precipitation is still a major source of moisture, but the spatial heterogeneity may be 
reduced enough to enable PRISM to provide an adequate representation. Therefore, a key goal of 
this research was to compare PRISM rainfall to daily gauge rainfall at the three study 
watersheds, as well as at the long-term precipitation gauge at Taos, NM. 
 
Methods 
Taos rainfall data 
         Rainfall data for the 2003-2010 time period from the Taos Village rain-gauge was 
downloaded from the NOAA National Weather Service website, and then compared to PRISM 
rainfall data for the grid cell that contained the Taos Village gauge. The monsoon season (July to 
September) and the non-monsoon season were analyzed separately. The analysis focused on the 
monsoon season data, because disagreements between PRISM and rain gauges had only 
previously been documented during this period of highly localized convective precipitation (Xu, 
2018). Due to one-day event timing disagreements between PRISM and the gauges (most 
probably related to PRISM’s practice of dividing days at noon UTC time), we then sorted both 
data sets from highest precipitation to lowest. We plotted the ordered gauge data on the x-axis 
and the ordered PRISM data on the y-axis. A simple linear regression was used to determine the 
relationship between PRISM and the gauge for the days on which rain occurred. 
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Santa Fe rainfall and runoff data 
         These data were collected from two small ephemeral watersheds that drain into the Santa 
Fe River (Lewis, 2018). Lewis (2018) placed three rain gauges on the ridge between the two 
basins she was studying and two flumes on the ends of each ephemeral stream. In this analysis, 
we only used the data she collected during the monsoon season, because the processes affecting 
runoff during winter and spring are much different due to snow and snowmelt. Due to tree cover 
and data gaps at the upper gauge, only the middle and lower gauges were deemed usable. The 
data from the two gauges were initially averaged and compared to PRISM, but there were some 
days when one gauge had significant rainfall and the other had none, and so averaging resulted in 
the storm appearing half as small as it probably was. After the two basins were analyzed 
separately, we found that the middle gauge had significantly lower total rainfall and more days 
with zero rainfall. Since it is more likely that a tipping bucket rain gauge will miss rain 
(jamming, clogging) than produce spurious rain (manual bucket tips), and considering that the 
lower gauge was located in the most open space, it was used for the analysis that followed. The 
relationship between gauge data and PRISM data was determined using the same method as 
described in the previous section. 
 
         Rainfall data were recorded every hour and runoff data were recorded every 15 minutes. 
Initially we attempted to sum up all rainfall and runoff for each individual day, but no 
relationship was visible between the two because the duration of rainfall and runoff events often 
exceed one day and there can be a large lag between initiation of rainfall and initiation of runoff. 
We elected to create and analyze hydrographs and hyetographs (rainfall time series) in tandem. 
From this we could clearly see that not all rainfall that causes runoff occurs the same day the 
runoff is generated. We manually identified associated rainfall and runoff events using a set of 
assumptions: 1) All rainfall that happened within 24 hours of the beginning of runoff contributed 
to the runoff generation process; 2) Any rainfall that occurred more than an hour after runoff 
stopped could not be associated with the runoff event preceding it; 3) Any runoff that occurred 
without additional rainfall was attributed to the same rainfall event that initiated the runoff; and 
4) Rainfall intensity was calculated as the ratio of the total depth of rain that fell divided by the 
number of hours in which it fell, excluding hours without rain. 
 
 The two watersheds analyzed were part of a forest management experiment. One basin, 
which we designated the Treated basin, was mechanically thinned and had low-severity fire 
reintroduced. The other basin, which we designated the Control basin, was not thinned or burned. 
However, this was not the only difference between the basins. The Control basin was much 
steeper, with a relief ratio of 0.33 compared to 0.23 for the Treated basin. (Relief ratio is the 
maximum basin relief divided by the longest horizontal distance of the basin parallel to the main 
stream.) And while both basins had a geology dominated by granitic and gneissic basement rock, 
the Treated basin also has the Borrego fault zone running down its length, while the Control 
basin has large talus slopes that cover ~ 7% of its surface area. Finally, the Treated basin is very 
slightly larger, at 1.79 km2, compared to 1.53 km2 for the control basin. 
 
La Jara rainfall and runoff data 
         The La Jara stream is much different than the streams in Santa Fe, because base flow is a 
significant contribution to total runoff, whereas the streams in Santa Fe are ephemeral. In 
addition to being perennial, La Jara drains Bandolier Tuff that was subsequently uplifted into the 
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resurgent dome of Redondo Peak in Valles Caldera National Preserve. The watershed is larger 
than those in the Santa Fe basin (3.57 km2) and slightly less steep (relief ratio = 0.19). Because 
the water table is higher in relation to the stream bed in the La Jara basin, there was never a time 
when the stream bed was dry, complicating efforts to associate runoff with a particular rainfall 
event. To deal with this, the initial baseflow prior to a rainfall event was averaged with the final 
baseflow and then subtracted from each runoff measurement before the total amount of runoff 
was summed. This effort to separate baseflow is crude, but simple and easy to apply consistently. 
The baseflow after the runoff event had ended was difficult to determine in some cases because 
some events raised the water table, thus raising the post-event baseflow. Therefore, if there was 
not a clear return to the base flow present before the rainfall event, then the post-event baseflow 
was determined to be the discharge at which runoff leveled out and the cause of variation in 
stream stage was due to diurnal cycles, in which phreatophytes lower the water table during the 
day. It is difficult to distinguish exactly between baseflow and direct runoff purely by using a 
streamflow hydrograph, but the same methods were used by the same operator in an effort to 
remain consistent. Some runoff events did not have a chance to return to baseflow before another 
rain event began and so the interrupted events were combined with the events that followed into 
one large event spanning numerous days.  
 
