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The purpose of Water Resources Research Institute (WRRI) technical reports is to provide
a timely outlet for research results obtained on projects supported in whole or in part by the
institute. Through these reports, we are promoting the free exchange of information and ideas
and hope to stimulate thoughtful discussion and actions that may lead to resolution of water
problems. The WRRI, through peer review of draft reports, attempts to substantiate the accuracy
of information contained in its reports, but the views expressed are those of the author and do
not necessarily reflect those of the WRRI or its reviewers.

Contents of this publication do not necessarily reflect the views and policies of the U.S.

Department of the Interior or the U.S. Department of Agriculture, nor does mention of trade
names or commercial products constitute their endorsement by the United States government.
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ABSTRACT

Landslides can be a significant source of sediment in watersheds. Landslide materials
which enter stream channels can create unwanted responses such as blockage or diversion of the
stream and significant degradation of the aquatic and riparian habitats. Estimates of amount of
material delivered to a stream channel by a landslide would be of great value to watershed
managers. In this study, current methodology was reviewed and new models were developed for
estimating the delivery of landslide materials to a stream channel.

A mutually beneficial coliaboration was developed with researchers at the University of
Newcastle-upon-Tyne, Great Britain, regarding a review of the state-of-the-art and
conceptualization of new approaches. A very important literature review was produced by the
British group.

New models were developed from landslide measurements collected in Idaho between
1974 and 1976. Over 1300 observations were screened and utilized to produce a two-step‘
approach for estimating delivery. In the first step, site characteristics of landslide Iength, distance
of the landslide from the stream, and the slope gradient are entered in a logistic model. The
logistic model defines whether the landslide will reach the stream. If landslide material does
reach or "makes it" to the stream, a multivariate model is used to estimate the percent of delivery.
The multivariate model is conditioned on the observation that a slide reaches the stream.
Although the confidence intervals on the delivery estimates can be quite large, the models
combine physically meaningful site characteristics accounting for spatially variable landslide
delivery. The models developed in this study will be useful in suggesting directions for further

research and watershed modeling approaches.
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INTRODUCTION

General

Landslides in upland watersheds can produce damage to on-site resources and to
downslope areas. If a landslide enters a stream, the landslide materials may be transported far
beyond the original depositional location and cause other damages. This is particularly true if the
receiving waters are prime fish habitat. Sediment loadings from landslides can far exceed the
normal carrying capacity of the streams thus creating a sediment-choked channel unsuitable as
fish habitat.

Determining when and where landslides will occur, whether they are human caused or
naturally occurring, is a difficult task. Determination efforts have been aided by applying soil
mechanics principles, remotely sensed data, extensive field studies, and Geographic Information
Systems (GIS). These techniques have come together to yield landslide hazard or potential maps
which delineate areas wherein conditions, such as slope gradient, soil materials, ground water and
vegetation exists, which can ultimately lead to slope failure.

A slope failure or landslide is a necessary but not sufficient condition to yield materials
to a stream channel. This study attempts to determine the link between the occurrence of a

landslide and the amount of landslide material delivered to a downslope channel.

Goal and Objectives

This study's goal was to develop a baseline understanding of the factors and processes
influencing downslope delivery of landslide materials. To achieve this goal, four objectives were

set. These were to:

1. summarize univariate statistics of landslide delivery data, as supplied by the USDA
Forest Service, in total and by important influencing factors such as landslide type, site

properties, and management factors;

2. develop empirical equations for predicting the percentage of landslide delivery to

channels using site factors and landslide properties;



3. locate and describe available models for predicting the downslope delivery of landslide
material, and where possible, test the applicability of such models using the supplied

landslide data; and

4. present the results and findings in a report.

Collaboration

A mutually beneficial collaborative effort was arranged with Dr. James Bathurst and Dr.
Sue White associated with the Water Resources Systems Research Unit (WRSRU), Department
of Civil Engineering, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK. The
WRSRU is developing the SHE (Systéme Hydrologique Européen) model (Abbot et.al. 1986a,
b) and has added a landslide erosion and sediment yield routine to the SHETRAN component.
SHETRAN is a physically based hydrological sediment transport and contaminant migration
modelling system applicable at the basin scale. SHETRAN is an offshoot of the SHE. Bathurst
has chosen to use the approach developed by Ward (1976) with an enhancement (routing). As
part of the modelling effort, Bathurst (1991) produced an exhaustive literature review. As part
of the review, he visited New Zealand and was in turn visited by this writer at the University of

Newcastle. Bathurst's review formed a critical part of this study.



METHODOLOGY

General

The two primary products of this research were a review of current modeling approaches
and an analysis of existing data to define appropriate models suitable to the data. The first
product required a search and synthesis of information from a variety of sources. The second
product required extensive use of statistical analyses programs. The statistics package chosen was
SAS (SAS Institute 1989), which was available at New Mexico State University and the
University of Newcastle. Of particular interest were those algorithms for assessing univariate and

bivariate statistics, multivariate regression, and logistic regression.

Data Base

Data for analyses were provided by Dr. Walter Megahan, formerly of the USDA Forest |

Service Intermountain Research Station in Boise, Idaho. The overall data base i1s summarized in

Table 1.

Table 1. Summary of Data Sets Supplied by USDA Forest Service

Data Set National Forest Year Sampled Number of Samples

BNF75 Boise 1975 792

CNF74 Clearwater 1974 156

CNF75 Clearwater 1975 230

CNF76 Clearwater 1976 188
TOTAL NUMBER OF LANDSLIDES SAMPLED 1366

Each observation (sample) or measured landslide could have as many as 102
characteristics determined for it. Some important characteristics for this study included percent
of landslide material delivered to the channel, dimensions of the landslide, source of the

landslide, distance of the landslide from the channel, and slope gradient. All variables were not



available or measured for each observation. Therefore, each data set was screened to exclude
those observations not having variables useful in modeling.

The first filter or screening decision was whether or not there was a recorded percent
delivered value for the observation, that is, values greater than or equal to zero (0). The percent

delivered variable (%DEL) was determined from the following:

(VOLSLD +VOLEROS) -VOLDEPx100% 6))

% DEL=
(VOLSLD+VOLEROS)

where %DEL = percent of total landslide material delivered to a channel (by volume),
VOLSLD = volume of the landslide either from measurements of length, width and
depth or estimated,
VOLEROS = volume of material eroded downslope of the landslide, either calculated
from measurements or estimated, and

VOLDEP = volume of deposition, either calculated from measurements or estimated.

