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ABSTRACT

Field and theoretical investigations were made to study the three-dimensional
hydraulic conductivity anisotropy of an unconfined aquifer. A well field, consisting of three
multilevel samplers/piezometers (MLSP), ten fully screened observation wells, and two
pumping wells, was developed in the Sevilleta Wildlife Refuge, north of New Mexico Tech.
The MLSP can give depth-specific drawdown and groundwater samples for the three-
dimensional analysis. The fully screened observation well can yield vertically-averaged
drawdown and groundwater samples for the two-dimensional analysis. The three-dimensional
aquifer anisotropy is characterized using the depth-specific drawdown data and a method
based on the Laplace-Hankel domain solution of a pertinent three-dimensional unconfined
well hydraulics theory. The Laplace-Hankel domain solution involves three mathematically
simple terms representing the Theis solution, the water-table effect, and the partially
penetrating effect, respectively. The fast Hankel transform (FHT) technique and the Stehfest
Laplace inverse method are employed to calculate the drawdown of interest from the
Laplace-Hankel domain counterpart. This Laplace-Hankel domain analysis provides an
effective way to evaluate and understand complicated well hydraulics theories.

Also, a mapping function technique was developed to diagnose the drawdown data.
The mapping function essentially represents any difference between the actual
hydrogeological conditions embedded in the field data and the idealistic assumptions invoked
in the Theis solution. A new analytical solution for well hydraulics involving the temporal
mapping function was obtained. Based on this solution, a robust method was developed to
find the mapping function from available field drawdown data.

A few case studies demonstrated that the mapping function indeed can yield diagnostic
curve characteristics pertinent to important hydrogeological conditions. During the course of
reviewing currently available well hydraulics, it was found that the method normally used in
finding the asymptotic solutions from the Laplace domain can lead to incorrect results. To
avoid this pitfall, it is suggested that the Tauberian Theorem be used to check the validity of
the asymptotic solutions obtained using the normally accepted method.

Keywords: three-dimensional anisotropy, well hydraulics, pumping tests, Laplace-Hankel
solutions, mapping functions, drawdown data analysis.
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1. INTRODUCTION AND SUMMARY
1.1 BACKGROUND AND PROBLEM OF INTEREST

Under field conditions, groundwater movement is three-dimensional in nature. A
detailed study of three-dimensional groundwater problems requires appropriate three-
dimensional theories and depth-specific field data (i.e., drawdown or groundwater quality) at
different locations in the aquifer. For this project dealing with three-dimensional solute
transport under anisotropic conditions, a well field was developed to generate depth-specific
and vertically averaged field data. The depth-specific drawdown data collected form a three-
dimensional data base, which is suitable for characterizing the three-dimensional aquifer
anisotropy. The aquifer anisotropy has been normally studied in a two-dimensional, planar
sense. Little work has been done to estimate three-dimensional aquifer anisotropy for
granular aquifers. Due to the availability of three-dimensional drawdown data and the
practical importance of three-dimensional aquifer anisotropy, this project sought a method
that can be used to determine the three-dimensional aquifer anisotropy.

It should be noted that this project was a continuation of an earlier study of three-
dimensional solute transport and does not require a storage coefficient and the specific yield.
Thus, for the current project, these two parameters are not of primary concern and we did
not develop a method to estimate them. The problem of interest was to determine the three-
dimensional aquifer anisotropy using appropriate depth-specific drawdown data. Literature
related to this subject is reviewed below in appropriate chapters of the report.

1.2 PURPOSES AND SCOPE

The purposes of the project are to conduct three-dimensional pumping tests to produce

drawdown data appropriate for three-dimensional determination of the aquifer anisotropy

tensor, and to develop a method to estimate the three-dimensional aquifer anisotropy tensor.



Due to the concurrence of the current and previous projects, some pumping tests involved

tracer injection (as discussed in Chapters 2 and 3). Since this project was limited to the

study of aquifer anisotropy, the briefly mentioned tracer tests and related information are not

elaborated on here.
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SUMMARY OF ACHIEVEMENT

During the course of this project, the following was achieved:

A well field (see Figure 1) including two pumping wells, 15.24 cm (6 inches) in
diameter, ten observation wells, 5.08 cm (2 inches) in diameter, and three multilevel
samplers/piezometers (MLSP), was developed. This well field can produce both
depth-specific and vertically averaged data of drawdown and tracer concentration
distributions.

A new method for aquifer characterization was developed. It calls for the use of a
temporal mapping function, which represents the possible hydrogeological conditions
imbedded in the field data. The mapping function can be used to diagnose the
hydrogeological conditions involved in drawdown data, to quantify a few
hydrogeological parameters, and to justify the pressure-derivative method developed
by petroleum reservoir engineers.

A new method for calculating complicated well hydraulics solutions of various
unconfined conditions was developed. This method is based on the Laplace-Hankel

domain analysis. Complicated numerical integration was avoided
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® - 6-inch well A, approximately 60 meters from 6-inch well B
% - 2-inch observation well
® - functional multilevel samplers/piezometers (MLSP)

Figure 1-1b. Locations of Observation Wells and ML.SP’s at the Sevilleta Research Site.
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by using the Fast Hankel Transform (FHT) and easily implemented numerical Laplace
inverse techniques. The Laplace-Hankel domain solutions explicitly show the
influence of the water table and partially penetrating pumping on the drawdown
distributions.

A method of estimating the three-dimensional anisotropy tensor for an unconfined
aquifers was developed. This method uses the large-time depth-specific drawdown
data and the mathematical properties demonstrated in the appropriate Laplace-Hankel
domain solutions.

A possible pitfall in calculating asymptotic well hydraulics solutions was found. An
alternative way to handle the asymptotic calculation, which avoids the pitfall, was

suggested.



2. SITE DEVELOPMENT AND MEASURING DEVICES INSTALLATION

The research site for the field experiments is located on the flood plain of the Rio
Salado in the Sevilleta National Wildlife Refuge (Figure 1-1a) approximately 32 km north of
Socorro, New Mexico. Two 15.24-cm (6 inch) wells, three multilevel samplers/piezometers
(MLSP) and ten 5.08-cm (2 inch) observation wells have been installed at the site (Figure 1-
1b). Well B, 60 m southeast of Well A, was used primarily for water supply. Both Well A
and B are 15.2 cm in diameter. Well A is at the center of the well field for field
experiments. The MLSPs and observation wells were installed on three rays west (W),
northeast (NE) and southeast (SE), on five concentric circles surrounding Well A. The
concentric circles have a radius of 3 m, 6 m, 10 m, 15 m and 50 m. Each MLSP or
observation well was designated by its direction and distance measured with respect to Well
A. For example, SE 3 represents the MLSP located in the SE direction and 3 m away from
Well A. All MLSP’s were installed at the 3-m and 6-m circles, and the observation wells at
10-m, 15-m, and 50-m circles. The four observation wells, NW50, NE50, SW50, and
SESO, primarily were used to monitor the regional groundwater flow field. The regional
groundwater movement monitored by these four observation wells, in general, was relatively
uniform from NW to SE with a small hydraulic gradient of about 10 m/m and provided no
significant rainfall effects. Due to the small pumping rates (no more than 6.3x10° m%/s, or
100 gpm) used in the pumping/tracer tests, drawdown or tracer never reached these four
observation wells.