Results 
PRISM versus gauge rainfall 
 At both the Santa Fe watershed rain gauge and the Taos rain gauge, PRISM had more 
days with reported rainfall than the gauges (Figures 6 and 7). But for the large events, the depth 
of rain reported by the gauges was greater than that of PRISM (Figures 6 and 7). This is 
consistent with previous research using the rain gauges at Walnut Gulch [Xu, 2018]. The two 
data sets are also consistent with each other in the relationship between gauge rainfall and 
PRISM rainfall that they predict. At Taos, PRISM = 0.73(Gauge) + 0.99, while at Santa Fe, 
PRISM = 0.74(Gauge) + 1.17. In summary, these equations suggest that any PRISM rainfall 
event that is less than 1 mm is probably a false event, and that PRISM rainfall estimates are on 
average ¾ of the locally measured rainfall, especially for the large events. Yet because of the 
many additional small events, the long-term total PRISM is consistent with the gauges. The 
biases appear consistent and easily correctable.  
 
Rainfall-runoff relationships 
 The three watersheds had consistent behaviors in runoff production, and the trend 
between rainfall and runoff was quite linear after log-transforming the runoff data (Figure 8). 
Basin runoff, in mm, is predicted by 0.01e0.058P, where P is rainfall in mm. The Treated basin in 
Santa Fe produced less runoff than the other two basins, consistent with its lower steepness than 
the Control basin in Santa Fe. If topography were the only control, we would then expect La Jara 
to produce even less runoff. However, it is a perennial stream, and the response time to rainfall 
events was almost instantaneous (less than the one-hour resolution of our data). In contrast, both 
of the Santa Fe watersheds typically saw lags of five hours to a day between the first rainfall and 
initiation of flow at the basin outlet. The higher water table at La Jara means that less storage 
must be filled before flow occurs, and for small rainfall events the runoff is particularly high at 
this site (Figure 8). As rainfall events get larger, the enhanced runoff at La Jara is no longer 
evident, at least compared to the Control basin. Similarly, as rainfall event size increases, the 
difference between the Control and Treated basin runoff responses becomes less pronounced.  
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Figure 6. Daily PRISM rainfall vs. daily gauge rainfall for the Taos 
Village rain gauge for only the months July-September (monsoon season) 
in the years 2003-2010. Both data sets were sorted before being plotted 
against each other, to account for timing inconsistencies between the two. 

 

 
Figure 7. Daily PRISM rainfall vs. daily gauge rainfall for the lower Santa Fe 
paired basins rain gauge for only the months July-September (monsoon season) 
in the years 2009-2017. Both data sets were sorted before being plotted against 
each other, to account for timing inconsistencies between the two. 
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Figure 8. Rainfall-runoff relationships for three small watersheds in mountainous terrains of north-central 
New Mexico. Runoff is reported as a depth, that is, volume of runoff divided by basin area. The trend line 
(solid black) is a regression for all three data sets combined. 
 
Discussion 
 There was reasonably good consistency in runoff production among the three small 
mountainous watersheds studied here. For small rainfall events there was about two orders of 
magnitude range of runoff production, declining to one order of magnitude for larger rainfall 
events (> 50 mm). Given the major differences among the sites, we are satisfied with this 
relationship. 
 
 The basin characteristics that seem most important in promoting higher runoff are: bare 
rock (or talus), steep slopes, and perennial stream flow (which, based on the La Jara results, can 
overcome the effects of low slope and relatively permeable bedrock). The factors that reduce 
runoff are low slope and thick soils. Additionally, the Treated basin in Santa Fe was underlain by 
a fault system, which may have preferentially transported water out of the channel and into the 
regional aquifer. 
 
 The PRISM-gauge correction derived from the Walnut Gulch rain gauges is not 
dramatically different from those found here. In Walnut Gulch, the PRISM-to-gauge correction 
equation was Gauge = (PRISM – 1.61)/0.68, whereas here the rough average was Gauge = 
(PRISM – 1)/0.74. This suggests that PRISM does not underestimate large monsoon events by 
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quite as much in northern New Mexico compared to the south, but it is still a significant effect. 
Because it is so easily corrected, this seems to be prudent to implement in PyRANA. 
 
 The runoff relationship in Walnut Gulch was found to be highly dependent on rainfall 
intensity, consistent with a Hortonian overland flow conceptual model for runoff generation. 
However, in the mountainous basins, rainfall intensity was not a valuable predictor of runoff. 
Simply rainfall alone had nearly all the predictive power. This is consistent with runoff 
production being caused by processes other than Hortonian overland flow, such as throughflow 
and saturation overland flow. Given the relatively thick soils in the ponderosa and mixed conifer 
forests in the studied basins, especially when compared to the rangeland soils of southeast 
Arizona and Walnut Gulch, this finding makes good hydrologic sense. 
 
Future Work 
 This new PRISM correction and rainfall-runoff relationship will be incorporated into 
PyRANA, to be applied in the northern and mountainous portions of the state. We will continue 
to use the Walnut Gulch derived relationships (Xu, 2018) for the southern and low-elevation 
portions of the state. 
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