In almost all observations, VOLEROS was not recorded. Because of the error and uncertainty in
the measured variables of Equation 1, the exact value of %DEL is not known. Therefore, attempts
to estimate precisely recorded values of %DEL can be fraught with problems. Observations were
also eliminated if they did not contain variables for original slide length (SLDLEN), slide width
(SLDWTH), slide depth (SLDDEP), slope gradient (SG), and distance of the slide from a stream
channel (STDIST). Observations were classified as to whether or not any slide material entered
the channel (MADEIT=0 for No, and=1 for Yes), and by source of slide material (SLDGRP, see
Table 2). The slide source "Other" refers to slides resulting from human activities not related to

roadways. This would include landings and other slope modifications.

Table 2. Grouping of Landslides by Source

Slide Source Group #
Other 0
Natural 1
Road Cuts 2
Road Fills without Culverts 3
Road Fills with Culverts 4




The filtering process yielded working data sets from the data base (Table 3). These data
sets can be further described by a slide group (SLDGRP) as categorized in Table 4. The data
in Table 4 clearly indicate that the predominant number of recorded landslides is associated with
road cuts. Table 4 describes the working data sets fairly well and helps define further modeling
steps. Plots of %DEL with the other variables were generated for each data set along with
descriptive statistics (see Appendix A for descriptive statistics). A general linear model procedure
(GLM), of SAS was applied to the data sets to determine if there were differences between data
sets and among the slide groups. The GLM is preferred to analysis-of-variance (ANOVA) when
the number of observations is unbalanced. Differences were noted between the data sets, but

those differences are not believed to be a result of differences in underlying physical processes,

but by differences in what was sampled.

Table 3. Results of Preliminary Filtering (screening) of Data Sets

Number of Observations
Data Set As Supplied After Screening Percent Retained
BNF75 792 563 71
CNF74 156 135 87
CNF75 230 230 100
CNF76 188 188 100
TOTAL 1366 1116 82

Table 4. Number of Landslides by Data Set and Source

Slide Group (Source)
Total Road Fills Road Fills
Data Set Number Other Natural - Road Cuts w/o Culverts  with Culverts
BNF75 563 84 32 270 156 21
CNF74 135 7 4 64 42 18
CNF75 230 4 19 148 31 28
CNF76 188 7 8 121 39 13
TOTAL(%) 1116 102(9) 63(6) 603(54) 268(24) 80(7)




Fuzzy Number Analysis

The application of fuzzy data set concepts was investigated with respect to determining
delivery of material to a channel. Fuzzy data set theory was initially proposed by Zadeh (1965).
Kaufmann and Gupta (1991) expanded upon Zadeh's ideas with a more thorough treatment of
fuzzy arithmetic. In general, fuzzy sets are limits (minimum and maximum values) placed upon
a variable of interest. For example, if the variable has a value of 4, and it is known that the
variable does not fall below 2 or become greater than 6, then the limits and most likely value of
the variable have been established. The next, and most difficult, step is to define the value
distribution within the interval [2, 6]. Apriori the chance of 4 occurring is high and is assigned
a weight of 1.0, whereas 2 and 6 have weights of 0. Numbers between 2 and 6, except 4, receive
weights greater than O but less than 1.0. The shape of the curve that joins all points must be
known or approximated by the person applying the technique.

Two general shapes are often applied, triangular or rectangular. A triangular shape peaks .
on the most likely value, in this case 4, and falls to a zero weight at the limits 2 and 6 for this
case. A rectangular shape infers that any value over the range has the same weight as any other.
Infinitely many other shapes are possible. The primary concept is that over a range of values,
some values have a higher possibility of occurrence rather than a conventional probability of
occurrence. The rules of arithmetic generally apply to the fuzzy data sets, but produce results
much different than if random variables were selected from probability distributions using Monte
Carlo simulation techniques. For example, if a fuzzy variable described by rectangular
distribution is added N times, the resulting distribution is rectangular. In contrast, if a uniformly
distributed variate is sampled and added N times, the result is a normally distributed random
variable, as predicted from the central limit theorem. Thus, a one-to-one correspondence of
possibility and probability theory does not exist.

Applications of fuzzy data set concepts to civil engineering problems have been growing.
Bardossy and Disse (1993) used fuzzy rule-based concepts to model infiltration into soils.
Applications were made with two commonly used infiltration models. Lee, Dahab, and Bogardi
(1994) used fuzzy sets along with a multicriteria decision-making technique to assess groundwater
nitrate risks. The paper by Lee and Juang (1992) presents a qualitative evaluation scheme for
assessing slope-failure potential in mudstone terrain. The authors used fuzzy sets and a

multibranched decision tree to create their failure potential classification. Juang, Lee, and Sheu



(1992) present a fuzzy set based approach for mapping slope failure potential. The authors used
fuzzy set theory, five levels (A through E, A being the most hazardous) of ratings for site
variables (such as slope gradient and rainfall), and repetitive Monte Carlo sampling to produce
a Slope Failure Potential map for a site in southern Taiwan. A potential approach that may be
applied to the landslide data described in this report was summarized by Diamond (1992). In that
paper, Diamond described the development of linear models based on imprecisely known or fuzzy
data sets. Fuzzy data set theory appears to have potential for application to the data used in this
study. One drawback in the application is that the resultant values produced by the fuzzy set
approach are fuzzy themselves, such as classification of very high, high, medium, low and very
low. In sediment routing and yield studies, these classes will need to be assigned ranges so that
crisp numbers can be utilized in computations. Whether or not a slide reaches a stream is a crisp
number, yes or no. The volume material reaching the stream can be considered a fuzzy number
because of measurement difficulties. For this study, it has decided to apply tradition probabilistic

approaches to the data. However, the application of fuzzy number theory to landslide estimation |

is a topic with high potential benefits and should be pursued.



MODEL TYPES

General

Two types of models were considered for estimating delivery of landslide material to
channels. The first type was a logistic model. A logistic model is appropriate if a variable is
within a certain classification or grouping. Descriptions of logistic and other nonlinear models
can be found in Draper and Smith (1981), Netter, Wasserman, and Kutner (1989), Seber and Wild
(1989), and Wadsworth, Jr. (1989). In this study the key grouping variable was MADEIT, that
is, whether or not a landslide was recorded as having reached or "made it" to a stream channel.
Each observation was assigned 0 or 1 (did not reach or did reach a channel) for the variable
MADEIT, then MADEIT was modeled with logistic regression. A general form of the logistic

regression model can be expressed as:

P{y=y}=_SDCXB) @)
1+exp(-X'B)

where P{Y=y}= the probability that a dependent variable Y is equal to an integer value y,
exp () = is the exponential function of the parenthetical values,
X' = a vector containing the independent variables or X/'s, and

B = a vector containing the coefficients fitted to the data.

