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ABSTRACT

In this research, we investigated the potential of a genetic algorithm based technique
to optimize the operation of a complex water resources problem. Current approaches to this
problem represent a tradeoff between model accuracy and optimization capability. Both a
dynamic programming and genetic algorithm approach were applied to a simple water
resources exercise. As the exercise grew in complexity, the calculation time for the dynamic
programming approach increased rapidly. The genetic algorithm approach experienced a
much smaller increase in calculation time. The genetic algorithm approach was then applied
to the problem of optimizing the operation of a complex simulation model of the Rio Grande
Project (RGP) in southern New Mexico. Although it did not model the behavior of the RGP
with complete accuracy, the simulation model was representative of the complexity required
to do so. The genetic algorithm was able to guide the search to better operating strategies,
demonstrating the potential of genetic algorithms to optimize the operation of realistic system

models when they are available.

Keywords: genetic algorithm, water resources, management, optimization
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INTRODUCTION

Throughout New Mexico, water availability is one of the major constraints to
economic development. In most areas, rivers are fully allocated, or, as on the Pecos River,
over allocated. Water management has been largely based on staff experience of the US
Bureau of Reclamation (USBR) and the New Mexico State Engineer Office (SEO). While
their experience has been adequate in the past, increasing pressure on water resources for
expanding urban areas, irrigation, recreation, hydroelectric production, and interstate
agreements is rapidly changing the system requirements and creating economic and legal
battles between water users. Water resources planners and managers, including federal and
state agency and irrigation district managers, must pursue policies to utilize efficiently a
limited water supply. To do so, they need management tools that can help identify strategies
that maximize the economic benefits of river operation.

Optimizing economic benefits of river operation is a classic and persistent problem in
water resource engineering and management. So many options exist for managing a
river/reservoir system that a human operator cannot consider each possibility thoroughly.
Attempts to use computers and mathematical programming techniques to find optimal
management strategies that maximize economic benefits from water resources have been only
marginally successful because of the complexity and wide range of possible operating
policies. If a truly representative computer model of a river system is used for optimization,
the number of options that must be considered is too large to be handled with traditional
techniques. If the river model is simplified enough to be manageable, the model loses
important representative characteristics. Therefore, most rivers are managed following
protocols and policies developed through experience. While these methods may currently be

adequate, they often are not optimum and do not adapt quickly to changing physical and
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economic conditions. As water demands increase and outstrip available resources, operating
at non-optimal conditions becomes exceedingly expensive, making the development of
adequate management tools even more crucial. This is a problem on nearly all major rivers
in New Mexico and the entire United States.

Developing management tools for optimization of economic benefits from river basin
operation is a continuing need in water resources management. Searching for optimal
management strategies is complicated but crucial. River basin systems are increasingly
multipurpose, supplying water for irrigation, hydropower generation, recreational, and
municipal and industrial users. In addition, water quality improvement and fish and wildlife
enhancement are gaining increasing importance in management decisions. In some systems,
the requirements of navigation and flood control must also be considered. Constraints on the
operation of the system are quite complicated. Typical constraints include maximum and
minimum storage, maximum and minimum releases, and equipment and facility limitations
for each reservoir of the system. Additional constraints include obligations created by the
various users of the system. The relationship between system response and management
decisions is quite complicated. In addition, both inflow to the system and users’ demands
vary seasonally and with changing hydrological conditions. Identifying management
strategies that optimize the benefits provided to users of multi reservoir river basin systems,
subject to operating constraints, is difficult. Developing reliable tools to aid in this task is an
ongoing research effort in the field of operations research and water resources engineering.

The immediate aim of this research was to investigate the potential of genetic
algorithms to provide a management tool for improving the economic performance of river
basin management. Genetic algorithms have been effective in a broad range of optimization

problems and may well provide the key to computer-based river management. The Rio
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Grande Project (RGP) in southern New Mexico was selected as a proving ground for a river
management optimization technique based on a genetic algorithm. Demands on this project
include a wide range of local water uses as well as compliance with interstate and
international agreements. In addition to being a multipurpose system, the RGP is a multi-
facility system with reservoirs at Elephant Butte and Caballo. Water resources engineers
have previously applied operations research and simulation techniques to this type of problem
with limited success. This research was undertaken to determine the suitability of genetic

algorithms for such problems.

OBJECTIVE

The project’s overall goal was to investigate the use of a genetic algorithm to optimize
the economic benefits of a complex river system management model. Such a river
management model would be capable of portraying both the physical response to and
economic benefits of particular operating strategies. We developed a model whose estimates
of physical and economic response represented those of the RGP system. To develop this
model, we made use of available data and the expertise of the current system operators, the
U.S. Bureau of Reclamation, and previous research efforts. Appropriate hydraulic and
economic components of the RIOFISH model developed by Cole et al. (1990) also were
incorporated. With these ingredients, we were able to formulate the RGP management
problem to a level of complexity sufficient to demonstrate the potlential of a management
tool.

Our model was representative, but not perfectly accurate in simulating the response of
the RGP. It was beyond the scope of this research to develop a completely accurate model

of the RGP. We focused on developing a genetic algorithm to find optimal operating
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policies for a water resources system model of realistic complexity. A truly accurate model
of the physical response of the RGP and/or its economic behavior does not currently exist.
Our model retained much of the complexity of the RGP and was sufficient for our purposes.
Our results, however, should be interpreted in this light.

This investigation demonstrates the suitability of using genetic algorithms to find
operating strategies for complex system models. It appears that if an accurate system model
of the RGP were available, a genetic algorithm could determine good operating policies using
the model. Developing such a model is beyond the scope of this research. Our results
should be used to evaluate the performance of a genetic algorithm in finding optimal
operating strategies for a complex water resources problem. Because of our system model’s

limitations, our results should not be used to find better operating strategies for the RGP.

THEORETICAL BACKGROUND

CURRENT MANAGEMENT TOOLS

For over 20 years, engineers have been developing optimization techniques for the
management of complex water resources systems. These efforts have been documented by
Wurbs (1993), Simonovic (1992), Yeh (1985), and others. In his review of state-of-the-art
methods for river and reservoir management, William Yeh (1985) discusses four broad
classifications of optimization techniques. The first three, linear, dynamic, and nonlinear
programming, are based on mathematical programming techniques. Each of these
approaches requires a very specific formulation of the reservoir management problem in
order to apply the particular technique. All three approaches are proven optimizing

techniques. In practice, however, successful application has been limited to relatively simple
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systems; either multipurpose, single facility or single purpose and multi facility systems.
When applied to multipurpose, multi facility systems, these approaches are forced to operate
on a simplified model of the system to avoid prohibitively large computing times. These
simplifications have greatly devalued the results attainable with these techniques.

The final method for optimizing reservoir management that Yeh reviewed was the use
of computer simulations to model the behavior or reservoir systems. These simulations
provide a means to predict accurately the response of the system to specified inputs,
including management decisions. In general, they model reservoir systems to a much greater
level of detail than mathematical programming techniques. Unlike mathematical
programming techniques, they do not directly optimize operation of the system. They have
been used, however, to evaluate the merits of competing management alternatives. Recently,
researchers have attempted to incorporate optimization methods within simulation models.
This requires a means for selecting competing management strategies that can then be
evaluated with the simulation model. Because of the greater detail retained by simulations,
the number of possible strategies for these models is much greater than those for more
simplified mathematical programming models. In addition, the problem is not formulated in
a manner that readily allows the identification of infeasible strategies. Heuristic means of
determining strategies have not proven capable of adequately searching the possible
strategies. Mathematical methods of selecting strategies, such as gradient decent methods
and mapping of the simulation response surfaces, have been unattractive because of huge
computational requirements. Water resources engineers are still looking for an optimization
technique that can adequately search for optimal management strategies while retaining the
level of detail of computer simulations.

An example of the shortfall of traditional methods in optimizing river management is
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given by the work of Salem and Jacob (1971) on the Roswell Basin of the Pecos River in
New Mexico. The researchers attempted to find optimal operating strategies for a coupled
system of surface waters and two aquifers in the region. They took a traditional approach,
using dynamic programming to find solutions. To do this expediently, a simplified objective
function and model of the system was required. These simplifications limited the solutions
usefulness. This has been the principal weakness of traditional approaches to river
management problems.