The Rio Salado, located north of the research site, is an ephemeral stream with the

channel dry on the average of 320 days per year. The Sevilleta aquifer is unconfined with a
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shallow water table approximately 3-m below the ground surface. This aquifer consists of
Holocene Rio Salado alluvium overlying Pleistocene axial stream deposits of the Sierra
Ladrones Formation. The Rio Salado alluvium consists of interbedded sand, gravel, and silt.
The axial stream deposits also consist of interbedded sand and silt with occasional gravel and
clay layers. Split-spoon samples taken from three boreholes show the contact between the
Rio Salado and axial stream deposits is located between 13.72 m and 19.81 m below the
ground surface. This supports the seismological studies made by Stephens et al. (1988),
which proclaimed that Rio Salado alluvium was in contact with the Sierra Ladrones.

The contact depth between these two formations increases from north to south,
indicating the original channel of the Rio Salado was located farther south than the present
channel. Although the exact thickness of the aquifer is unknown, our drilling indicated that
the thickness is more than 24.38 m. Seismological studies indicate that the aquifer thickness
should be more than 100 m (Knapp, personal communication, 1991).

The Loma Blanca fault cuts across the aquifer in an almost due north-south direction.
Zody (1989) noted that there was a marked steepening of the hydraulic gradient extending
about 300 m west of the fault. Effects of the Loma Blanca fault and the steepening of the
hydraulic gradients on the test area are unknown. Little or no tilting of the Sierra Ladrones
formation outcropping beds was noticed in the test vicinity.

2.1  DESIGN OF MULTILEVEL SAMPLERS/PIEZOMETERS (MLSP)

The original plan for the well field called for the use of several multilevel samplers

for collecting depth-specific groundwater samples and several piezometers for measuring

depth-specific drawdown. Since drilling with the equipment available to New Mexico Tech
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was rather difficult in the Sevilleta’s unconsolidated sandy materials, we decided to reduce
drilling by developing the MLSP technique.

As shown in Figure 2-1, one MLSP includes a cluster of eleven 0.64-cm (1/4 inch)
polyethylene tubes for groundwater sampling and seven 1.27-cm (1/2 inch) PVC standing
pipes connected to 0.95-cm (3/8 inch) flexible tubing for drawdown measurement. Each
standing pipe is 6.1 m in length and connected to a 0.95-cm flexible tube of which the length
depends on the water intake depth. The water intake was made of a 1.27-cm PVC pipe
7.62-cm (3 inches) long. Holes were drilled and a nylon mesh placed on this section. As a
result, one MLSP allowed the collection of groundwater samples from eleven different depths
and drawdown data at seven different depths. Little vertical averaging can occur inside the
small water intakes, and thus data yielded by the MLSP were depth-specific. The total
cross-sectional area of the eleven 0.64-cm polyethylene tubes and the seven 1.27-cm PVC
standing pipes is the maximum possible area that can fit in a 9.53-cm (3-3/4 inches) hollow
stem auger, which was used for drilling and installation of the MLSP.

The depth-specific drawdown was measured with 0.64-cm pressure transducers.
Before the pump started, the pressure transducers were dropped into the 1.27 cm standing
pipes to a depth approximately 1 m below the groundwater table considering that the
maximum drawdown occurring in the pumping well for a pumping rate of 378.5 I/min was
only 1.5 m. This pumping rate was the maximum one used in the field experiments for the
project. A datalogger with ten channels was used to measure and record the depth-specific

drawdown histories at ten different locations in the aquifer. As shown in
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Figure 2—1 Design of the Multilevel Sampler/Piezometer (MLSP).
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Figure 2-2, a groundwater sampling manifold (GSM) was developed to simultaneously collect
ten groundwater samples from ten different 0.64 cm polyethylene tubes using one vacuum
pump. This device is a modification of the design given by Hitchman [1988]. The GSM
uses ten polyethylene syringe barrels as storage chambers for groundwater. Each of the ten
polyethylene syringe barrels has a volume of 60 cubic centimeters and is connected to the
vacuum pump through the 0.64 cm copper tubing. A three-way teflon stopcock (the
stopcock No. 1) is used to control the bypass of the suction from the pump to the chambers.
When stopcock No. 1 is in the closed position, the chamber is not subject to the
suction. Another three-way teflon stopcock (the stopcock No. 2) controls the drainage of
groundwater stored in the chamber. When the chamber is filled with groundwater and the
stopcock No. 1 is closed, the chamber is drained by turning on the stopcock No. 2. The
drained groundwater is stored in collection bottles, which are shipped to the laboratory for
tracer concentration analysis. The chamber can be connected to the MLSP sampling tubes
through the 0.64 cm copper tubing that does not have a teflon stopcock.
The field operation procedure of the GSM is:
(1) connect the GSM to the vacuum pump and to ten sampling tubes of the MLSP’s;
2 set the stopcock No. 1 of each chamber to the open position, and the stopcock No. 2
to the closed position;
3) turn on the vacuum pump and start the collection of groundwater;
4) turn off the stopcock No. 1 before the water level inside the chamber reaches the 1/4"
copper tubing opening;

3 turn on the stopcock No. 2 and collect the groundwater drained from the chamber;
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6) turn off the stopcock No. 2 after the chamber is drained and turn on the stopcock

No. 1 to activate the suction and continue the groundwater collection.

The GSM has been successfully used in the field to collect groundwater samples.

2.2  DRILLING HISTORY AND MEASURING DEVICE INSTALLATION

Drilling for the project began on March 21, 1990, using a 18.73 c¢m (7-3/8 inches)
tricone rotary bit. In order to avoid the formation of wall cake, a foaming agent instead of
drilling mud was used with air lift to remove the cuttings. The first borehole was completed
to a depth of 25.91 m and the 15.24 cm well screen was inserted to a depth of 13.92 m
where it was stopped by an obstruction possibly caused by caving in the lower portion of the
borehole. The 15.24 cm well screen is made of a 15.24 cm PVC pipe with machine cut
slots. After an unsuccessful attempt to free the screen by drilling below it with a 10.08 cm
(4 inches) bit, it was decided to use this well ( Well B) for water supply well. A second
borehole, 46 m west of Well B, was drilled and completed to a depth of 25.91 m. The high
water velocities needed for air lift had, however, caused severe caving near the ground
surface, and this borehole had to be completely abandoned.