The logistic model cannot be fit by standard least squares regression techniques because the
residuals will be either 0 or 1 (No or Yes). Therefore, likelithood estimators and numerical
optimization techniques are applied to the data to determine an appropriate model. For the
landslide data sets, the interest is whether or not the observation is in the MADEIT=1 (Yes)
group. If so, then the observation should contain variables which would physicaily enhance the
delivery of landslide material to the channel, such as a short distance to a stream or a steep slope
gradient. The logistic model is continuous on the interval 0 to 1 but the observations are discrete.
Therefore, a cut-off level must be selected so that a balance is struck between the number of
underpredictions, that is, predict no delivery when material did reach the channel, and

overpredictions, that is, predict delivery when it did not occur.



The logistic model also can be used to estimate the interval groupings assigned to the
%DEL variable. In this type of application, the logistic model is fit to the stratified data and each
" strata receives an intercept value (B,) but shares the other () values. One problem with this
approach is that the within strata variance of the predictor variables may not be sufficient to
permit that variable to be used in the model (not a significant fB; coefficient). Another modeling
strategy would be to predict first whether or not a slide will make it to a stream, then estimate
the %DEL using multivariate regression.

Multivariate linear regression is a commonly used technique for relating dependent or
response variables to independent or control variables. Often the assumptions surrounding
multiple regression as a statistical tool are violated by model builders. Regardless of whether or
not the statistical assumptions are entirely satisfied, multiple regression is a useful approach for
determining optimal coefficients in the model. A number of general statistics and specific linear
models texts contain detailed and extensive sections on multivariate linear regression (for

example, see Draper and Smith 1981, and Neter, Wasserman, and Kutner 1989).

Variable Selection

The variables used to build the models should be those which make physical sense, are
easily calculated in a model of landslide failure, and also can be related to %DEL and MADEIT.
The obvious choices for variables include those previously mentioned and various combinations
of the variables including the inverse of the distance to the stream (except for those observations
where STDIST=0), the ratio of slide length (a measure of size) to distance to the stream
(SLLSTD=SLDLEN/STDIST), a potential energy term which is the product of distance to a
stream and slope gradient, and various transformations of the different variables. Numerous other
variables and variable combinations were examined. Those selected for the models had the
highest correlations with the %DEL and MADEIT variables and did not exhibit collinear behavior
with the other selected variables. Notes supplied with the original data base were extremely

helpful in selecting variables for consideration.



RESULTS AND DISCUSSION

Review of Landslide Delivery Models

Contemporaneously with this study, Bathurst (1991) produced an important report
reviewing physically based modeling of landslide erosion and sediment yield (see Appendix B).
His extensive literature search did not reveal any models for estimating landslide delivery to a
channel. He did find several references to debris-flow modeling including runout characteristics.
Bathurst believed that the approach of James (1985) was the only previous attempt to represent
landslide erosion and sediment yield in an integrated, process-based, catchment-scale model.
Bathurst's work added significantly to this study by saving time, focussing efforts, and providing
a basis for development of new ideas.

A number of articles have appeared since Bathurst's (1991) report. Brunsden (1993)
discusses numerous research frontiers regarding mass movement. He speaks of many topics .
related to mapping and modeling of landslides, but does not specifically address landslide
delivery. Other recent papers can be divided into two groups, those associated with mapping and
prediction, and those associated with process modeling.

The mapping and prediction group includes the paper by Carrara et al. (1991), which
combines discriminant analysis factor mapping with GIS technology to map landslide hazards.
Carrara et al. explored other analysis techniques for estimating hazards, including linear
regression, linear neural network modeling, and {ogistic regression, before selecting discriminant
analysis. They note that logistic regression yielded results almost as sound as provided by
discriminant modeling. Carrara et al. used their model to categorize GIS map pixels from a
watershed in Italy as landslide or not. They compared their modelling results with what actually
occurred. The percentages of correct grouping ranged from 75 to 85 percent.

Ziemer et al. (1991) use empirical and stochastic models to estimate the cumulative
effects of forest management activities, specifically changes in sediment production and yield.
Their "primitive simulation" (page 360 op.cit.) generates landslides in logged and roaded areas.
Failed areas were converted to depth by multiplying by 1.5m. Twenty percent of the eroded
volume was then delivered to a stream channel, and transport in the channel was modelled as a

function of water discharge and sediment supply.

10



Auer and Shakoor (1993) studied numerous debris avalanches in the state of Virginia
(USA) caused by hurricane Camille in 1969. They used basin physiography to classify basins
as stable or unstable based on horizontal curvature and average slope gradient. Of 21 basins
classified as unstable with their method, only 14 (67%) were observed to have failed. The
primary controlling factor for instability was coarse grained soils that saturated rapidly.

Maharaj (1993) reported on a study in Jamaica, West Indies, wherein 886 failures were
mapped. Debris slides accounted for 82 percent of the failures. Most failures occurred within
a conglomerate and breccia dominated lithologic unit. Maharaj used factor analysis to create a
landslide susceptibility map for the area.

Jade and Sarkar (1993) used information theory (probability) and regression analysis to
estimate landslide hazards in the Gharval Himalaya. The information theory approach uses a
factor-based model wherein each factor is weighted by its occurrence in landslide-prone areas.
Both methods produced similar results when used to map landslide prone areas. In general, the
regression approach appeared to be marginally better than the information theory approach. |

Garland and Oliver (1993) used rainfall variables to estimate landslide frequencies in the
Durlan region of South Africa. They found that a model could be developed for estimating the
timing and number of events. They used a data base of 120 landslides.

Cruden and Hu (1993) used steady-state and exhaustion models to predict landslide
hazards in the Canadian Rocky Mountains of Alberta. Steady-state assumes that the landslides
(rock slides) which have occurred in the area have done so at a steady average rate of one every
150 years, on average, for the last 10,000 years. Exhaustion assumes that once an area fails
(slides) it is no longer susceptible and the total susceptible area is thus reduced. The reduction
in area, in effect, lengthens the return period assumed by the steady-state model, a fact process
models should consider. Conversely, areas which fail can refill and fail again if given enough
time.