At present, completely satisfactory tools for river basin management have not been
developed. Currently available management tools for river basin operation represent a trade-
off between model accuracy and optimization capability. T.A. Austin (1986) found that this
trade-off limited the usefulness of these management tools. He surveyed water resource
engineers from state agencies and consulting firms regarding their use of computer models in
planning, design, and operation of water resources systems. These engineers feit that one of
the largest obstacles limiting the use of such management tools in their organizations was
their inability to represent the "real world" situations they encountered. Considering this
concern, it was not surprising that the survey also found simulation models were much more
widely used than optimization models. Simulation models were considered to be more useful
because they more accurately model water resource systems. These models could be used to
predict accurately the response of the system to individual management policies. They do
not, however, provide a means to find optimal management policies. As a result, the
management of most rivers is still very dependent on protocols and policies developed

through experience.



GENETIC ALGORITHMS
Genetic algorithms in conjunction with accurate simulation models appear to have the

potential to provide water resource managers with management tools that have both

optimization capabilities and model accuracy. Genetic algorithms are a class of search
techniques quite different from conventional optimization methods. Based upon their success
in solving problems in other fields, genetic algorithms may help managers find more efficient
strategies to utilize water resources.

Because of their recent development, genetic algorithms are not as well known as
more traditional optimization techniques. They are described as "genetic" algorithms because
the processes of natural selection are analogous to the search procedures they employ. As
pointed out by DeJong (1988), genetic algorithms are truly a class of search techniques.
Within a fairly general framework, there are many possible variations. Various genetic
algorithms will differ by the manner in which they implement each of the basic elements.
Davis and Streenstrup (1987) described the basic elements necessary to solve a specific
problem with a genetic algorithm. Their description seems quite useful in differentiating
between the various possible implementations of genetic algorithms. They list five
components of a genetic algorithm:

A. A chromosomal representation of problem solutions: This is a string coding of the
natural parameter set of the problem. In most work performed with genetic
algorithms, binary strings (base two strings of 0’s and 1’s) have been utilized. Other
representations have sometimes been chosen but have not been studied as extensively.

B. A method for creating an initial generation of problem solutions: Once a
representation scheme has been selected, a method of producing an initial

"generation" or set of strings is necessary. Instead of searching from one single point

7



to another in a solution space, a genetic algorithm searches from one set of points to
another. This makes genetic algorithm guided search more global in nature. To
begin the search, a genetic algorithm must be supplied with an initial generation of
strings. Initial generations filled with randomly generated strings provide a thorough
search of the range of possible solutions and have been used in many applications.

C. An evaluation function to determine the fitness of each string: The evaluation
function plays the part of the objective function used in more traditional optimization
techniques. This function is used to compare the individual strings of the population
in terms of their worth or fitness.

D. Genetic operators that produce the next generation of strings from the present
generation: Although many such operators have been developed and studied,
reproduction and crossover are two of the most basic. Together, these operators give
genetic algorithms much of their power. Reproduction selects the highest fitness
strings of the current generation to be used to create members of the next. Crossover
exchanges information between these higher fitness strings. Reproduction and
crossover act to focus the search in the region near high benefit strings.

E. Genetic algorithm parameter values: These values determine the nature and
behavior of the genetic algorithm search. These values include the population size
(the number of strings included in a generation) and rate at which genetic operators
are applied.

The following example is intended to illustrate how a genetic algorithm could be used
to optimize a simple function. Although the function has an obvious analytical solution, this
example demonstrates how the components discussed above are applied in a simple genetic

algorithm. The algorithm will be used to maximize the following function:
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FUi) =~%i 248 +1

where i is an integer on the interval from O to 31. This function, which has a maximum
value of 65 when i is 16, is shown in Figure 1.

The genetic algorithm components described by Davis and Streenstrup will be applied
in the following way:

A. The 32 possible values of i will be represented as binary strings of length five.
The initial generation will be filled with strings generated randomly.
The quadratic equation to be maximized will be the ’fitness’ function.

Our genetic operators will be reproduction and crossover only.

m o o v

The number of strings in each generation will be set to four.

The genetic algorithm proceeds as shown in the flow chart in Figure 2. This figure is
divided into ten blocks, labeled O through 9. The values of i for the initial generation are
chosen at random to be 18, 4, 24, and 31. As shown in Block 1, these values are encoded
as binary numbers which become the strings of the initial generation. The fitness of these
strings is calculated with the fitness function in Block 2. The initial generation has a total
fitness of 150.75 and an average fitness of 37.69. The best string of this generation has a
value of 64. After evaluation is complete, the algorithm checks if the termination criteria are
fulfilled. In this case, the condition is completion of a certain number of generations.

If the required number of generations have not been completed, the genetic algorithm
adjusts the generation count (Block 3) and produces another generation by applying the
reproduction and crossover operators. The reproduction operator (Block 4) is applied first to
select strings from the current generation that will be used to create the next generation of

strings. This operator is preferential to strings with higher fitness, making a string’s
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probability of being selected equal to the ratio of its fitness to the total fitness of the entire
population. In this way, above average fitness strings are more likely to be selected. The
selection probability for the first string is 0.42 (42%), meaning that if one hundred selections
were made, we would expect this string to be chosen 42 times. Using these probabilities, the
reproduction operator makes four independent selections from the current generation.

Because of it’s high probability, it is not surprising that the first string is selected twice.
Strings 2 and 3 are also chosen. These strings, shown in the Block 5, become the “parent”
strings that will be used by the crossover operator.

The crossover operator is applied to the parent strings in order to develop new
strings for the next generation. Parent strings supplied by the reproduction operator are
paired off at random. As shown in Block 6, parent 1 is paired with parent 3 and parent 4 is
paired with parent 2. A specific location between bits of the parent strings or "breakpoint"
is chosen at random for each pair of parents. There are four possible breakpoints for strings
of five bits. Both parent strings are broken at this location and the portion of string beyond
this position is exchanged with its partner. This procedure creates new "offspring” strings

wipn

(Block 7). Before crossover, the parent strings (with their breakpoints shown by the " |

character) look like this:

Parent 1 10010 Parent 2 100/10
Parent 3 0o0l100 Parent 4 110!00
Possible Breakpoints 1 2 3 4 1234

After crossover, the offspring strings are:
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Offspring 1 1 0(1 00 Offspring 2 1 0 0j0 ©

Offspring3 0 0j0 1 0 Offspring4 11 010

These offspring strings, corresponding to values for i of 20, 16, 2, and 26, become
the strings of the next generation. These strings are returned to Block 2 for evaluation. The
new generation is found to have improved performance with a total fitness of 198 and an
average value of 49.5. The best string has a value of 65. Continuing from this point, more
iterations of the search procedure could be performed. Future generations would continue to
show increased performance as their strings begin to converge to the optimal value of 16.
For this relatively easy problem, the simple genetic algorithm is working.

Although the test function is a very easy one, we can still make some observations
about the genetic algorithm used in this example. As promised, the reproduction operator of
this algorithm has preferentially selected strings. Similarly, the crossover operator has
generated new strings for the next generation. By comparing the sum, average, and
maximum string fitness for the initial population and next generation, we see that fitness has
improved.

Table 1 compares genetic algorithms with the most popular optimization techniques
that have previously been applied to the problem of optimizing river basin management.
Linear programming has been a popular technique because of ease of problem formulation
and its ability to find truly global optimum points. Unfortunately, the problem of optimizing
river basin management is nonlinear because of the nonlinear relationship between reservoir
storage, surface area, and elevation. Benefit functions and operating constraints also are
often nonlinear. Use of linear programming for these problems requires that the problem be

“linearized." This results in simplifications that reduce the value of optimization results.
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Table 1. Comparison of Optimization Techniques

Optimizing Applicable
Technique Problems Advantages Disadvantages
Linear Linear Easy Problem Formulation, | Nonlinear Problems Must
Programming Global Optimum be Linearized and
Simplified
Dynamic Nonlinear Handles Nonlinear Intractable for Many
Programming Problems Dimensions
Nonlinear Nonlinear, Handles Nonlinear Computation Intensive,
Programming Continuous Problems Trapped by Local
Optimum
Genetic Nonlinear Handles Nonlinear Not Competitive on
Algorithm Problems, Small Problems
Derivatives Unnecessary,
Global Search

Dynamic programming is capable of handling nonlinear problems. However, as the
number of decision variables increases for complex problems, this approach becomes
intractable. This so called "Curse of Dimensionality” has limited dynamic programming to
optimiiing operation of simplified, low dimension river basin management problems.