The third borehole was drilled using a synthetic polymer viscosifier added to the
drilling fluid to keep the borehole open. After mixing with water, this polymer is
decomposed into aqueous components and thus will not create any wall cake. The third
borehole was drilled and kept open to 25.91 m below the ground surface. It was successfully
cased from the ground surface to 6.1 m with a solid 15.24 cm PVC pipe, and screened from
6.1 m to 25.91 m with a 15.24 cm well screen. This well, Well A, was pumped using air

lift to remove the drilling fluid and the annulus was backfilled with drilling cuts. Well A
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was then left for three days to allow the breakdown of any remaining polymer and was
developed again using air surging and air lift pumping. Well A is about 60 m west of Well
B. A 5.08-cm PVC pipeline exists between these two wells, used to convey groundwater
pumped from Well B to Well A when needed.

A total of six MLSPs (only three are functional) and ten 5.08-cm observation wells
were installed at different locations surrounding Well A as shown in Figure 1-1b. From the
experience of drilling Well A and B, it was decided that a 9.53-cm hollow stem auger would
be used to drill the boreholes for the MLSPs and observations wells. To do so, the holiow
stem auger keeps the borehole open without needing polymer nor is there any worry of
caving problems. In addition, split-spoon soil samples became possible. However, the split
spoon was easily sand locked inside the hollow stem auger and split-spoon sampling was not
successful for many boreholes. Only during the last three drillings of NW50, SE15 and
SES0 was the difficulty overcome by a water-circulation technique. It consisted of
circulating water through the borehole while drilling was in progress. In the meantime, the
hollow stem was filled with water while soil samples were taken. Circulation of water kept
aquifer materials from lodging in between the drill stem and the inside wall of the hollow
auger. Water in the hollow stem creating a head that inhibited any aquifer materials from
rushing into the hollow stem while the drill bit was taken out of the borehole and replaced
with the split spoon. Split-spoon soil samples were successfully collected with this water-
circulation method at various depths for NW50, SEIS and SES0. A total of 44 soil samples
was obtained. Each sample underwent laboratory analysis for soil classification and other

purposes as discussed below.



While the hollow stem was in the borehole drilled, the 0.64 cm polyethylene tubes
and the 0.95 cm flexible tubings were tightly bundled with a weight attached to the end. The
bundle then was carefully lowered into the hollow stem. After the entire section, including
the standing pipes, was lowered into the augers, the augers were simply pulled out, leaving
the bundle in place. To keep the bundle straight, a nylon rope running the entire section of
the bundle was kept taut during the pullout. After the augers were pulled out, sand caved in
very rapidly that little time was available to isolate water intakes by backfilling the spaces
among them with bentonite or grout. Had there been sufficient time, the backfilling might
have easily jeopardized the water intake function by blocking the water intakes due to their
smallness and very tight space inside the boreholes for actual filling operation. However,
this naturally occurring event was neither problematic nor short circuit the vertical flow paths
between water intakes, as evidenced by the fact that depth-specific drawdown taken at
different depths from the MLSP’s indeed demonstrate distinctive and expected trends. The
ten observation wells were installed in a similar manner; the 5.08 cm PVC pipes were
lowered into the hollow stem augers and then the augers were pulled out. The top 6.1 m of
these observations wells are of solid PVC pipes. From 6.1 m to various depths are of slotted
screens. Figure 2-3 gives the screen locations for these 5.08 cm observation wells and Well
A; all these were measured with respect to the top point of the casing of Well A.

After installation, the MLSP’s, 5.08 cm observation wells and 15.24 ¢m wells were
developed using both air surge and water surge methods. It was found that three of the six
MLSP’s were dysfunctional; they failed to yield drawdown or groundwater samples after

extensive development. These three MLSP’s were abandoned and not indicated in Figure 1b.
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Drilling, installation and development of the well field were completed in March, 1992.
Nevertheless, the observation wells, the pumping well and the MLSP’s were water surged
before most pumping tests.
2.3 SOIL SAMPLE ANALYSIS

The 44 soil samples collected from NWS50, SE15 and SES0 were analyzed for soil
classification, porosity determination, and hydraulic conductivity estimation. The soil
classification was based on the Udden-Wentworth system as described by Boggs [1987].
This method allows soil samples to be classified according to their mean grain sizes, to
sorting and to skewness by the cumulative distribution curves. The hydraulic conductivities
of the soil samples were estimated using the empirical equations given by Vukovic and Soro
[1992], and the constant-head laboratory method. Information gained from soil sample
analysis is useful, as a first approximation, in understanding the hydrogeological conditions
of the Sevilleta site.
2.3.1 Soil Classification

Classification of soil types and estimation of hydraulic conductivities by the empirical
equations require the grain-size distributions of the soil samples. The grain-size distribution
of a soil sample can be determined by using the sieve analysis. The sieve analysis consists
of placing a soil sample in the uppermost sieve in a nest of sieves (largest openings are found
in the uppermost sieve with progressively smaller openings on lower sieves), and the nest of
sieves is vibrated to allow the individual particles to fall through the sieve openings. Then
the weight of soil retained on each of the sieves is determined by weighing, and the

cumulative percent of the sample retained is plotted against the various grain sizes. From
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these cumulative grain-size distribution curves, the mean grain size, effective grain size, and
other information, can be determined for use in classifying the soil samples. The standard
procedure of ASTM D422-63, given by the American Society of Testing Materials [1963],
was used for the sieve analysis. It should be noted that this procedure is for the Type C soil,
where clay, cementing agents or soluble salts are absent.

The Udden-Wentworth soil classification is based on the cumulative distribution
curve, where the cumulative percent retained by weight is plotted against the "¢" size. The

¢-size is defined as [Boggs, 1987]

¢ = -log,d = -3.32log,d (2-1)

where d is the soil grain size in millimeter (mm). It can be seen that ¢ is zero for the soil
grain size equal to 1 mm. For d is less than 1 mm ¢ is positive, and for d is greater than 1
mm ¢ is negative. This indicates that the fine fraction of a soil sample is represented by
positive ¢’s and the coarse fraction by negative ¢’s. The cumulative distribution curves for
all of the soil samples are presented in Figures 2-4, 2-5 and 2-6.