Several papers have appeared related to landslide flow modelling. Sousa and Voight
(1992) used a continuum dynamic flow model to assess the travel distance, velocity, and debris
deposit dimensions of a potential landslide. Their model is based on a Bingham rheology
approach and considers viscous and plug flow. This method may be applicable when modeling
deposition in the streams on an individual landslide basis. However, it does require several

parameters not easily obtainable, such as material viscosity.
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Davis (1992) used a dual zone approach to model debris flows wherin a steep feeder slope
empties onto a flatter accumulation segment. The model, although simple, was not effective in
predicting onset of surges, but does provide insight into the processes involved.

Zhang et al. (1993) examined earth flows on forested and grassed slopes in New Zealand.
Surface movement on forested slopes was significantly less than on grassed slopes. A primary
factor is the modification of soil rheology by interspersed tree roots.

Davis et al. (1993) examined the effects of velocity-dependent strength characteristics of
the stability of a sliding mass. They concluded that although complex discrete models, for
example, continuum models, will simulate a wider variety of motions, the overall stability of the
mass being the same as that for a simpler rigid-body model. This finding is important because
it indicates that simpler models can be as effective as more complex types to estimate stability.

O'Brien et al. (1993) present their two-dimensional model of flood and debris flow
hazards. Although directed toward suburban/urban hazard prediction, the model can be used to
determine deposition extent. |

Montgomery and Dietrich (1994) used a topographic model to predict landslide initiation,
transport and deposition zones in three small (0.3-1.2 square kilometer) watersheds on the West
coast of the USA. Their model included soil moisture, conductivity, slope angle, contributing
area above a potential failure zone, soil density, and angle of internal friction. Depositional zones
were defined as the first topographic elements (downslope of the a failure zone) wherein slope
falls below a threshold (usually 5 percent to 10 percent).

None of the recent papers speaks directly to the question of how to estimate delivery of
landslide materials to stream channels. At a complex level of modeling, the papers by Sousa and
Voight (1992), O'Brien et al. (1993), and Montgomery and Dietrich (1993) come closest in this
regard. However, the complexity of those models is such that they are not appropriate for a large

watershed-size analysis.

Descriptive Statistics

This study's data can be described in several different ways according to how it is
grouped. Megahan, Day and Bliss (1978) have previously summarized the overall data set. Only

information related to the working data set (Table 4) will be described in this study.
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Table 4 indicates that most of the landslides were associated with road cuts, a fact
discussed by Megahan, Day and Bliss (1978). Of particular interest is the slide volume and
percent delivered for each source of landslide. These values can be seen in Table 5. Note that
the value of comparison for did-not-reach and did-reach groups is the slide volume, but the value
of interest in this study is the percent delivered. It is interesting that although landslides were
often observed in road cuts (SLDGRP=2), the percent delivered for this group was less than the
other groups. An analysis of variance test was applied to the data sets to determine which groups
could be combined. Based on slide volume, (including the log transformed values of slide

volume and percent delivered), it was determined permissible to group the data by source before

further modeling.

Table 5. Average Slide Volume and Percent of Material Delivered for Each Data Set and
Slide Type.

Data Set: BNF735 N=135
Source
Slide Other Natural Road Cut Road Fill Road Fill

w/o Culvert w/Culvert

Did not reach channel

N, 8 4 87(88] 35[39] 0

Slide Volume 53(39) 142(93) 95(179) 112(156) -

Reached channel

N, 75176 27/28 181/182 1177117 21721

Slide Volume 240(651) 278(414) 165(363) 189(326) 331(450)
Percent delivered 39(29) 50(39) 4.7(9.1) 27(24) 34(30)

Slide Volumes in cubic yards

Values are listed as means (standard deviations)

N = number of observations based on slide volume for Did not reach channel and on Percent
delivered for Reached channel.

N,= observations for calculating mean of slide volume [total observations in brackets if
different]

N,= observations for mean of slide volume/mean of percent delivered

13



Table 5 continued. Average Slide Volume and Percent of Material Delivered for Each Data
Set and Slide Type.

Data Set: CNF75 N=230

Source

Slide Other  Natural Road Cut Road Fill Road Fill
w/o Culvert w/Culvert

Did not reach channel

N, 1 3 50 8[13] 5[6]

Slide Volume 2928 377(378) 216(665) 5150(12182)  7450(9971)
Reached_channel

N, 3/3 16/16 97/98 17/18 22/22

Slide Volume 360(194) 4224 (15668) 754(3424) 826(958) 1619(2020)
Percent delivered 65(22) 57(33) 7.7(11.8) 43(36) 38(36)

Slide volumes in cubic yards

Values are listed as means (standard deviations)

N = total observations retained

N,= observations for calculating mean of slide volume [total observations in brackets if
different]

N,= observations for mean of slide volume/mean percent deltvered

14



Table 5 continued. Average Slide Volume and Percent of Material Delivered for Each Data
Set and Slide Type.

Data Set: CNF76 N=188

Source

Slide Other Natural Road Cut Road Fill Road Fill
w/o Culvert  w/Culvert

Did not reach channel

N, 4 0 6(7] 1112] 1[2]

Slide Volume 120(44) - 71(29)  2339(6672) 21

Reached channel

N, 33 8/8 111/114 26/27 10/11

Slide Volume  3648(6050) 126(109) 308(1187) 398(907) 221(298)
Percent delivered 11(16) 73(35) 5.5(8.71) 49(41) 30(26)

Slide volumes in cubic yards

Values are listed as means (standard deviations)

N = total observations retained

N,= observations for calculating mean of slide volume {total observations in brackets if
different)]

N,= observations for mean of slide volume/mean percent delivered
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Table 5 continued. Average Slide Volume and Percent of Material Delivered for Each Data
Set and Slide Type.

Data Set: All Observations N=1116

Source

Slide Other Natural Road Cut Road Fill Road Fill
w/o Culvert  w/Culvert

Did not reach channel
N, 13 8 171[173] 61{71} 10[12]
Slide Volume 295(793) 216(252) 215(785) 1484(5314)  5605(7840)

Reached channel

N, 87/89 53/55 425/430 193/197 65/68
Slide Voiume 374(1271) 1443(8620) 457(2057) 345(397) 1051(2352)
Percent delivered 42(30) 57(36) 6.6(11.2) 38(32) 39(33)

Slide volumes in cubic yards

Values are listed as means (standard deviations)

N = total observations retained

N,= observations for calculating mean of slide volume [total observations in brackets if
different] ’

N,= observations for mean of slide volume/mean percent delivered
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Denived Delivery Models

Logistics and linear models were fit to the grouped data to produce relationships between
the site variables and: a) the probability that a landslide would "make it" to a channel, that is,
enter the channel, and b) the volume of material the landslide would deliver if it did in fact reach
the channel. Because the volume delivered was a very imprecise value based upon field
estimates, any estimates of yield will have a large degree of uncertainty. Nevertheless, the
models do provide a systematic approach to estimating delivery.