Nonlinear programming techniques, such as gradient descent methods, are also
capable of handling nonlinear problems. Use of these techniques has been limited because
they are computationally intensive and have slow rates of convergence. These techniques
also require the calculation of derivatives for their search procedure, limiting their use to
problems that are continuous.

Since their development in the late 1960s, genetic algorithms have been proven
effective in searching large, complex solution spaces. They are capable of solving nonlinear
problems. Because they do not require derivative information to direct their search, they are

not limited to problems that are continuous. Instead of progressing from point to point, like
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other techniques, genetic algorithms search from a set of problem solutions to another. This
feature allows them to escape local optimum, making their search more global in nature.
Because they require numerous evaluations of the objective function, they are not competitive
with other techniques for simple problems. However, when applied to complex problems of
increasing dimension, the computational requirements for genetic algorithms do not increase
as quickly as those for other techniques. The search performance of genetic algorithms
makes them especially suited for problems that are particularly difficult for other techniques.
Researchers have been applying genetic algorithms to an ever increasing realm of
problems. Of particular interest has been the work of David E. Goldberg, a civil engineer.
Goldberg (1987) has applied genetic algorithms to such varied tasks as designing trusses for
structures and controlling the motion of an inertial object on a frictionless plane. His work
to optimize the operation of a natural gas pipeline is similar to the problem of river
management. For a simulated pipeline, Goldberg’s genetic algorithm provided results similar
to those obtained by more traditional techniques such as dynamic and integer programming.
However, the genetic algorithm also was able to consider larger, more complex problems
than had previously been considered by the other techniques. Goldberg used a genetic
algorithm to find rules for the optimal operation of the pipeline subject to consumer
demands, weather conditions, and leaks that varied during operation. Although this system
had over one trillion possible management strategies, the genetic algorithm was able to find
very near-optimal strategies after evaluating less than 3,500 strategies. He concluded that

genetic algorithms are ready for application to even more difficult optimization problems in

engineering.
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METHODOLOGY

To evaluate the effectiveness of a genetic algorithm to guide the search for optimal
solutions to complex water resources problems, we undertook two efforts. In the first, a
simple water resources exercise was formulated to compare the performance of dynamic
programming and genetic algorithm guided search. The exercise was formulated to allow
increasing complexity. The behavior of each technique as the exercise increased in
complexity was compared. The second effort was the primary focus of this research. In this
effort, a genetic algorithm was applied to a computer simulation model based on the physical
and economic behavior of the RGP. Although not completely accurate in modeling the RGP,
this model represented a level of complexity beyond that successfully optimized with

conventional techniques.

DESCRIPTION OF DP VERSUS GA EXERCISE

This exercise was a preliminary investigation to determine the strengths and
weaknesses of using genetic algorithms as a water resources management tool. As described
by Fahmy, et al (1994), a comparison between genetic algorithms and dynamic programming
was conducted on a small test exercise. Dynamic programming is a flexible optimization
technique that applies to "problems requiring a sequence of interrelated decisions” (Dreyfus
and Law, 1977). It takes a whole problem and solves it by determining the best solution for
each smaller, manageable subproblem. These solutions are interrelated in that they build
upon one another to create the best solution for the whole problem. In this exercise we used
a small, two reservoir water supply system where the reservoirs had equal capacity. The
amount of water that entered the reservoir each period was fixed and known. We assumed

that all the water entered the reservoirs at the beginning of each time period. If the
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reservoirs were full, all remaining inflow water was lost through the spillway. Water was
required to remain in the reservoirs for one time period for purification; therefore, it was not
available for use until the next time period. Water drawn from one reservoir was free while
water drawn from the alternate reservoir cost one dollar per gallon. If no water was
available from either source, a shortage cost of ten dollars per gallon was incurred.

For this exercise, we determined the lowest cost of meeting water demands using genetic
algorithms and dynamic programming techniques. We systematically increased the capacity
of each reservoir and the number of time periods in the exercise, establishing solutions for
each scenario. Given the data, we determined how much water should be drawn from each
water source at each time period to minimize cost over the planning horizon (all time
periods) as a function of the reservoir’s initial volume of water. Water drawn from each
reservoir was considered discrete at intervals of (1 X 10°) cubic meters. Water demands for
each time period (n =1,2, . . . ,N) were set equal to (n X 10%) cubic meters. Initial
conditions were established as one-third of the water sources capacities. Water inflows to the
reservoir and alternate reservoir were equal to the square root of (0. 9 n X 1 O%) cubic
meters.

We increased the complexity of the exercise by increasing the number of stages and
number of states within each stage. The maximum number of states at all stages was used to
indicate the exercise complexity. The optimum (for both dynamic programming and genetic
algorithms) or near optimum (for genetic algorithms) sequences of decisions for each of these
scenarios were determined and computer running times were recorded for each technique.
Recorded computer running time included actual computation and data handling. Although
the times were not limited to computation time, they are an indicator of the speed of each

algorithm.
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CASE STUDY WITH MODEL REPRESENTATIVE OF THE RGP

The primary focus of this research was to investigate the potential of genetic algorithms
to provide better management tools for water resources engineers. The management tool we
developed employed a genetic algorithm to optimize the operation of a simulation model for
greatest economic benefit. The management tool was a package consisting of two
components as shown in Figure 3. In this package, the simulation model/economic benefits
estimator represented a "stand alone" component. That is, it could be usefully operated
individually without the genetic algorithm. For example, a water resources manager could
use the simulation model of the RGP to predict the system’s response and the economic
benefits generated by a specific operating policy. The genetic algorithm was used to
generate policies which were evaluated by the computer model. Evaluation results were
returned to the genetic algorithm and used to direct the search for new strategies.

Development of this management tool was accomplished in two phases. First, we
developed a simulation model and economic benefits estimator representative of the RGP. A
truly accurate model of RGP system behavior and economics does not currently exist.
Development of such a model was beyond the scope of this research. Our model was not an
accurate simulation of the RGP, but retained much of the system’s complexity. It was
adequate for the primary purpose of this research: investigating the potential of the

application of genetic algorithms to complex water resources problems.

Description of RGP System
The Rio Grande Project (RGP) in southern New Mexico is an ideal proving ground for
developing management tools for river management optimization. A detailed record of

historical operational data is available for this system. The RGP is representative of multi
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reservoir river systems with multiple water demands. This system includes two reservoirs,

Elephant Butte and Caballo. Competing demands include hydroelectric production,

agricultural, municipal and industrial, and recreational demands. The system’s operation is

constrained by required compliance to interstate and international treaties. These factors
increase the number and complexity of operating policies. As a result, optimization of
management policies for even this small portion of the Rio Grande becomes difficult for
conventional methods.

The New Mexico portion of the RGP includes the following major components (also

shown in Figure 4):

A. Elephant Butte Reservoir, located on the Rio Grande in southern New Mexico, is the
largest body of surface water in the state. It has a storage capacity of about 2 million
acre-feet, and is used for storage of Rio Grande water, production of hydroelectric
power, and recreation.

B. Caballo Reservoir is located just south of Elephant Butte Reservoir and has a capacity of
about 0.3 million acre-feet. It is used as a regulatory reservoir. Releases from Elephant
Butte could be scheduled for hydroelectric production and the water retained in Caballo
until needed for irrigation. Releases from Caballo are scheduled by orders from the
irrigation districts. Its operation is, therefore, seasonal. While it was originally
intended to be operated for regulation, recreational use of the reservoir has recently
caused modifications to the operating protocol.

C. Elephant Butte Irrigation District (EBID) is the first irrigation district below Caballo. It
services about 94,000 acres of irrigated land from three diversion points on the Rio
Grande: Percha, Leasburg, and Mesilla Dams.

D. El Paso County Water Improvement District #1 (EPCWID#1) is immediately below
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EBID on the Rio Grande. It contains about 69,000 acres of water righted land, though
typically only about 40,000 acres are irrigated. The system receives water from two
diversions on the river as well as from canals originating in EBID. EPCWID#1’s largest
customer in terms of water use is the City of El Paso, which supplements groundwater
with surface water for municipal and industrial usage.

Mexico, under a treaty with the United States, has a right to 60,000 acre-feet in a full
allocation water year. In short water years, this is reduced proportionally to the actual

allocation.

The main system of the RGP is currently operated by the US Bureau of Reclamation.