Any soil samples can be classified by the Udden-Wentworth system in three different
ways; namely, classification according to the mean size, M,, classification according to the
standard deviation, o, and classification according to the skewness, SK. These three

quantities are determined from the cumulative distribution curves, or

2-13



0SAMN wogy sajdures [0S 10§ SIAIND UOYNQLISIP dAPE[NWINY) *$-7 NS

(p)3orzgg—- = &

S L4 ¢ 14 ! 0 L~ [ ¢ - G— 9-

________N_._..__w__w..____h__m___...____«~..__..___.__...H. TT I T TTTyToIry

Wiy L-10°L
w66'8-€S°8

WH() 7I1-8¢°11
wos* EF-TI "€
weo"ST-£9°pT
WY -5}
wp)*1-89°LY =
w99 GT-07 6T =
WILZTSTIL = -

IIIII 1AL2 |||III]|I|IIIIIII1! JJJL11i() llill'illlllll !l|lll!l IIIIIII[!] 1111

*+ A 0D>CAN»>O

(| 1 1 O O T O 1

I

4

IBENNNESS S

|

FITTITITYITIT T T lllii!il TTTT lllll!YllIIIll[llll TTEVTITTT Illiilllllllll Illlllll Illlllllll T

]
1tiitt)

w9L'ST-0E'ST = o -

1 ______-._____.__.._________m._~___.-___._*______—_..___._nﬂ__._-___—__h___.__.l

0

ot

0¢

0¢

0y

06

09

0L

08

06

001

Juadaad sanenuINd

2-14



STAS woay sa[duies [I0S 10§ SIAIND UOHNLYSIP dAnje[nwn,) *S-7 i

(p)3or1zg'e— = &

S ¥ ¢ Z ] 0 l— -  ¢—  tv— G-  9-
”_—__m.___w_____~._m_—u__—___@*__—m_—-__—_—-——_ T TTT w“______w__ T —__m—n—__—_-m___mo____—_u_“ O
E P Y 3

m ! m

ml A 1 01
3 ack 102
- 5 og
g 1 0¥
| RE
: WLETI60 = v -

- wos'THYT = 4 -]

3 WpG'S-64'S = -o -4 09
: WG6'S-€5'8 = ® -3

: wsTo1-90°0L = +

- WY ZF-85 FH=—+— 04
- WOS'EI-II'El = v

m WGOSI-€9°PL = © -

3 wie9r-sI'9l = & 08
- WHIRI-8Y° LT = O

: wog'6I-0z6I = v 3

: WYL Z-64'0-=8—] (6
- WILZTSTTL= a4 |

s , WOLST0ESC = ®
EL..(—I_’E..E_—m_m_____-_u_—________________-n—-____n-nn__—_—u__._—____——_____—__‘__m___.___n_——__m—_.____m__—l OOH

Judd39d dApeIWND
2-15



0SHS woy sojdunes [10s 10) SIAMND UONNQLI)SIP dABINUIN,) *9-7 dndy]

(p)dorze'e~ = &
S b ¢ Z _ 0 l-  Z- ¢~  p- G- g-

W.H.Aun._ ~.~J.-J.n T .—z_.u.q. rImrre) O

RSN

\,G\\O ]
\.u 4 01
0" 0..“....> 3
o~ ¥ 1
s 4 ER
4 o¢
1 op
wyp TR T=—0—] 05
JWTPP-06'E = ~v - ]
WHG'S-6p°S = -» - ]
WP LI0L = -4 -] 09
SWEGBESE = © -]

- AWPYTY-8S° NN = ¢ ]
WIS eI e =—1—— 0L
 WONSIE9'bl = v ¢
S99 I-gI'9] = o 1
-Wprgl-g9Ll = & 4 08
L1199:6)-07:6)-=— O]
TWRIIT-ELO0T = ¥ m

AU LT ST FE=—n i 06

. :_mn vN..t. tl= 4

IAREXN]

t
-
I~

o
r~
lﬂ
N
O
]
ln
o

)}

o

be
-
.
[
b
e
b
b=
b
1

001

2-16

ju3dIad sAzENWND



M b * 5o * Py 2-2)

z 3
o = ¢g4"¢16 + ¢95—¢5 2-3)
4 6.6
SK = (bgs +b16205) N (Bgs + $5=2059) 2-4)
PICHE N os=3)

where ¢, corresponds to d,. The parameter d, is the grain size of which n percent of the soil
is finer. For example, d,, refers to the grain size that 10% of soil is finer and 90% is
coarser. In other words, d,, corresponds to the 90th percentile of the cumulative percent in
the cumulative distribution curves. Classification according to M, gives the soil types based
on the average grain size, as shown in Table 2-1a. Classification according to ¢ gives the
sorting conditions as shown in Table 2-1b. Classification according to SK gives the
description of skewness of the grain size distribution (see Table 2-1C), that is, the most
frequently occurring grain sizes in the soil sample.

Taking the soil sample from 17.68 to 18.14 m of SEI15 as an example, ¢4, ¢5, and
¢ys were determined as -0.84, 2.16 and 2.81, respectively. As a result, M, was 1.37, which
correlates to a medium sand in Table 2-1a. The value for ¢ is 3.71 and the value for ¢s is

-3.23, which yields a value of 2.26 for 0. From Table 2-1b, classification according to o
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Table 2-1. Soil Classification by the Udden—Wentworth System
[from Table 5.1 in Boggs 1987]

a. Soil Classification According to Size

(millicrincters) M, Classification
>4.0 <-2.0 Pebble
20<d<4.0 -2.0<M, <-1.0 Granule
1.0<d <20 -1.0< M, <0.0 Very Coarse Sand
0.5<d< 1.0 0.0< M, <1.0 Coarse Sand
0.25<d<0.5 1.0< M, <20 Medium Sand
0.125<d < 0.25 20< M, <30 Fine Sand

b. Soil Classification According to Sorting

¢ Standard Deviation

Classification

<0.35 very well sorted
0.35 to 0.50 well sorted
0.50 to 0.71 moderately well sorted
0.71 to 1.00 moderately sorted
1.00 to 2.00 poorly sorted
2.00 to 4.00 very poorly sorted
>4.00 extremely poorly sorted

c. Soil Classification According to Skewness

Skewness Classification
> +0.30 strongly fine skewed
+0.30 to +0.10 fine skewed
+0.10 t0o -0.10 near symmetrical
—0.10 to ~0.30 coarse skewed
<-0.30 strongly coarse skewed
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indicates this soil sample is very poorly sorted. The skewness was determined to be -0.65,
which indicates that the soil sample is strongly coarse skewed. Therefore, this particular soil
sample can be described as very poorly sorted medium sands where coarse grain sizes
dominate the grain-size distribution. Using this method, the soil profiles for NES0, SE10
and SE50 are demonstrated in Figures 2-7, 2-8 and 2-9. These profiles are marked by
poorly sorted coarse sand and gravel with fines randomly mixed throughout the sampling
sequence. In general, this aquifer is unconfined consisting of nonindurated poorly sorted
sand and gravel.
2.3.2 Estimation of Porosity