Separate models were fit for the probability and the percent delivery. These two types
of models were fit to each landslide type (natural, road cut, etc.) and to all types grouped
together. Identification of key variables which were related to probability and percent delivery
included scatter plots of untransformed and transformed (logarithmic) values, correlations, and
conceptual and practical considerations. Although not all the same variables were important to
each data set, the important variables identified for the logistic (probability) model were length .
of landslide (SLDLEN), distance to nearest stream (STDIST), the ratio of SLDLEN to STDIST
(SLLSTD, specifically log base ¢ of SLLSTD or LSLL), and slope gradient (SG). The important
site variables for percent delivered (PD, specifically log base e of PD or LPD) were as above
SLDLN, STDIS, SLLSTD, and SG or their log base e transformations. Because of the large size
of the data sets, these and other variables were "significantly" correlated to one another even
though the largest observed linear correlation coefficient was 0.401 for 836 values of LPD and
LSLDLN (log base e of SLDLEN). The landslide volume and percent delivered variables were
examined to determine if they were normally distributed in the original and transformed values.
Tests of normality, stem and leaf plots, and box-plots were applied to the variables with the result
that log base e of landslide volume was normally distributed but only for road fills with culverts
data (SLDGRP=4). In the other cases, it appeared that the data were skewed or uniformiy
distributed. The implications for this non-normality is that some assumptions in linear model
building may be violated. Still, the models produced do provide insight to the controlling site

characteristics.
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Logistic (Probability) Models

The basic logistic model for estimating the probability that a landslide reaches a stream

can be derived from equation (2) as:

1
l1+e?

()

p:

where p = probability the landslide makes it to the stream (0-1),

Y=, bX,
X; = important site characteristics,
b, = fitted coefficients, and

k = number of coefficients in the model (i=0 means the intercept term).

The b, coefficients were fit using the stepwise option in the LOGISTIC procedure of SAS. The
results of fitting seven different models are shown in Table 6. Because the road cut data were |
statistically dissimilar to the other data (caused by type of landslide), models were fit with and
without including that data set.

All the fitted models in Table 6 have the same or similar variables. The most frequently
selected variable was LSLL. This makes physical sense because large slides (longer slide
lengths) close to streams should have a better chance of entering the stream. Steep slope
gradients as indicated by the SG variable should increase the chance for the slide entering the
stream.

Two exceptions stand out. For natural slides, the probability for reaching a channel was
0.81 (=30/37) without being influenced by any variables. In this case, the data set is too small
by itself to build a satisfactory model. The road fills with culverts data set shows a coefficient
of positive 0.0210 for the SLDLEN variable. To be consistent with physical constraints, a
negative value would be expected. The difference may be caused by the fitting procedure which
may have altered the coefficient to coincide with the STDIST variable, that is, some relation

between SLDLEN and STDIST.
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Table 6. Important Variables, X;, and Coefficients, b;, in the Logistic Equation Term

Y=Zki=l X; b;.
Data Set N X! b, Chi-square
"made 1t" "did not" probability?
All data 733 256 Int. -1.9341 0.0001
LSLL -0.4243 0.0001
All data except 323 92 Int. -2.4292 0.0001
SLDGRP=2 LSLL -0.6203 0.0001
Other Causes 68 10 Int. -2.9305 0.0001
(SLDGRP=0) LSLL -0.5871 0.0484
Natural 30 7 Int. -1.4553 0.005
(SLDGRP=1)
Road Cuts 410 164 Int. -1.5983 0.0001
(SLDGRP=2) LSLL -0.3067 0.0001
Road Fills w/o 177 63 Int. -0.6521 0.4162
Culverts LSLL -0.5945  0.0001
(SLDGRP=3) SG -2.3069 0.0338
Road Fills with 48 12 Int. -4.5659 0.0001
Culverts STDIST 0.00289 0.0134
(SLDGRP=4) SLDLEN 0.0210 0.0191

1 - Int. = intercept term
LSLL = log base e of SLDLEN/STDIST(=SLLSTD)
SG = slope gradient as a decimal
STDIST = distance from slide to the nearest stream, feet
SLDLEN = length of the landslide, feet
Variables listed in order of inclusion into the model

2 - This is a measure of the significance of the b, coefficient, i.e., the X; term. Small Chi-
square probabilities infer significant variables. Except for the Int. term, variables with
Chi-square probabilities = 0.05 were excluded from the model. Note values of 0.0001
should be read as less than or equal to 0.0001.
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The models can be demonstrated as shown in the following table using average values for
SLDLEN, STDIST, and SG. As Table 7 shows, given representative values the models do a
reasonably good job of estimating the overall probability a landslide makes it to a channel as
compared with observed values. This is reasonable because the model should be able to estimate
the group probability given representative conditions. Individual probability will vary. A major
exception is the estimate for road fills with culverts wherein the estimate is much higher. The
reasons for this discrepancy were not clear when the data were examined. There may be a

problem with the small size of the data set.

Table 7. Estimates of the Probability a Slide Will Enter a Stream Using Equation (3),
Coefficients in Table 6, and Representative Variable Values from Appendix A.

Model Y-Value* Probability of Slide Entering Stream
Model Estimated Observed =
measured/total
All Data -1.041 0.74 0.74
All Data w/o Road Cuts -1.303 0.79 0.78
Other -1.934 0.87 ' 0.87
Natural (no model) -1.455 0.81 0.81
Road Cut -0.865 0.70 0.71
Road Fill without Culvert -0.989 0.73 0.74
Road Fill with Culvert -2.159 0.90 0.80
*Y=2"bX;

For example, values of SLDLEN=45 feet and STDIST=369 feet were used in the
calculation of the All Data estimate.
Note: LSLL = log,(45/369) = -2.104

Logistic Model Adequacy

The logistic model of equation (3) provides a continuous estimate probability between
zero(0) and one(1). The landslides were denoted as not making it to the channel (0) or making
it (1). Therefore, a cutoff probability should be selected so that values above that level would
indicate the slide had made it to the channel and values below that level would indicate that the
slide had not. This value can be calibrated using the LOGISTIC procedure in SAS. If the value

is set too low, then too many success (made it) cases would be predicted. If it is set too high,
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then too many failures (did not make it) would be predicted. The LOGISTIC procedure produces

statistics on number of correctly and incorrectly identified observations based on the preassigned

cutoff probability. In this application, the number of correctly identified success (made it)

observations were used to select a cutoff level. For example, at a cutoff level of 0.5, the percent

correctly identified as success was 98.9 percent, but the percent of correctly identified failures
(did not make it) was only 5.5 percent. These results were based on the all-data models of Table
6. A level of correctly identified successes was arbitrarily set at 80 percent based on Carrara et
al. (1993) results. The cutoff probability that produced a result near this was 0.674. This value

yielded a 80.9 percent correct estimate of success, but only 37.1 percent of failures were

estimated correctly. By raising the cutoff level, the number of landslides making it to the channel
is underestimated. In contrast, if the cutoff level is dropped to 0.25, then all the successes are
correctly predicted, but none of the failures is correctly predicted. If the cutoff level of 0.674 is
used in all the models, the percentages of correct estimates will vary. This effect is shown in

Table 8.