Each year, based on predicted inflows and carry-over storage from the previous year (Kirby

1991), the USBR allocates water for the year to the irrigation districts. A full allocation is

954,720 acre-feet per year, though the actual allocation is generally less. Mexico is entitled

to 60,000 acre-feet per year under a full allocation. EBID is entitled to 57 per cent of the

remaining allocation, and EPCWID#1 is entitled to 43 per cent. The users’ actual allocations

are reduced proportionally in water-short years. The USBR occasionally increases the

allotment during the year if inflows allow.

The RGP is a multi use system. These uses and the impact they have on operation

include:

A.

Hydroelectric production: Releases of water from Elephant Butte are primarily
scheduled for irrigation but also are used for hydroelectric production.

Recreation: Income due to recreation at Elephant Butte and Caballo reservoirs can be
related to reservoir storage volumes as described in Cole et al. (1990).

Irrigation: Irrigation water is supplied to EBID and EPCWID#1 which then apportion
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water to their farmers.

D. Municipal and Industrial: The City of El Paso is a major water user on EPCWID#1 and
the only significant municipal user on the system. The City frequently purchases water
from farmers. The price they pay varies dramatically from year to year.

E. Treaty Compliance: In full allocation years Mexico receives a 60,000 acre-feet
allotment and proportionally less in years when allocations are reduced.

Throughout the year, the irrigation districts receive orders from their users. The
irrigation districts consolidate these orders and request deliveries from the USBR. Releases
from the reservoirs are scheduled by the USBR to meet the delivery requests at diversion
points along the river. Requests for deliveries from the irrigation districts are honored until

they use up their total yearly allotment.

Description of RGP Simulation Model

Our model of the Rio Grande Project, as shown in Figure 5, consists of two main
reservoirs (Elephant Butte and Caballo Reservoirs), four diversion dams (Percha, Leasburg,
Mesilla, and American dams), and interconnecting reaches. Historical data from 1990 were
used to develop this model. Sources of data included Borland et al (1991 and 1992), IBWC
(1989 and 1990), and USBR (1988 and 1991). The model makes use of 52 one-week time
steps to model one year of system operation. Operating strategies for the model consist of a
set of 105 operating variables. The first of these variables was the agricultural water
allotment for the year in units of feet of water per water-righted acre. Values from 0 to 4
feet were considered. The remaining variables were the weekly releases from Elephant Butte
and Caballo reservoirs for the year. Values for releases were limited to between 0 and 3200

cfs.
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Hydraulic Modeling of the RGP System

Inflow to the system occurs above Elephant Butte Reservoir at San Marcial, New
Mexico. The USGS maintains a gauging station on the Rio Grande at this location and
provides daily flow data for the river. Historical inflow data for 1990 was used to generate
weekly flow data for inflow to the system. Data are shown in Figure 6.

A simple mass flow equation was used to model the behavior of the two main reservoirs

in the RGP system. This model can be expressed by the following equation:

Volume ; . =Volume ;+13. 8843 *Inflow -13. 8843 xRelease -Evaporation

where Volume,,, is the reservoir volume for the current week in acre-feet, Volume; is the
reservoir volume from the previous week in acre-feet, Inflow is the rate of inflow to the
reservoir for the week in cfs, Release is the release rate from the reservoir for the week in
cfs, 13.8843 is a factor to convert weekly flow rate in cfs to volume of flow for the week in
acre-feet, and Evaporation is the weekly evaporation from the surface of the reservoir in
acre-feet. The historically recorded flow at San Marcial was used as the inflow for Elephant
Butte Reservoir. Releases from Elephant Butte were used as the inflow for Caballo
Reservoir.

For each reservoir, equations relating water surface elevation to storage volume were

developed. These were of the form:

Elev =A+Volume B+C

where Elev is the elevation of the water surface in feet above sea level, 4, B, and C are

coefficients, and Volume.is the storage volume of the reservoir in acre-feet. Coefficients
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were determined to fit the equations to elevation versus volume data for the two reservoirs.
Results are shown in Figures 7 and 8.
Surface area was estimated from the elevation of each reservoir with equations of the

form:

Area =D+ExDepth +F*Depth *

where Area is the surface area in acres, D, E, and F are coefficients, and Depth is the depth
of water in the reservoir in feet. The depth of water in each reservoir can be calculated by
subtracting the bottom elevation of the reservoir from the elevation of the water surface.
The coefficients were adjusted to make the equations fit surface area versus depth data for
each of the reservoirs. Results are shown in Figures 9 and 10.

Weekly evaporation losses for each reservoir were calculated as follows.

Evap =EvapDepth ;*Area

where Evap is the evaporation loss in acre-feet, EvapDepth; is lake evaporation for week i in
feet, and Area is the surface area of the reservoir in acre-feet. Monthly pan evaporation data
were available for both Elephant Butte and Caballo reservoirs. Data were adjusted to
provide estimates of weekly lake evaporation rates. Results are shown in Figure 11. Total
lake evaporation for the year at Elephant Butte and Caballo reservoirs was estimated to be
approximately 80 and 72 inches, respectively. Parameters used to describe the reservoirs in
our model of the RGP are included in Table 2.

Our model of the RGP system includes four nodes located at Percha, Leasburg, Mesilla,
and American Diversion dams. Flow in the river below each of these locations is estimated

by our model. Because of the short connecting reach length, only two miles, the flow at
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Table 2 RGP Model Input Parameters

Historical Allotment 3 [acre-ft per acre]
Initial EB Volume 1676900 [acre-ft]
initial Cabailo Volume 70100 [acre-ft]

Max. Min.
EB Volume 2065000 50000 [acre-ft]
Cabalio Volume 245900 0 [acre-ft]

Percha |leasburg Mesilla American

Initial Reach inflow 2 46 46 60 [cfs]
Infeasibility Multiplier 1000
Demand Penaity Multiplier 10
Irrigation Efficiency 05 [

Hist  Yield Funct Coef Acerage Ag Prices
Crop Benefits A B [acres] [$/ton]
Vegetables 42796128 0 0 0 0
Pecans 42578570 0 0 0 0]
Filed Crops 0 0.059 0.1943 24458 2352
Forage 0 -0.83 5.9207 19715 80.8
Cereals 0 -0.183 1.4665 2869 155.9
EQY EB Volume 1000000 [acre-ft]
EQY Penaity 1000
EQOY Multiplier 100
Demand Penalty 100

Hydro Power Variablas

Qutlet Elevation 4207 ([feet]
Hydraulic Efficiency 1 [-]
Turbine Efficiency Coef. 0.0232 0.00083 -2E-07
Min Generating Releass 450 [cfs]
Electric Rate 0.019 [$/KW-hr]
Base
Reservoir Variables Coet A Coef B Coef C Coef D Coef E Coef F Elevation
Elephant Butte 0.566881 0.389978 4244.142 829.3456 9.277354 0.380115 4244.2
Caballo 0.232857 0.44507 4115.656 -926.83 90.55358 Q 4117
Rec Benefits Variables A B C
Elephant Butte 1 0 5,52 2.25E-06
Elephant Butte 2 -5.2E07 65.06276 -1.4E-05
Caballo 0.001337 40.55002 -8.3E-05
Loss Loss Loss
Routing Parameters A B C
Mesilla -12,1588 3.535302 -0,0678
Musk Musk Musk Musk Flow
co c1 ce2 Loss Min
Percha 1 0 0 0 0
Leasburg 0.499783 0.499783 0.000433 180.4703 46
Mesilla 0 0 0 -11.7861 46
American 0.4224 0.4224 0.155201 -115.591 0
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Table 2 RGP Model Input Parameters (Cont.)