The porosity of a porous medium is defined as the ratio of the volume of the void
space to the total volume of that porous medium. The porosity of each of the 44 soil
samples from the Sevilleta research site was determined by a water displacement technique
described by Freeze and Cherry (1979). This technique consisted of weighing an empty
graduated cylinder, pouring a quantity of the soil sample into the graduated cylinder and
reweighing it to obtain the sample’s mass. With the mass and volume of the soil sample
known, a known volume of water is added to the graduated cylinder. From this, the volume
of the void space in the soil sample can be determined. Using this information, the soil

sample’s porosity can be calculated from the following relationship:

n=1-" 2-5)

where p, is the bulk mass density (the mass weight of the soil sample divided by the volume
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of the soil sample) and p, is the particle grain density (the mass of the soil sample divided by
the volume of the solid particles, i.e., the volume calculated from the displacement
technique).

The porosities of the 44 soil samples from the Sevilleta research site ranged from 0.2
to 0.35. Since the soil samples were disturbed and subject to no overburden stress,
porosities determined in the laboratory are typically higher than actual insitu values. A value
of 0.25 is used as the standard porosity for any calculations that require this parameter.

2.3.3 Estimation of Hydraulic Conductivity

The hydraulic conductivities of the 44 soil samples were estimated with the ten

empirical equations listed in Table 2-2 and by the constant-head test. As discussed by

Vukovic and Soro [1992], these ten empirical equations are of a fundamental form

K = 8Co(n)d? (2-6)
14

where g is the gravitational acceleration, » is the kinematic viscosity, C is an empirical
coefficient, ¢(n) is the empirical function of porosity, and d, is the effective grain size. The
ten empirical equations differ in the definitions of C, ¢(n) and d,. The range of applicability
for each of them is also given in Table 2.2. A computer program was w_ritten for these
equations, and it screens out the inappropriate methods according to the ranges of
applicability. It was noted that methods of Slichter, Beyer and Sauerbrei were the most
appropriate three for the 44 soil samples. The averaged value from these three methods for

each soil sample is given in Figure 2-10, which shows the vertical hydraulic conductivity
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distributions at the three locations of NW50, SE15 and SE50. Again, the distributions shown
in Figure 2-10 are not representative of insitu conditions, and are used for reference purposes
only.

The hydraulic conductivity of the soil samples was also determined in the laboratory
by performing a constant-head test. In a constant-head test, a soil sample of length L and
cross-sectional area A is enclosed between two porous plates in a cylindrical tube, and a
constant-head differential H is set up across the sample. An application of Darcy’s law leads

to the expression

k=9 2-7)

where Q is the steady volumetric discharge through the system. This test was done for all of

the soil samples and the values of hydraulic conductivity are shown in Figure 2-10.
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3. PUMPING TEST

Numerous pumping tests with durations ranging from a few hours to a few days have
been conducted on the Sevilleta site. Most were performed to evaluate the applicability and
appropriateness of the MLSPs, the observation wells, the automated datalogger, the
groundwater sampling manifold, the operational procedure and field setup of the
pumping/tracer tests, and to understand the local hydrogeology. A large amount of
drawdown and tracer concentration data was collected and the most pertinent data are shown
below.
3.1 GENERAL INFORMATION

Many short-term (less than two hours in duration) pumping tests were conducted prior
to April, 1991, to evaluate the applicability of the MLSPs and other measuring devices.
They showed that the MLSPs were able to yield distinctive drawdown data for different
depths at specific radial distances. A pair of straddle packers (YEP-4.75/6.00 by
ROCTEST) was used in some of these pumping tests. The deflated outside diameter of the
packer is 12 c¢m, and the length of the inflatable gland is 1 m. This pair of straddle packers
can be used to separate a well in three sections, one above the top packer, one below the
bottom packer, and one in between. For this project, however, the packers were used as a
single packer by separating them by only 0.44 m, resulting in a total length of 2.44 m for
this pair of straddle packers. When it was used, the pair was placed at different depths
inside Well A to generate different partially penetrating effects on the MLSPs. It was found
that the MLSPs properly responded to various partially penetrating conditions.

Drawdown data collected from these tests showed two interesting conditions:



(D Without the packers set in Well A, drawdowns measured at depths above 14 m were
noticeably smaller than those taken below 14 m. This indicates that the hydraulic
conductivities of the saturated thickness above 14m are larger than those below 14 m. This
fact is generally in agreement with the vertical hydraulic conductivity distributions shown in
Figure 2-10. When the packers were placed inside Well A at about 13 m to 14 m,
drawdowns measured at depths below 14 m were negligibly small relative to those taken
above 14 m, provided pumping took place above the packers. If pumping took place below
the packers set at 13 m to 14 m inside Well A, however, drawdowns measured at depths
above 14 m became negligibly small relative to those taken below 14 m. This observation
indicates that a low-permeability layer possibly exists at about 13 m to 14 m in the
neighborhood of Well A. Existence and thickness of this low-permeability layer was not
discernable from the soil samples possibly due to the fact that soil sampling missed this
layer.

(2) An anomalous drawdown pattern was noted in the vertically-averaged drawdown data
taken from these 5.08 cm observation wells. When water was pumped from below the
packers set any depths inside Well A, drawdowns at farther Wells W15 and SE15 were
greater than drawdowns at nearer wells W10 and SEI10, respectively. This anomaly still
existed for pumping tests where no packers were used in Well A. The anomaly disappeared
only when water was pumped above the packers wherever they were placed inside Well A.
As shown in Figure 2-3, W15, NEIS, and Well A are deeper than 24 m and W10, SEI10,
NEI10, and N15 are shallower than 24 m. Therefore, a possible explanation for the

anomalous drawdown is that a high-permeability zone exists below 24 m in the neighborhood



of Well A. When water was pumped from Well A below or without the packers, this high-
permeability zone transmitted most water to Well A and hence more drawdown appeared in

W15 and SE15 which cut into this zone. When water was pumped above the packers inside
Well A, yield of Well A was primarily contributed from the flow regime above this possible
high-permeability zone, and thereby it has little impact on drawdown in W15 and SEI15.

The hydrogeological conditions surrounding Well A is rather complicated. To
simplify the groundwater flow field in the neighborhood of Well A, it was decided that the
straddle packers be placed between 12.19 m to 14.63 m inside Well A for long-term
pumping and tracer tests conducted later, considering the Sevilleta aquifer is separated into a
lower and upper stratum by a low-permeability layer approximately located in between 12 to
14 m. In so doing, pumping from above the packers has little influence on the lower stratum
and investigation can be focused on the upper one only. It should be noted also that Well A
is a partially penetrating well because the top of the well screen is always below the
groundwater table before and during any pumping tests.