Table 8. Effects of Setting a Logistic Model Cutoff Level. Cutoff Level = 0.674

Data Set Percent Correct Overall
(MADEIT=1, yes) (MADEIT=0, no)
All Data 80.9 37.1 69.6
All Data w/o Road Cuts 84.8 43.5 75.7
Other Causes 98.5 0 85.9
Natural (no model) 100.0 0 81.1
Road Cuts 75.9 34.1 63.9
Road Fills w/o Culverts 77.4 50.8 70.4
Road Fills with Culverts 95.8 58.3 88.3

The selection of an appropriate cutoff level will be based upon what one is trying to
balance. If one wants to have more correct estimates of successes (MADEIT=1) then the level
should be lowered. However, if MADEIT=0 is of importance, then the level should be raised.
As the level is raised and lowered, the overall percentage will vary. The results in Table 8

indicate that a cutoff level of 0.674 may be appropnate for model application. Predictions of
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whether or not a landslide makes it to a stream is only a first step. The next step is to estimate

the percent of the slide mass entering the stream.

Delivery Models

The basic linear model for estimating the percent of landslide mass (volume) which

entering a stream can be formulated as:
k
%DEL=Y. b, X, 4)
=0

where  %DEL = percent of landslide volume delivered to the stream,
X,
b.

1

= site characteristics controlling delivery, and

= coefficients fit with the data.

Models were fit to the five slide groups plus all the data combined. Although the models -
provided estimates that were better than using the mean value only, the predictive capability as
judged by the coefficient of multiple determination, R?, was quite low (but significantly different

from zero). In general, the better models were of the form:

LPD=3. b, Y, (5)

where  LPD = log,(%DEL/100),
Y’ zloge(Xi)a a'nd

b, = coefficient fit with the data.

Stepwise multiple regression was applied to the data sets. The models selected from the analysis
are presented in Table 9. The coefficients in Table 9 have the correct sign (+ or -) as would be
expected from physical reasoning. The importance of SLDLEN, STDIST, and SG are again

emphasized by these models.
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Table 9. Important Variables, X's, and Coefficients, b/'s, in the %DEL Models of Equation (5)

Data Set N )& b, Probability® (R*?

All Data 733 Int. -5.074 0.0001 0.216
SLDLEN 0.793 0.0001 (0.001)*
STDIST -0.206 0.0001
exp(SG) 1.157 0.0001

All Data w/o Road Cuts 323 Int -2.222 0.0001 0.081
SLLSTD 0.206 0.0002 (0.0004)
exp(SG) 1.424 0.0004

Other Causes 68 Int, -2.116 0.0013 0.126

(SLDGRP=0) SLLSTD 0212 0.0482 (0.0124)
exp(SQG) 1.482 0.0850

Natural 30 No variables met the Probability ievel criteria of 0.15, i.e.

(SLDGRP=1) probability < 0.15

Road Cuts 410 Int. -4212 0.0001 0.124

(SLDGRP=2) STDIST 0.256 0.0024 (0.0001)
SLLSTD 0.429 0.0001
exp(SG) 0.435 0.0959

Road Fills w/o culverts 177 Int. -3.431 0.0001 0.103

(SLDGRP=3) ' exp(SQ) 2.289 0.0004 (0.0001)
exp(SLLSTD) 0.636 0.0017

Road Fills with culverts 48 Int. -1.215 0.0004 0.072

(SLDGRP=4) exp(STDIST)  -0.00163 0.0647 0.0647)

1 - Int. = intercept term
SG = slope gradient as a decimal
STDIST = distance from slide to the nearest stream, feet
SLDLEN = slide length, feet
SLLSTD = SLDLEN/STDIST
exp { ) = exponentiation of enclosed term
Variables listed in order of inclusion into the model.
2 - Determined from an F-test of the coefficient value. Values < 0.10 indicate that the coefficients
are significantly different than zero.
3 - Coefficient of muitiple determination, "r-squared.”
4 - Probability determined from F-test of regression. Small values indicate that the R? is not
actually zero.
Values listed as 0.0001 should be read as less than or equal to 0.0001.
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Estimates of %DEL can be made using equation (5) and the model coefficients in Table
9. Assuming the representative characteristic values (Appendix B) allowed development of Table
10.

Two effects can be seen in Table 10. First the large data set of Road Cuts dominates the
All Data model and suppresses the model predicted and measured percent delivered. Second, the
model estimates the log base e values of %DEL which were then converted to %DEL values.

The skew in the original data manifests itself when comparing the log-based predictions

Table 10. Estimates of the Percent of Landslide Volume Delivered to a Stream Using
Equation (5) Coefficients in Table 8, and Representative Variable Values from Appendix A

Model Percent Delivery

Model N* AM. G.M.
All Data 3.6 839 23.7 8.75
All Data w/o Road Cuts 20.4 409 41.6 242
Other (Causes) 23.3 89 41.7 25.8
Natural No model 55 57.4 389
Road Cuts 32 430 - 6.6 33
Road Fills Without Culverts 17.8 197 37.9 21.0
Road Fills With Culverts 294 68 39.4 229
* Number of observations from largest data set available for A.M. and G.M. values.
A.M. = arithmetic mean of measured data
G.M. = geometric mean of measured data

with the untransformed data. If the average log-transformed value of %DEL is converted back
to %DEL, the differences are not as stark. For instance, the log base e average value for the All
Data set was -2.436 which, when converted back, equals 8.75 percent, very close to the estimated

8.0 percent.