Inflow
[cfs]
746.429
749.286
737.286
710.143
683.857
652,286
651.286
660,143
664.714
689.571

710
731.571

768
781.857
778.857
777.571
777.571
790.571

799
783.857
765.714
753.143

737

713
692.714
677.143
665,857
654.857
638.143
627.857
623.714

633
642.286
638.143
633.571
634.286
632.429
627.143
605.143
593.143
597.857
606.286

618
626.429
640.429
653.857

653

648
640,143
639.143
639.571

637

Percha Leasburg

Demand
[efs]

(oo el

0.11429
0.2

0.2
65.6286
186.789
221.5186
280.23
222.28
223.634
237.346
221.631
269.774
253.631
197.194
282.05
336,193
307.193
300.014
263.586
269.586
301.3
317.211
165.251
95.2514
121.109
111.966
182.644
162.516
67.8014
89.23
202.23
145.873
198.73
170.301
95.1586

OO0 OO0 OO0OO0OOOO0O0COCOo

Demand
[cfs]

O 0000 QO0OOo0O

0
82.5714
276.143

446

386
240.143
212.286
236.571
282.143
267.714
267.857
330.429
292.714
281.429
346
381.286
437.286
444,857
361.714
346.286
344
288.714
285.429
246.857
234.714
241.429
288.857
327.857
283.286
258.429
196.714
46

o

OO0 00000000 Q0

Maesilla
Demand
[cfs]

OO0 0000 O0

0
0.81714
178.287
514.573
850.287
798.321

441.67
405.241
562.813
431.527
428.579
518.301
530.587

622,73
583.446
661.829
792.114
858.686
862.724
727.813
660.384
647.241

668.67
562.206
476.334
442,049
431.334
553.503
688.781
565.924
507.781
422.496
106.143

COQ0O0O0OO0OOOOOO

Amaerican
Demand
[efs]
161.764
177.868
180.368
189.693
220.265
252.785
284.256
333,753
561.743
633.358
789.171
888.173
958.405
886.526
807.442
751.096

6§70.13
697.549
718.078
718.888
791.493
920.156
1088.05
1181.69
1220.58
1273.98
1326.06
1260.87
1204.04
1184.57
1055.45
£888.658
702.505
724,606
855.489
789.698
647.624
499,577
390.809
336.558
392.353
380.182
356,112
328.845
299,732
268.982
236.628
202.675
184,218
181.353
180.908
180.839

EB
Lake
Evap.

[

0.03967
0.03967
0.03967
0.03967
0.06029
0.07575
0.07575
0.07575
0.08738

0.1136

0.1136

0.1136
0.122289
0.17443
0.17443
0.17443
0.17443

0.2208
0.22853
0.22853
0.22853
0.24679
0.27115
0.27115
0.27115
0.25891
0.18548
0.18548
0.18548
0.18548
0.16298
0.156397
0.15397
0.15397

0.1423
0.11313
0.11313
0.11313
0.11313
0.09115
0.09115
0.09115
0.09115

0.0658

0.0468

0.0468

0.0468
0.04287
0.03307
0.03307
0.03307
0.03307
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Caballo
Lake
Evap.

1

0.04433

0.04433

0.04433

0.04433

0.05714

0.06675

0.06675

0.06675

0.10047

0.12577

0.12577

0.12577
0.13092
0.16185
0.16185
0,16185
0.16185
0.18805
0.18242
0.18242
0.19242
0.20364
0.21859
0.21859
0.21859
0.20976
0.15674
0.15674
0.15674
0.15674

0.13127

0.12109

0.12109

0.12109

0.11764

0.10901

0.10901

0.10801

0.10901
0.0918
0.0918
0.0918
0.0918

0.06587

0.04643

0.04643

0.04643

0.04389

0.03754

0.03754

0.03754

0.03754



Percha was estimated as equivalent to the release from Caballo Reservoir. Flow below the
other nodes was determined by routing flow from the upstream node and subtracting
withdrawals. Two different procedures were used to rout flows. The first is based on the
Muskingum routing procedure but adds an additional term to account for unmeasured channel
losses (or gains) for each reach. Such losses or gains could be due to flow from
unmonitored drains and arroyos to the river and water movement between the groundwater
table and river. The modified Muskingum routing method we used was of the following

form:

Q’ +1 =C0*Ii +1+C1 *Ij “‘CZ*Q- -Loss

where Q,,, is the outflow from the reach for week i+1 in cfs, I, is the inflow to the reach
for week i+ in cfs, I, is the inflow in cfs for the previous week, Q; is the outflow from the
reach for week i, Loss is the channel loss in cfs, and C,, C,, and C, are Muskingum routing
parameters. The channel loss represents unaccounted water loss or gain in the reach.
Values for C,, C;, C,, and Loss were varied in order to find a set of parameters that
approximated 1990 flow data. Results are shown in Figures 12 and 13. These figures were
generated with historical inflows to each reach.

For the reach from Leasburg to Mesilla Dam, a different method was used to calculate
the outflow of the reach. The Muskingum routing procedure was unable to provide good
flow estimates for this reach. This may have been due to a large amount of unmeasured
return flow to the channel in this reach. Such return flow could be due to irrigation drains
and seepage from the groundwater table. Both these sources are seasonal, making it very
difficult to represent flow in the reach with a constant loss parameter as described in the

previous method. For this reach, a mass balance approach was applied. Outflow from the
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reach was estimated by the following equation:

Q. =l ;-Loss ;

13

where (; is the outflow from the reach for week i in cfs, I is the inflow for the week in cfs,
and Loss; is the channel loss for the week in cfs. Weekly channel losses were assumed to be

of the form:

Loss ; =A+BxWeek , +CxWeek }

H

where Week, is the week of the year and 4, B, and C are fitting parameters. The fitting
parameters were adjusted to fit the historical flow data for the reach from Leasburg to
Mesilla Dam. The results are shown in Figures 14 and 15.

The behavior of our computer model was similar to that of the actual RGP system.
When the model is provided with the historical operating policy used for 1990, the flow at
American Dam was estimated as shown in Figure 16. This figure also shows the actual
flows at American Dam for 1990. Comparison of the two flow series demonstrates how
closely our model reflects the RGP system. As can be seen from the figure, the model
appears to have done a reasonable job of representing the RGP system. Any differences in
the two flow series were due to inaccuracies in the model. Since American Dam represents
the last node in the model, errors from all upstream portions of the model are reflected in the
estimate of flow at this point.

Although our model did not provide a completely accurate picture of RGP operation, it
retained much of the complexity of system operation. To make the model truly
representative of the RGP system would require much additional research beyond the scope

of this effort. Qur model based on the RGP system, however, was adequate for our
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purposes. We wanted to investigate the potential of a genetic algorithm to guide the search
for optimal operating strategies for a relatively complex water resources system. Because
our model was limited in its ability to simulate accurately the RGP system, the results of
optimization should not be taken as best for the actual RGP system. This limits the
contribution of this effort to general insights regarding actual system operation. Our results
are most useful for examining the ability of a genetic algorithm to guide the search for
optimal operating policies if a truly representative model could be developed. This is the

context in which our results should be evaluated.

Economic Modeling of the RGP System

The total economic benefit of an operating strategy was determined by the following

equation:

B Total =BAg+BRec +BHydro -P Demand -P Infeas -P EOY

where By, is the total economic benefits associated with an operating strategy, B,,, Bg,., and
Biyar, are the agricultural, recreational, and hydroelectric benefits respectively, and P,z
P, and Pgoy are the penalties for violating demand, infeasability, and end of year
operating constraints. All variables have units of dollars.

Agricultural benefits for the model were based on benefits generated by five categories
of crops: vegetables, pecans, field crops, forage, and cereals. EBID reports crop area and
value for these five categories in their annual operating plans. Vegetables included such
crops as peppers, onions, lettuce and cabbage. Field crops were primarily upland and pima

cotton. Forage represented alfalfa and silage crops. Cereals included wheat, barley, and

sorghums.
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Two different methods were used to estimate agricultural benefits for these categories.
Both methods used the yearly water allocation as part of the estimate. When available, crop
water production functions were used. Sammis et al, (1979) provides such functions for
conditions in New Mexico for alfalfa, cotton, and grain sorghum. These functions were used
to estimate yields for the forage, field crops, and cereals categories. Yield functions were of

the form:

Yield =A+B*ET

where Yield is in units of tons per acre, 4 and B are coefficients, and ET is the crop
consumptive use (or evapotranspiration) in feet of water. Assuming an irrigation efficiency
of 50%, crop consumptive use was estimated to be half the yearly allotment of water. After

determining the yield for each category, benefits were calculated with the following formula:

Bernefits  =Yield =*Area *Value

where Benefits are in dollars, Yield is in tons/acre, Area is in acres, and Value is in dollars
per ton. Average values for the various categories of crops were determined by dividing the
historical benefits by the historical yields and areas.

Yield functions were not available for the vegetable and pecan categories. For these
crop categories, agricultural benefits were assumed to be linearly related to the allotment.