3.2 DEPTH-SPECIFIC PUMPING TEST DATA

Twelve pumping/tracer tests of longer durations were performed from April 1992 to
March 1993. Pertinent test conditions of them are listed in Table 3-1. A converging test
means groundwater is withdrawn from the aquifer through Well A such that groundwater
movement is converging toward Well A during the test. A diverging test means groundwater
is injected into the aquifer through Well A such that groundwater movement is diverging
from Well A during the test. In a diverging test, Well B was used as a water supply well

for the injection at Well A. Groundwater pumped from Well B was delivered through the
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Table 3—1. Test Conditions of Pumping/Tracer Tests

Test No.

Pumping Conditions

to
3/27/93. 16:00

- H acker i Notes
date; time type of test| LIOWFae Ig&'mﬂﬂ Raton
{m7/s) thours)
1
. =3 Both icall d and de; 1
. conve 3.785x10 8.02 oth vertically averaged and depth specific
5/9/92; TEIng * none drawdown was measured.
10:00_18-01
2
. - Both vertically averaged and depth specific
5/15/92: converging 3.343x103 none 750 drawdown was meastred.
10:30-12-00
3
. =31 12.19to Both verticail d and i
. conve: 3.974x10 8.93 oth vertically averaged and depth specific
5/21/92; rging x 14.63 m drawdown was measured.
08:22-17:18
4 3 Bromide with a concentration of 25000 mg/l was
6/12/92; diverging | 4.731x10 none 6.80 injtlzcwld at well A for 10 minutes, from 10:00
’ to 10:10.
| 09:52-16:40
5
11 o N Both verticall d and depth specifi
6/18/ 9[% 11:27 diverging 5.047:(103 none 7215 drawd:wn wai :;r:s;d?n P ¢
6{21(92: 11:30
6 . .
612092, | diversing | asesxi0’| 20 1403 o v st P Pcife
7
4. . Bromide with a concentration of 268000 mg/l was
6/30/ 93; 13:08 | giverging | 4.246x15° }i'g © 60.13 injected at well A for 10 minutes, from 07:40 to
. 07:50 on 7/1/92.
7/3/92:.01:16
8 _
 ta. . Bromide with a concentration of 268000 mg/l was
8/6/92&)19-20 diverging | 3.722x10° iﬁ'égtn‘: 95.33 injected at well A for 83 minutes, from 08:41 to
* 10:04 on 8/7/92.
£/10/92: 18:00 .
9
9/ 17/9%; 17:34 converging | 3.949x10° ;iég to 71.90 Only vcr;'imlly averaged drawdown was
.63 m measured.
2020092, 17.30
10
10/ 15/92 17:42) converging | 3.432x10° :Z-g to 32.42 Only depth specific drawdown was measured.
10/ 17/92 03:07
11
2/27/93; 09:50 . 31 12.19t0 Only vertically averaged drawdown was
to converging § 6.310x10 1463 m 31.75 measured.
2/28/93; 16:35
12
3/2693; 1021 | convergiog | 6.120x16° | 12190 | 5966 Only verically averaged drawvdoum was
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water conveyance pipe and reinjected into the aquifer through Well A. The first four
pumping tests only lasted several hours. They were performed as preliminary tests to further
evaluate the efficiency of every piece of equipment and the appropriateness of the procedure
for long-term pumping/tracer tests.

The first long-term test, Test No. 5, was conducted for 72.15 hours without packers
set in Well A. This was a diverging test, and pressure buildup at different depths of MLSP
SE3, W3, and NES6 are presented in Figures 3-1, 3-2 and 3-3; respectively. Noticeable
buildups began to show in these three MLSPs from about 100 seconds after injection started.
Distinctive buildups are demonstrated at different depths, indicating that the MLSPs give
depth-specific measurement. From Figure 3-1, it is seen that the vertical flow at SE3 is
consistently upward from 20.75 m to 5.55 m below the ground surface. The vertical flow in
W3 and NE6, however, is not consistently upward (see Figures 3-2 and 3-3). For W3,
buildups at 17.72 m are the largest among the seven depths where data were collected.
Downward vertical flow existed from 17.72 m through 23.82 m, and upward vertical flow
existed from 17.72 m through 11.60 m. In the shallower depths above 11.60 m, downward
vertical flow took place from 5.51 m to 8.56 m, and upward vertical flow was from 11.60 m
to 8.56 m. For NE6, flow is almost horizontal at 20.53 m and 23.57 m as evidenced by the
almost equal buildups measured at these two depths. There is a downward hydraulic gradient
from 17.76 m to 20.53 m, and an upward one from 17.76 m to 14.7 m. These inconsistent
vertical flow patterns indicate that significant layering effects exist and influence groundwater
movement at depths approximately below 14 m. Above 14 m, small vertical flow exists at

depths between 5.28 m to 11.38 m. At the three locations, it is interesting to
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note that buildups at depths below 14 m are generally greater than those at depths above 14
m, confirming that the hydraulic conductivities of the geological materials above 14 m are
lower than those below 14 m.

It was observed from Figures 3-1 through 3-3 that at large times (approximately
greater than 2x10* seconds) the buildup measured at different depths became almost parallel
straight lines on the semilog plot. Since the Theis solution can be well approximated by a
logarithm function, this trend implies that the large-time buildup/drawdown data at specific
depths can be accounted for using the Theis solution. This field observation was further
confirmed in other pumping tests conducted later; drawdown data from Test No. 10 as
discussed below give the most unambiguous proof. It is also known that the "pseudo-steady-
state" condition is reached when the Theis solution can be approximated by its logarithm
function substitute. The pseudo-steady-state condition means that the drawdown/buildup is
transient while its gradients are under steady-state conditions. Information gathered from
Test No. 6 and 7, in which the packers were placed inside Well A from 12.19 m to 14.63 m,
showed that the pseudo-steady-state for the diverging tests with packers took place about 12
hours after pumping and injection started. Thus, it was decided that the tracer injection start
at least 12 hours after the commencement of water injection.