Model Application and Limitations

The models presented above for probability of delivery (materials entering stream) and
percent of delivery should be used in conjunction with one another. The first step in a basin-
wide modeling approach is to estimate the size of. failure, such as number of grid cells in a GIS

type approach, in order to determine the length of the slide. Second, the distance to the nearest
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stream and the slope gradient (if needed) can be estimated by different algorithms in a GIS, or
manually. Then the probability of the slide reaching the stream can be calculated. If the slide
is predicted to reach a stream, then the percent delivered can be estimated. The confidence
intervals of these estimates will be quite large because the R* values are low. However, the
models do provide better estimates with the site specific variables than would be obtained by
assuming a fixed delivery rate.

There are certain limitations which should be observed. First, the models are developed
from data sets specific to Idaho. The data are dominated by road related landslides. Very few
natural or non-road related failures were recorded. The estimates of percent delivered are based
on imprecise estimates of slide volume, scour (if noted) and deposition. Second, the cutoff level
in the logistic model of 0.674 is arbitrary and was only adjusted for the All Data model. Other
cufoff levels may be more suitable for the other models. Third, many of the models are
undefined when STDIST=0, that is, the landslide is right next to the stream. In those cases, the
data indicate that the %DEL ranged from 1 to 100 percent with a mean of 54 and a standard
deviation of 36 percent. Thus if a user is modelling a near stream failure, then 54 percent
delivery may be an appropriate choice in lieu of a model value. Finally, the models presented
here are not process models. The models help define key variables but do not explain the

complex processes involved in delivery of landslide material to streams.
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SUMMARY AND CONCLUSIONS

The goal of this study was to develop a baseline understanding of the factors and
processes influencing downslope delivery of landslide materials. To achieve this goal, four

objectives were set. These were to:

1. summarize univariate statistics of landslide delivery data, as supplied by the USDA
Forest Service, in total and by important influencing factors such as landslide type, site

properties, and management factors;

2. develop empirical equations for predicting the percentage of landslide delivery to

channels using site factors and landslide properties;

3. locate and describe available models for predicting the downslope delivery of landslide
material, and where possible, test the applicability of such models using the supplied'

landslide data; and
4. present the results and findings in a report

A critical contribution to this study was provided by Bathurst (1991). His major review
of literature found that there were no models for explicitly predicting landslide delivery to
streams. Subsequently reviews, presented in this report, did not find any other models for
predicting delivery.

Data supplied by the USDA Forest Service were analyzed to determine the percent of
material (volume) delivered to a stream. Delivery percentages did not follow a normal
distribution. The arithmetic average percent delivered for 839 slides which were selected after
screening 1366 original observations was 23.7 percent. However, the geometric average was 8.75
percent. Both values are influenced by the large number of road cut landslides in the overall
sample. This type of slide delivers an arithmetic average of 6.6 percent of the slide volume.
Average percent deliveries for other slide types are between 35 and 60 percent.

The data were used to build two types of models. Logistic models were developed to
estimate if a slide would enter a stream. For landslides that did in fact reach a stream, linear

regression models, based on log-transformed values of percent delivered, were developed. Both
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types of models contained physically meaningful variables of length of landslide, distance to
nearest stream, and slope gradient. Although there is a high degree of uncertainty associated with
the two types of models, they jointly produce a method for estimating delivery of landslide
materials to stream channels. In that regard, they form a basis or starting point for other

modeling approaches.
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APPENDIX A
Descriptive Statistics for Landslide Delivery Data
By Slide Group and Delivery

LEGEND:
PERDEL = percent of landslide prism delivered to channel
SLDVOL = volume of slide, cubic yards
STDIST = distance to the stream, feet
SG = slide gradient, percent
SLDARO1 = slide area, square feet = slide length x slide width
SLDLEN = slide length, feet
EROSVOL = total volume of erosion, slide plus outrun, cubic yards
SLLSTD = ratio of SLDLEN to STDIST
SLTSTD = ratio of SLDLEN + outflow length to STDIST
SOILDP =  soil depth, inches
SLLABV = slope length above the slide, feet
DAABYVY = drainage area above the slide, acres
VOLDEL =  vyolume of material delivered to the stream, cubic yards

31



32

SLDGRP =0 Slide Group: Other No Delivery
Variable N Mean Std Dev Minimum Maximum
SLDVOL 13 294.769 792.666 13.000 2928.000
STDIST 11 602.636 570.741 60.000 1500.000
SG 13 69.462 24.006 45.000 110.000
SLDARO1 12 1453.170 1248.030 352.000 4650.000
SLDLEN 12 43.583 21.428 16.000 93.000
EROSVOL 12 75.333 50.545 13.000 169.000
SLLSTD 10 0.207 0.220 0.027 0.620
SLTSTD 10 0.207 0.220 0.027 0.620
SOILDP 4 10.000 5.354 7.000 18.000
SLLABV 13 404.077 292.103 35.000 866.000
DAABV 5 0.800 0.671 0.500 2.00
Slide Group: Other Delivery
Variable N Mean - Std Dev Minimum Maximum
PERDEL 89 41.685 30.496 1.000 100.000
SLDVOL 87 373.586 1270.710 16.000 10633.000
STDIST 83 327.843 423.211 0.000 2000.000
SG 89 65.517 16.031 20.000 173.000
SLDAROI] 87 2423.380 2671.220 168.000 19220.000
SLDLEN 87 72.632 44241 12.000 252.000
EROSVOL 84 413.048 1304.620 16.000 10633.000
SLLSTD 68 0.752 1.372 0.024 9.375
SLTSTD 68 0.808 1.365 0.024 9.375
SOILDP 17 20.118 24225 2.000 110.000
SLLABV 87 534.874 590.210 39.000 5000.000
DAABV 19 29.337 114.010 0.100 500.000
VOLDEL &4 14717.080 38639.780 18.000 318990.000
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SIDGRP =1 Slide Group: Natural No Delivery
Variable N Mean Std Dev Minimum Maximum
SLDVOL 8 216.375 251.863 28.000 778.000
STDIST 7 661.571 596.359 150.000 1500.000
SG 8 71.875 35.643 45.000 150.000
SLDARO1} 8 1473.130 829.255 450.000 3000.000
SLDLEN 8 56.125 32.546 25.000 113.000
EROSVOL 5 120.200 93.948 33.000 230.000
SLLSTD 7 0.168 0.169 0.033 0.502
SLTSTD 7 0.168 0.169 0.033 0.502
SOILDP 2 12.000 11.314 4.000 20.000
SLLABV 7 981.143 873.815 135.000 2500.000
DAABV 3 7.000 11.269 0.000 20.000
Slide Group: Natural Delivery
Variable N Mean Std Dev Minimum Maximum
PERDEL 55 57.382 36.466 2.000 100.000
SLDVOL 53 1443.060 8620.170 9.000 62963.000
STDIST 54 297.593 601.121 0.000 3000.000
SG 52 75.519 19.771 10.000 120.000
SLDARO1 52 4567.770 - 13804.340 180.000 100000.000
SLDLEN 52 74.538 82.014 7.000 400.000
EROSVOL 36 263.722 400.757 9.000 2000.000
SLLSTD 33 0.720 0.934 0.025 3.600
SLTSTD 33 0.743 0.932 0.025 3.600
SOILDP 6 13.500 8.385 2.000 28.000
SLLABV 54 865.352 768.945 100.000 3000.000
DAABV 25 4.204 8.443 0.000 40.000
VOLDEL 36 17943.500 35777.060 90.000 180000.000