The following equation was used to estimate agricultural benefits:

_ Allotment
Historical Allotment

Benefits *Historical Benfits

where Benefits are in dollars, Allotment and Historical Allorment are in feet of water per acre

of water-righted land, and Historical Benefits are in dollars.
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The data used for calculating agricultural benefits are included in Table 2. Using this

method, the estimated total agricultural benefits for 1990 amounted to $118,640,016. This

compares quite well with the reported agricultural benefits for 1990, which were

$119,293,879. Figure 17 shows the relationship between water allotment and agricultural

benefits as generated by our model of RGP agricultural benefits.

Recreational benefits for the model were determined with the help of the RIOFISH (Cole

et al, 1990) software. This package operates on a monthly time step and estimates the

recreational value of sportfishing. The package can be used to evaluate the operation of the

three major river systems in New Mexico in their entirety or only a portion of a river

system. In this case, operation of only Elephant Butte and Caballo reservoirs were

considered.

Annual benefits for various volumes of Elephant Butte Reservoir were determined by

maintaining a constant reservoir level for the entire year of the RIOFISH model run.

Table 3. Annual Angler Benefits for Various Volumes of Elephant Butte Reservoir

Elephant Butte Caballo RIOFISH Normalized
Volume Volume Angler Benefits Angler Benefits
[acre-feet] [acre-feet] [$] [$]
0 50,000 -12,814,000 0
50,000 50,000 -11,785,000 1,029,000
500,000 50,000 -9,140,000 3,674,000
1,000,000 50,000 -5,046,000 7,768,000
1,250,000 50,000 -3,071,000 9,743,000
1,500,000 50,000 524,000 13,338,000
1,750,000 50,000 5,188,000 18,002,000
2,000,000 50,000 7,886,000 20,700,000
2,100,000 50,000 8,719,000 21,533,000
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Historical settings for 1990 were used for all other program parameters. The storage volume
of Caballo Reservoir was held at a constant value of 50,000 acre-feet for all runs. Table 3
(shown previously) displays the results of the runs. Results were normalized by adding a
constant value of $12,814,000 to the value of all runs. This resulted in a value of $0 dollars
if the reservoir was empty and roughly 21.5 million dollars if held at its maximum volume of
2.1 millién acre-feet for the year.

Figure 18 shows the normalized values of annual angler benefits as a function of storage
volume in Elephant Butte Reservoir. Two formulas were used to model this relationship.
For storage volumes less than 1.5 million acre-feet, angler benefits were estimated by the

following equation:

Angler Benefits ~ =5. 52 «Volume +2. 25x10 “$+Volume *

For storage volumes greater than 1.5 million acre-feet, the equation below was used:

Angler Benefits  =-5.2x10 7+65. 06 *Volume -1. 4x10 ~>+Volume *

In both of the previous equations, Angler Benefits is yearly angler benefits in dollars and
Volume is the storage volume of Elephant Butte Reservoir in acre-feet. These equations were
used to estimate the angler benefits for a specific volume of Elephant Butte during each time
step of the model run. Since these equations give annual benefits, the value obtained was
divided by 52 in order to get an estimate of the weekly benefits.

A similar methodology was used to determine the angler benefits for Caballo Reservoir.
The RIOFISH program was run for 1990 for various volumes of Caballo Reservoir with the
volume of Elephant Butte Reservoir held at a constant 1.75 million acre feet. Table 4 shows

the results of these runs.
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Angler benefits for Caballo Reservoir were estimated by the following equation:

Angler Benefits  =1. 34x10 3+40. 55 *Volume -8. 3x10 ~+Volume ?

In this equation, Angler Benefits are again in dollars and Volume is the storage volume of
Caballo Reservoir in acre-feet. Figure 19 shows the data for angler benefits from the
RIOFISH runs and the equation developed to fit this data.

Because recreational benefits estimated by RIOFISH are for angler benefits only, total
recreational benefits would be more. The RIOFISH model estimated angler days for the two
reservoirs to be approximately 500,000. According to EBID’s annual report for 1990,
visitor days to the state parks in the RGP amounted to 2.1 million visitor days. Therefore,
total recreational benefits were estimated to be four times angler benefits.

Table 4. Annual Angler Benefits for Various Volumes of Caballo Reservoir

Caballo Elephant Butte RIOFISH Normalized
Volume Volume Angler Benefits Angler Benefits
[acre-feet] [acre-feet] [$] [$1
0 1,750,000 3,668,000 0
10,000 1,750,000 4,078,000 410,000
25,000 1,750,000 4,650,000 982,000
50,000 1,750,000 5,312,000 1,644,000
75,000 1,750,000 6,371,000 2,703,000
100,000 1,750,000 6,985,000 3,317,000
125,000 1,750,000 7,527,000 3,859,000
150,000 1,750,000 7,823,000 4,155,000
175,000 1,750,000 8,074,000 4,406,000
200,000 1,750,000 8,364,000 4,696,000
230,000 1,750,000 8,706,000 5,038,000
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We also investigated using a multiplier of ten in order to estimate total recreation
benefits from angler benefits. A factor of this size makes recreational benefits of
approximate equal value to agricultural benefits. This was desirable to test the genetic
algorithms ability to optimize the operation of a water resources system with truly competing
water demands. The current system appears to have a heavy emphasis on agricultural
benefits that tends to dominate the other uses of water. We are not suggesting that recreation
should be valued in this way for the RGP. This weighting was used simply to make
recreational and agricultural benefits of approximately equal value, insuring a system with
truly competing demands.

Hydroelectric power generation from Elephant Butte Reservoir was calculated with the

following formula:

- v *QxFxe
Power =0. 7457 *—550 5

where Power is in kilowatts, 0.7457 is a conversion factor from horsepower to kilowatts, -y
is the weight of water in pounds per cubic foot, Q is the flow in cfs, H is the net operating
head in feet, e is the efficiency of the turbines, and 550.0 is a factor to convert from units of
foot-pounds per second to horsepower.

Net operating head was defined by the following formula:

Elev g, -Elev o,

7> Z

where H is the net operating head, Elevy,, is the water surface elevation in Elephant Butte
Reservoir in feet, Elev,,, is the elevation of the power plant outlet in feet, and 4 is the

hydraulic efficiency. After conversing and corresponding with Bill Neiley of the US Dept.
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of Interior, Bureau of Reclamation, we determined values for the outlet elevation of 4210.26
feet and a hydraulic efficiency of one.
Turbine efficiency was also estimated with the help of Mr. Neiley. The following

formula was used to estimate turbine efficiency as a function of the release flow:

¢ =0. 0232 +0. 00083 *Q-2xI10 “T+Q?

where e is the turbine efficiency and Q is the flow through the turbines. Figure 20 shows
the relationship of turbine efficiency as a function of flow through the turbines. A minimum
flow of roughly 450 cfs is required to operate the turbines.

Total hydroelectric benefits for a week of operation were estimated by the following

formula:

Benefits =168 *Power *Rate

where Benefits is the hydroelectric benefit for a week of operation in dollars, 168 is the
number of hours in a week, Power is the hydroelectric generation rate in kilowatts, and Rare
is the value of electricity in dollars per kilowatt-hour. We assumed an average value of
$0.019 per kilowatt-hour for the electric rate.

This model predicted a value of $1,918,847 for the total hydroelectric benefits of the
historical operating policy for 1990 with a total generation of roughly 101 million kilowatt
hours. This compares reasonably well with the actual reported hydroelectric generation for
1990 of 70 million kilowatt hours.

Penalties were imposed on any operating strategies that failed to meet system operating
constraints. These constraints included demand constraints for agricultural delivery, demand

constraints for interstate and international treaty compliance, minimum and maximum
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volumes in the two storage reservoirs, and minimum end of year storage volumes in the
reservoirs. These penalties, essentially negative benefits, acted to decrease the value of
operating policies that violated operating constraints. No attempt was made to insure that
these penalties represented the true economic cost of constraint violation. Instead, these
penalties were merely adjusted until large enough to prevent the genetic algorithm from
favoring operating strategies that violated constraints.