Test No. 8 was run for about 96 hours with the packers placed between 12.19 m to
14.63 m inside Well A. Groundwater was injected into the aquifer through the upper section
above the packers. Depth-specific buildup data at SE3, W3 and NE6 are demonstrated in
Figures 3-4, 3-5 and 3-6, respectively. Clearly, buildups at depths below 14 m are indeed

much smaller than those at depths above 14 m, giving evidence to the existence of
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a low-permeability layer approximately located between 12.19 m and 14.63 m. Tails of
these depth-specific buildup curves dropped at large times after about 14 hours to 24 hours of
injection. This phenomenon had not appeared in the earlier diverging tests. It could have
been caused by (1) the buildup surrounding Well A was interfered with by the cone of
drawdown created by pumping at Well B, or (2) the pump failed to maintain a constant
pumping rate at large times. Considering that only a few tens of centimeters of
buildup/drawdown were noted at distances up to 15m from Well A pumping tests, it is
doubtful that the drop of buildup was caused by the interference of cone of drawdown. On
the other hand, this problem existed in converging Test No. 10, where no pumping or
injection took place at Well B. Therefore, it is more reasonable to attribute this undesired
phenomenon to the fact that the pumping rate actually decreased at large times.

At NE6, vertical flow is consistently upward from 11.38 m through 5.28 m. At SE3,
downward vertical flow from 8.16 m to 11.65 m prevailed for about 200 seconds. After this,
vertical flow became consistently upward from 11.65 m through 5.5 m. However, the
vertical hydraulic gradient between 11.65 m and 8.60 m was very small; the head difference
between the two depths was less than about 2 cm. This implies the flow was primarily
horizontal in between these two depths. At W3, the vertical flow was downward from 8.56
m to 11.60 m and upward from 8.56 m to 5.51 m, before the interference of the cone of
drawdown took place. The upward and downward vertical flow conditions at the three
MLSP’s were due to the partially penetrating effects and the possible layering influence. At
large times before the buildups drop, the buildup data at different depths indeed exhibit

parallel straight lines at the three MLSP’s. Tests No. 9 through 12 were conducted under
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the converging condition, where pumping took place only at Well A and the groundwater
from pumping was discharged to a ditch about 80 m east of Well A. In Test No. 9, 11, and
12, only vertically-averaged drawdown was taken and their data are shown in 3.3. In Test
No. 10, however, only depth-specific drawdown data were taken from different depths of
SE3, W3 and NE6. This test had run for about 32.5 hours. Groundwater was withdrawn
from above the packers, which were placed between 12.19 m and 14.63 m inside Well A.
Depth-specific drawdown data taken at SE3, W3, and NE6 are shown in Figures
3-7, 3-8, and 3-9, respectively. The drawdowns started to drop at around 7x10* seconds.
Since the possibility of interference by buildup did not exist, this drop was more likely
caused by pumping rate change. Again, the drawdown data at NE6 shows a consistently
downward vertical flow, which is the reversed trend shown in the diverging Test No. 8. The
vertical flow conditions at SE3 and W3 are the reversed conditions noted in Test No. 8.
This further demonstrates that the MLSP’s did correctly respond to pumping and injection
occurring in Well A. Also, it can be seen very clearly in Figures 3-7 through 3-9 that the
large-time drawdown data at different depths for a fixed MLSP indeed become paraliel
straight lines on the semilog plots. This feature formed the backbone of the method
developed to estimate the planar anisotropy for the saturated thickness above 14 m in the
Sevilleta Site. Hereafter, the term "aquifer" is referring to the saturated thickness above 14
m of the Sevilleta Site since most important pumping and tracer tests had been performed
with the packers placed in between 12.19 m and 14.63 m and data had been collected for

depths above 14 m.
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3.3 VERTICALLY AVERAGED PUMPING TEST DATA

Vertically averaged drawdown data were measured in the observation wells during
Test No. 9, 11 and 12. These data are considered vertically averaged because the
observation wells have long well screens (see Figure 2-3) over which the possible head
differentials due to layering or vertical anisotropy are averaged out by mixing.
Unfortunately, the vertically averaged drawdown data had considerable noise, the best quality
data for the three tests are presented from Figures 3-10 through 3-12. In addition to the
noise, all of the drawdown data show that they decreased instead of increasing approximately
between 200 and 1,000 seconds after pumping started. This means that the aquifer had been
"replenished"” during these periods of pumping, which is difficult to account for under the
given conditions. These drawdown data do not demonstrate the typical three-section trend
either. Due to these concerns, the vertically averaged drawdown data were not analyzed for

aquifer anisotropy estimation or other parameter identification.
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4. LAPLACE-HANKEL DOMAIN CALCULATION OF
UNCONFINED WELL HYDRAULICS

Analysis of the pumping test data from the Sevilleta aquifer requires solutions of well
hydraulics for unconfined aquifers. The three-dimensional analytical solution given by
Neuman [1974] was selected to analyze the drawdown data. This solution is suitable for the
condition where groundwater flow is generated by a partially penetrating well in an
unconfined, vertically anisotropic aquifer. It is complicated in mathematics, involving an
integral consisting of an oscillatory Bessel function, J (x), and an infinite series. Rolfes
[1980] gave an improved numerical method over that employed in the DELAY2 program to
handle the calculation of this solution. Both Rolfes’s and Neuman’s DELAY2 methods are
cumbersome in programming and time-consuming in computation, not very ideal for handling
large amounts of data. Here, we developed a new method to calculate the solution. This
method calls for the use of the Laplace-Hankel domain counterpart of the original solution
given by Neuman [1974].

Both the Laplace and Hankel transforms are the integral transform technique
[Sneddon, 1972]. The Laplace transform uses the exponential function as its transform
kernel. The Hankel transform uses the Bessel function, Jy(x), for its transform kernel.

Here, the Laplace transform is applied to time and p is the transform parameter of t. The
Hankel transform is applied to the radial distance and a is the transform parameter of r.
Advantages of this Laplace-Hankel domain calculation method are: (1) the Hankel inverse is
handled numerically through the Fast Hankel transform (FHT) technique and the Laplace
inverse is calculated with the Stehfest [1970] numerical method. Thus, the difficult

integration and calculation encountered in dealing with the original solution are avoided or
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minimized, and (2) the Laplace-Hankel domain solution is linearly composed of three terms
(81, 8, and gz as shown below). Each term represents a specific, physically meaningful
condition; i.e., g, represents the "base condition" where the aquifer is confined and the
pumping well is fully penetrating, g, represents the water table effects and g, represents the
partial penetration effects. Different solutions thus can be derived from the linear
combination of g, g, and g;. One computer program for calculating g,, g, and g, can give
solutions for different problems, not only the unconfined flow due to a partially penetrating
pumping well.

The Stehfest method is easy to use and has been frequently employed to numerically
inverse many Laplace-domain solutions of groundwater problems (e.g., Moench, 1984a; and
others). The FHT method, however, has been commonly used in geophysics and it has not
been recognized in hydrogeology. This method uses digital convolution instead of direct
numerical quadrature to evaluate the Hankel transform integral. In general, digital
convolution is an order of magnitude faster than direct numerical integration, primarily
because the Bessel function evaluation is avoided. Anderson [1979] gave detailed discussion
on the FHT method. The FORTRAN program, DHANKL, developed by Anderson [1982] is
employed to handle the Hankel inverse.