SLDGRP =2 Slide Group: Road cuts No Delivery
Variable N Mean Std Dev Minimum Maximum
SLDVOL 171 215.222 785.353 4.000 8889.000
STDIST 168 458.696 600.148 30.000 5000.000
SG 171 64.094 17.263 15.000 160.000
SLDAROI 171 2058.510 9473.86 56.000 120000.000
SLDLEN 171 31.947 51.353 6.000 600.000
EROSVOL 116 220.750 850.636 10.000 8889.000
SLLSTD 166 0.205 0.530 0.002 6.000
SLTSTD 166 0.211 0.533 0.002 6.000
SOILDP 60 20.883 17.340 0.000 100.000
SLLABV 169 885.533 1046.89 0.000 5000.000
DAABV 70 7.023 22.128 0.000 150.000
Slide Group: Road cuts Delivery
Variable N Mean Std Dev Minimum Maximum
PERDEL 430 6.626 11.247 1.000 95.000
SLDVOL 425 457.092 2057.460 2.000 33333.000
STDIST 427 321.405 460.468 0.000 3000.000
SG 428 62.540 19.089 16.000 214.000
SLDARO1 426 1648.010 3058.250 70.000 30000.000
SLDLEN 427 33.302 30.323 4.000 266.000
EROSVOL 314 285.223 945.566 2.000 10800.000
SLLSTD 410 0.284 0.464 0.004 5.000
SLTSTD 410 0.297 0.473 0.004 5.000
SOILDP 279 19.222 24.852 0.000 360.000
SLLABV 425 808.809 847.858 0.000 6000.000
DAABV 303 3.962 8.730 0.000 100.000
VOLDEL 314 2734910 10975.940 2.000 138000.000
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SLDGRP = 3 Slide Group: Road Fills w/o Culverts No Delivery
Variable N Mean Std Dev Minimum Maximum
SLDVOL 61 1484.480 5314.290 17.000 35259.000
STDIST 66 579.667 530.534 25.000 3000.000
SG 67 64.955 13.752 20.000 90.000
SLDARO1 64 2758910 3254.730 240.000 16800.000
SLDLEN 66 42.424 31.698 9.000 145.000
EROSVOL 46 644.304 3291.660 17.000 22400.000
SLLSTD 64 0.181 0.225 0.005 1.160
SLTSTD 64 0.181 0.225 0.005 1.160
SOILDP 0 - - - -
SLLABV 68 555.029 773.101 0.000 5000.000
DAABV 29 3.793 6.562 0.000 30.000
Slide Group: Road Fills w/o Culverts Delivery
Variable N Mean Std Dev Minimum Maximum
PERDEL 197 37.949 32.107 1.000 100.000
SLDVOL 193 345.145 597.426 10.000 4080.000
STDIST 194 334.660 394.736 0.000 2500.000
SG 194 69.500 15.020 10.000 120.000
SLDARO1 194 2768.520 3985.250 126.000 40000.000
SLDLEN 194 53.134 75.543 6.000 1000.000
EROSVOL 173 471.075 874.896 10.000 5111.000
SLLSTD 178 0.363 0.469 0.001 3.636
SLTSTD 178 0.502 0.563 0.001 3.636
SOILDP 191  23968.200 29495.360 0.000 175000.000
SLLABV 2 21.500 2.121 20.000 23.000
DAABV 192 701.573 858.386 0.000 5000.000
VOLDEL 173 25547.800 65023.310 10.000 511100.000
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SLDGRP = 4 Slide Group: Road Fills With Culverts  No Delivery
Variable N Mean Std Dev Minimum Maximum
SLDVOL 10 5605.100 7840.410 21.000 22222.000
STDIST 12 1118.330 979.024 50.000 3000.000
SG 12 52.000 18.350 17.000 70.000
SLDAROI 12 10505.670 13538.610 375.000 40000.000
SLDLEN 12 103.833 73.033 15.000 250.000
EROSVOL 4 1366.500 1523.880 21.000 3556.000
SLLSTD 12 0.263 0.311 0.016 0.882
SLTSTD 12 0.263 0.311 0.016 0.882
SOILDP 0 - - - -
SLLABV 12 833.333 796.964 200.000 2500.000
DAABV 6 6.667 7.373 0.500 20.000
Slide Group: Road Fills With Culverts  Delivery
Variable N Mean Std Dev Minimum Maximum
PERDEL 68 39.382 33.410 1.000 100.000
SLDVOL 65 1051.370 2351.660 13.000 16296.000
STDIST 68 244.294 309.086 0.000 2000.000
SG 66 61.561 18.451 12.000 103.000
SLDAROI 66 3569.980 3799.070 115.000 2200.000
SLDLEN 66 55.955 34.450 10.000 200.000
EROSVOL 41 880.293 1896.480 13.000 10556.000
SLLSTD 50 1.203 3.840 0.010 25.000
SLTSTD 50 1.435 3.902 0.010 25.000
SOILDP 0 - - - -
SLLABV 64 1171.380 1109.730 0.000 5000.000
DAABV 43 18.644 33.960 0.000 200.000
VOLDEL 41 46372370 125964.410 300.000 633360.000
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Representative Values for Tabie 7 Computations

SLDGRP SLDLEN (feet) STDIST (feet) SG (%)
All Data 45 369 65
All Data w/o SLDGRP=2 62 381 68
0 69 360 66
1 72 339 75
2 33 360 63
3 50 397 68
4 63 375 60

Representative Values for Table 10 Computations

SLDGRP SLDLEN (feet) STDIST (feet) SG (%)
All Data 47 317 ) 65
All Data w/o SLDGRP=2 61 313 68
0 73 327 66
1 75 298 76
2 33 321 63
3 53 335 70
4 56 244 62
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