The model supplied water to four points representing Percha, Leasburg, Mesilla and
American dams. Agricultural demands within the RGP in southern New Mexico were met
by withdrawals from the river at the first three points mentioned above. Water deliveries for
downstream irrigation districts and for treaty compliance with Mexico were at American
Dam. Weekly demands for the three diversion points in New Mexico were calculated from
historical withdrawal data obtained from Elephant Butte Irrigation District. Historical flow
data at American Dam were available but were not used for the weekly demands at this
point. Instead, demands were set equal to 2 cfs less than the model generated flows for the
historical operating policy. This procedure insured the historical operating policy could meet
the system demands. Due to model inaccuracies, the historical operating policy could not
meet the historical operating demands at American Dam. The flow at American Dam was
assumed to be adequate for meeting demands for treaty compliance with Mexico and
downstream irrigation districts.

Weekly penalties imposed at each node for not meeting demands were of the following

form:

P pomana=Diar *( Flow ; -Demand.; ) ?

where Pp,,..; is the penalty in dollars for failing to meet the demand, D,y is a demand
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penalty multiplier, Flow, is the flow in the river during week i at the diversion point in cfs,
and Demand, is the required withdrawal in cfs at the point for week i. These penalties were
imposed every week at each node where demand was not satisfied and accumulated
throughout the model run. The shape of this penalty function was intended to greatly
increase the penalty for strategies that violated demand constraints by larger amounts. The
demand penalty multiplier was adjusted until its size discouraged the genetic algorithm from
favoring strategies that failed to meet demands at the supply nodes.

Operating strategies that resulted in reservoir volumes above the maximum volume or
below the minimum volume for each reservoir were assumed to be infeasible. The strategies

were penalized in the following manner:

Week
Plneas =]Mulf ( 1_%')

where P, is the penalty for an infeasible solution in dollars, ,,,, is an infeasability penalty
multiplier, and Week is the week of the model run during which the infeasibility was
discovered. The shape of this penalty function was intended to increase the penalty
associated with strategies that became infeasible earlier in the model run. Penalties for
infeasibility in the last week of the year of operation were roughly half those for strategies
proving infeasible in the first week of operation. The infeasibility multiplier was adjusted to
eliminate infeasible solutions from the genetic algorithm search. The model run was
terminated after an infeasibility was detected and penalized.

A final penalty was imposed if the operating strategy resuited in reservoir volumes below

certain values at the end of each year. These penalties were of the form:

PpoyEOY,, *(Volume g,-Volume g *
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where Pg,y is the penalty in dollars for not finishing the year at or above a specified
minimum volume level, EQY,,, is an end of year penalty multiplier, Volume;, is the volume
of the reservoir for week 52 in acre-feet, and Volumeg,, is the specified minimum end-of-
year reservoir volume in acre-feet. A minimum end-of-year storage volume of one million
acre-feet was imposed at Elephant Butte Reservoir. No end-of-year minimum was imposed

at Caballo Reservoir.

Genetic Algorithm

We made use of a commercially available genetic algorithm software package (GENEtic
Search Implementation System or GENESIS, Version 5.0) to guide the search for optimal
strategies. This software was developed by John J. Grefenstette to promote the study of
genetic algorithms as function optimizers. GENESIS was written in the C programming
language for use on DOS or UNIX based computers. This system handles the basic tasks of
genetic algorithm search, including encoding problem variables as binary strings, creation of
an initial population, implementation of genetic operators, and collection of search data. The
user must specify the options and parameters for genetic search and provide an evaluation
function that determines the fitness of strings. In this case, the simulation model of the RGP
and estimation of economic benefits was used to determine the fitness.

Operating policies for the RGP were translated to bit strings by the GENESIS software.
Policies specified the management decisions required for weekly operation of the RGP over a
one-year period. These included the annual allocation to the irrigation districts (in acre-feet)
and weekly releases from the two supply reservoirs (in cfs). This added up to a total of 105
decision variables for the model period. Yearly irrigation allocations from 0 to 4 feet per

acre were considered in increments of 3/4 inches. Reservoir releases between 0 and 3200 cfs
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were optimized in increments of 12.5 cfs. This resolution of decision variables was
sufficient to meet operating needs for the RGP. Yearly allocations were represented with a
string segment of six bits (sixty-four possible states between O and 4 acre-feet). Weekly
releases were represented with a string segment of eight bits (256 possible states between 0
and 3200 cfs). This resulted in binary strings with 838 bits to represent operating policies.

The genetic algorithm guided the search of possible operating policies using the net
economic benefit as the fitness of each string. To determine economic benefit, each bit
string was first translated into the operating policy that it represented. This policy was then
supplied to the computer model of the RGP in order to predict the response of the system
and the economic benefit of the policy. The total economic benefit was then returned to the
genetic algorithm as the fitness of the string. Water uses could be prioritized by arbitrarily
increasing (or decreasing) the economic benefit of individual water uses before returning the
net economic benefit to the genetic algorithm.

During the preliminary optimization runs, we experimented with various values of
genetic algorithm search parameters and penalty coefficients. In previous research efforts,
we have made use of search parameters identified by Grefenstette (1986) as providing best
performance for a variety of search problems. These parameters provided excellent
performance for preliminary runs and were retained for the remainder of this effort. These
parameters included a population size of 30, crossover and mutation rates of 0.95 and 0.01,
respectively, generation gap and scaling window of one, and an elitist selection strategy.
Penalty functions were adjusted during the preliminary runs until the search no longer
favored strategies with undesirable performance.

Also during our preliminary runs, we determined that the genetic algorithm was not able

to optimize efficiently the yearly irrigation allocation. Genetic algorithm runs would
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converge on operating strategies with small values for the allocation such as 2.5 feet.
Further search did not result in improved economic performance. Operating strategies with
larger allotments, such as the historical operating strategy, were known to exist. We
suspected that the genetic algorithm search was not able to reach these higher benefit regions
of the search space because allotments and releases are closely linked for a good operating
strategy. An efficient genetic algorithm based search requires that small changes in the
binary strings result in measurable improvement in string performance. This principle is
violated in this arrangement. For our runs, smaller allocations can more easily avoid
demand penalties. Once an operating policy that avoids these penalties is found, the genetic
search does not readily progress to larger allotments. Movement to a larger allotment
without a corresponding increase in every release variable would result in large demand
penalties. Such sweeping changes in the binary strings are improbable, slowing down the
progress of the search considerably. It was concluded that it is inefficient to allow the
genetic algorithm to optimize the allotment. For the remainder of our runs, we specified the

allotment and allowed the genetic algorithm to optimize the releases for this allotment.

RESULTS
The results of the application of genetic algorithm search to both the simple exercise we
considered and the optimization of the complex model based on the RGP proved quite

promising.

DYNAMIC PROGRAMMING VERSUS GENETIC ALGORITHM COMPARISON

Once the data were gathered from the application of both dynamic programming and
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genetic algorithm techniques to the simple exercise, they were evaluated in terms of
computer run time and exercise complexity. Dynamic programming running time increased
exponentionally as the complexity increased, while the genetic algorithm’s running time
increased linearly. Recall that the exercise complexity grew in terms of stages and states
within stages. There was little difference between dynamic programming and genetic
algorithms in the smaller capacity and states scenarios. Dynamic programming ran more
effectively (shorter run time to reach optimal solutions) than genetic algorithms in the smaller
capacity and states scenarios. However, as the capacity and states increased, dynamic
programming running time increased dramatically, while genetic algorithms running time
increased at a significantly slower rate.

As expected, dynamic programming found global optimum solutions for all scenarios.
Genetic algorithms found global optimum solutions for smaller scenarios, but as the scenario
size increased, genetic algorithms found only near optimum solutions (see Fig. 21).
Although these results indicate that dynamic programming performed more consistently than
genetic algorithms, it is important to consider the trade offs of time, accuracy, and flexibility
of each technique. Genetic algorithms offered greater flexibility in less time, as they
imposed no constraints on the way the system was simulated, nor was it significantly affected
by the size of the problem. Further research is needed to determine when optimum solutions
are required and when near optimum solutions will be sufficient.

To carry out this comparison we used a backward dynamic programming formulation.
Another alternative would be a forward dynamic programming formulation which, some
might argue, would have been more efficient. For our purposes, there is little difference in
the forward and backward techniques because the overall outcome and inherent problems

would be the same.
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Another way to increase the size of the problem is to increase the number of state
variables. Based on our findings, we believe that this type of increase would produce a
dramatic increase in dynamic programming running time but would not significantly effect
genetic algorithms running time. This assumption is supported by the "curse of
dimensionality" inherent in dynamic programming (Dreyfus and Law, 1977). Further
research is required to adequately compare the effectiveness of traditional search techniques
(such as dynamic programming and gradient based non-linear programming) and genetic

algorithms when applied to water resource management problems.

GENETIC ALGORITHM BASED MANAGEMENT TOOL

Three sets of final runs were made with the genetic algorithm guiding the search of
operating strategies for the computer simulation based on the RGP. In the first set, the
allotment was fixed at three acre-feet. Runs were made with and without the historical
operating policy as a member of the initial population. Seeding the initial population with
the historical operating policy allowed extensive search of the solution space near the current
operating procedures. Beginning a run with an initial population generated entirely at
random was intended to insure that the search was not biased by current operating procedures
that may be good, but not optimal. Although the run seeded with the historical operating
policy had much better strategies initially, both runs eventually produced strategies of
roughly equivalent economic benefit. For the second set of runs, values of 2.5, 3.0 and 3.5
feet per acre were used for the allocation. These runs were made without the historical
operating policy included in the initial populations. For the final set of runs, recreational

benefits were increased by 2.5 times in order to make them more competitive with
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agricultural benefits. An allotment of 3.0 feet per acre was used. Runs with and without the
historical operating strategy in the initial population were made.

All runs were conducted on IBM compatible personal computers with 486 processors.
Final runs were carried out until roughly one million string evaluations had been made.
These runs required approximately 14 hours of run time. One million trials represents an
incredibly small portion of the 2** possible operating strategies. The progress of these runs
is shown in Figures 22 through 27. In these graphs, the best operating strategy found since
the beginning of the search was plotted against the number of trials (or evaluations)
completed. Figures 22 and 23 show the results from the runs with an allotment of 3 feet per
acre, with and without the historical operating policy in the initial population. Figures 24
and 25 show the results of runs with allotments of 2.5 and 3.5 feet per acre, respectively.
Figures 26 and 27 show the results of runs for increased recreation value with and without
the historical operating policy in the initial population.

From these figures, it can be seen that the genetic algorithm found good strategies quite
early in the search procedure. In general, as search progressed, the rate of improvement
steadily decreased. Occasionally, the genetic algorithm made a rapid breakthrough to a
region of the search space with increased performance, as shown in Figures 23 and 25.
Eventually, the search stabilized and improvements to the best strategy were no longer
found. Unlike other optimization techniques, it is not always obvious when genetic
algorithm guided search is complete. Graphs like these can be used, however, to determine
if future improvements are likely.

Note that for the runs whose initial populations included the historical operating policy,
Figures 22 and 26, benefits were quite good from the very moment the search was initiated.

These runs stabilized after a much smaller number of trials than required for searches whose
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initial populations were generated entirely by random. Runs not seeded with the historical
operating policy took longer to stabilize, but eventually reached values very comparable to
those obtained by the runs with the historical policy (Figures 23 and 27).

Figures 28 through 30 show the total economic benefits for the three sets of genetic
algorithm search runs. Figure 28 compares the total economic benefits of the historical
operating policy ("HIST") and the best strategies found by the genetic algorithm search with
a three foot per acre allocation. "GA W/H" represents the best strategy from the search with
the historical operating policy in the initial population. The initial population of the run
labeled "GA" did not include the historical operating policy. Both runs were able to produce
strategies with improved performance relative to the historic operating policy. The historical
operating policy produced a net benefit of $182.4 million, while the two genetic algorithm
searches produced best strategies with values of $186.8 million and $185.0 million.
Agricultural benefits for all three strategies were equivalent. The genetic algorithm searches
increased benefits by improving hydroelectric and recreational benefits, as shown more
clearly in Figures 31 and 32.

Figure 29 compares the best operating strategies found by genetic algorithm guided
search for 2.5, 3.0, and 3.5 feet per acre allotments. All three runs were made with initial
populations that were generated at random. Not surprisingly, total benefits increased with
the size of the allotment due to increased agricultural benefits. This trend would continue
until allotments become too large to allow operating strategies to avoid demand and end-of-
year penalties. This set of runs demonstrates a procedure for optimizing the allocation even
though it may not be efficient to do so with a single genetic algorithm search. Total benefits
for the best strategies from these runs were $169.6 million, $185.0 million, and $195.8

million, for allotments of 2.5, 3.0, and 3.5 feet per acre, respectively.
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Figure 30 evaluates the consequences of increasing the value of recreation by 2.5
times. Benefits for the historical operating policy and two genetic algorithm runs (with and
without the historical policy in the initial population) are shown. These runs were made for
an allotment of three feet per acre. Because recreation was more valuable, total benefits
were increased. The value of agricultural benefits were unaffected, however. A competition
between agricultural and recreational uses never developed because of the demand penalties
for failing to meet agricultural demand. The historical operating policy produced total
benefits of $275.2 million. This was increased to $285.4 million for the best strategy for
genetic algorithm search with the historical policy in the initial population and $280.6 million
without.

Figure 31 shows hydroelectric benefits for the historical operating policy and best
strategies of the various runs. From the three series on the left of the graph, it can be seen
that the genetic algorithm increased hydroelectric benefits by more than 25% over the
historical operation in the first set of runs. Hydroelectric benefits were relatively equal for
the three different allotments of the second set of runs. Benefits were slightly reduced as
recreation was given a higher value in the last set of runs.

Figure 32 shows the recreational benefits associated with operating polices from
historical operation and the genetic algorithm searches. Recreation was slightly increased
from the historical value for the first set of runs. Not surprisingly, in the second set of runs,
recreational benefits decreased as the allotment increased. In the third set, increased value of
recreation caused <;i large increase in recreational benefits. The improvements generated by
the genetic algorithm searches were larger in magnitude, but not significantly different in
terms of percent change from the historical value.

For the first set of genetic algorithm based searches, additional graphs were made in
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order to analyze the difference between historical operation and that suggested by the genetic
algorithm. Figures 33 through 35 show the behavior of Elephant Butte Reservoir for
historical operation and the best strategies suggested by the genetic algorithm guided
searches, with and without the historical policy in the initial population. From these figure,
it can be seen that the policies found by the genetic algorithm release more water than the
historical policy. The magnitude of releases seem to vary more from week to week. Both
these factors may contribute to increased hydroelectric benefits. More release volume results
in more hydroelectric generation. Making larger releases also results in greater turbine
efficiency.

Figures 36 through 38 show the behavior of Caballo Reservoir. Releases suggested by
the genetic algorithm searches again are larger in magnitude than those employed by the
historical operating policy. In general, however, the releases from Caballo are much closer
to the historical values. The volume of Caballo Reservoir is maintained at a much higher
value for the strategies suggested by the genetic algorithm searches. This seems to be the
driving force behind the increased recreational benefits of these strategies. Evaporation
losses are also greatly increased. The genetic algorithm search seems to indicate that the
value of water lost to evaporation is more than offset by increased recreation benefits when
Caballo volume is maintained at a higher value. These results, or course, are based on our
model of the RGP system. Any contradiction of previous studies or operating policies could
be due to either the model’s inability to accurately simulate response of the RGP or the
limitations of a single year optimization period. In either case, our results demonstrate the
ability of a genetic algorithm to find regions of higher performance when operating a

complex model.
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CONCLUSIONS

This research investigated the potential of genetic algorithms to optimize the operation
of complex models of water resources systems. Such models pose a significant challenge to
conventional optimization approaches. As a result of this research, we have reached the
following conclusions:
1. Genetic algorithms are capable of optimizing water resources system models of greater
complexity than current techniques allow. For the simple exercise performed here, genetic
algorithm search performance appeared better than dynamic programming.
2. Genetic algorithms do not always find the optimal solution nor is it always obvious when
improvement has stopped. Nevertheless, for many applications, finding near optimal
solutions or solutions that represent improvements on current practice are sufficient.
3. Genetic algorithms appear capable of optimizing complex models of water resources
systems. In this case study, they were able to find improved operating strategies for a
representative model of the RGP.
4, As with all optimization techniques, the results of genetic algorithm guided search are
only as good as the model of the system used in the optimization process. The optimization
capabilities of genetic algorithms will help justify the effort and cost to develop accurate and
complex system simulations.
5. There is room for improvement in the application of genetic algorithms to realistic water
resources problems. Topics for future research include problem formulation and genetic
algorithm operators designed to reduce the generation of infeasible solutions.
6. Further research is required to adequately compare the effectiveness of traditional search
techniques (such as dynamic programming and gradient based non-linear programming) and

genetic algortihms when applied to water resources problems.
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