The Laplace and Hankel inverse of g; gives the Theis solution, indicating that g,
represents the "base condition" of a confined aquifer and a fully penetrating pumping well.
In this sense, g, and g; give the deviation, due to the existence of a water table and of a
partially penetrating pumping well, from the base condition. Linear combination of g;, and

8>, and/or gz gives solutions for different problems. For example, neglecting g, gives the



solution for a confined aquifer subject to a partially penetrating pumping well as given by
Hantush [1961]. Neglecting g, leads to the solution for unconfined flow due to a fully
penetrating pumping well as given by Neuman [1972]. Of course, when neither g, nor g, is
ignored, the combination of the three terms gives the solution for unconfined flow subject to
a partially penetrating pumping well given by Neuman [1974]. In addition, for a specific
condition, not only the drawdown of interest is determined, but any influences from the
water table condition and/or a partially penetrating well, if exists, are explicitly evaluated.
This is very helpful in understanding the problem of interest.
4.1 LAPLACE-HANKEL DOMAIN SOLUTION AND CALCULATION

The problem of interest is schematized in Figure 4-1, where the pumping well
partially penetrates the aquifer from d to 1. Before pumping starts, the water table is
assumed to be horizontal. It is assumed that drawdown everywhere is small during pumping
as compared to the saturated thickness, b, and the aquifer thickness is assumed to be
constant. The pumping well can partially penetrate the aquifer. The solid well casing has a
length of d as measured from the water table to the top of the well screen. The well screen
has a length of /-d, where / is measured from the water table to the bottom of the well
screen. When the pumping well is fully penetrating, d is equal to zero and [ is equal to b.
The observation well can be partially penetrating as well. Measured from the water table to
the top of the observation well screen, d, is the total length of the solid casing. The total
screened interval of an observation well is [, - d,, where [, is measured from the water table
to the bottom of the observation well. Drawdown or groundwater samples collected from an

observation well are considered vertically-averaged over the screened interval, I, - d,. If the
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Figure 4-1. Schematic for an unconfined aquifer pumped by a partially penetrating well.



screened interval is small (i.e., /, = d,) as for a piezometer, the data measured are called

depth-specific at a fixed depth of z = d, = .

The observation well can be fully

penetrating (i.e., dy = 0 and /, = b). Data collected from a fully penetrating observation

well are vertically averaged across the whole aquifer thickness.

effects in appropriate form, the Laplace-Hankel domain solution for the depth-specific

Based on equation A.14 of Neuman (1974) and writing the partially penetrating

drawdown for the current study can be written as

where

gla,z,p) =g - & + &

I e
& = 7o (@® + pSIT)

. 0 &
8, m(pr)

Qo - 2 S n’x? Kz -1
= = F (a¢ + p= + =
& ﬂ(,(l—d)g @ P T K,)

F = b sinh[n(b-d)] - sinh{nG-0]
P l-d sinh(nb)
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F = cosh{n(b-2)]
" [a, 7 sinh(yb) + p cosh (yb)ln*

_ 1 nwz . nel| . | nnd 47
F, > cos [T] [sm [.—7’_] sm[_[)_.]]

(4-6)

and

= K/S, . K 2 + pS/
ay_z)' » 77‘7(::(‘1 pT)

<

The Laplace and Hankel inverse of (4-1) gives the results of interest in the r and t
domain. By equation 6.532.4 of Gradshteyn and Ryzhik (1980; p.678), the Hankel inverse

of g, is found to be

H—l|: o (a? _,_pSlI)—I} = Q L aJo(ar)

a
27 Tp 27Tp | a® + pSIT (4-8)
0
=_>* K S/
T (r/pSIT)

The Laplace inverse of (4-8), by equation 13.41 of Oberhettinger and Badii (1973; p. 338),

gives the Theis solution, or



h(rp) = LTH(g,) = 4_%‘W(u) 4-9)

where W(u) is the exponential integral which can be evaluated with the formulae given by
Abramowitz and Stegun (1970; p. 231). The function, F,, contributes to drawdown the
water table effects because the specific yield, accounting for drainage of water table decline,
is only involved in Fy. Based on this fact, S, can be used to indicate whether the aquifer is
confined (i.e., Sy, = 0) or unconfined (S, #0) in the computer program. The Laplace and

Hankel inverse of g, gives the water table effects on drawdown,

hy(r,z,0) = -?;r%_K L7'HYFF,) (4-10)

where the FHT and the Stehfest methods are used to numerically invert the Hankel and
Laplace transforms, respectively.

The condition of a fully penetrating pumping well is recognized in calculation by
setting d equal to zero and / equal to b (i.e., d = 0 and / = b for a fully penetrating
pumping well). When this happens, g, is zero and F, is unity. Thus, drawdown due to a

fully penetrating pumping well can be determined by

h(rz,f) = h- h,, (d-11a)

where



-_ 92 jagn 4-11b

As given in (4-4), the Hankel transform part of g; (i.e., a® + pS/T + n?x’K,/(b?K.))
can be exactly inverted using (4-8). Completion of this leaves only the Laplace transform in
the remaining part of g, and the effects of a partially penetrating pumping well thus can be

determined by

-3 2 S
ra) = LHg) = 2 3 F, 1 [%"“P 7" ”2”2‘3)”2} @1
AT n=1

where § = (Kr»)/(Kp?. As shown in Hantush (1961), analytical inverse of the Laplace

transform in (4-12) is an integral function that is difficult to evaluate. Thus, the Stehfest
method is used to numerically calculate the Laplace inverse in (4-12).
As a result, drawdown subject to a partially penetrating pumping well condition (i.e.,

d # 0 and/or 1 # b) can be determined by

h(r,z,t) = h, = h, + h, (4-13)

where h;, h, and h, are determined using (4-9), (4-10), and (4-12), respectively. If
drawdown is measured from an observation well screened from d, to 1, (4-13) should be

"vertically averaged" to yield the vertically averaged drawdown,



!
R o (4-14)
(r,) = = j (hy - hy + h) dz = h -k, + B,
where
B, =2 LHEF) (4-152)
° 2wbK, g
with F = sinh [n(b—-.dv] - sinh [n(b-1)] (4-15b)
1°(l,~d ey sinh (nb) + p cosh (b)]
and
5 - 0b iF L K, (r2p£ + 2By (4-15¢)
T wKkGa = | T




If the pumping well is fully penetrating (i.e., d=0 and /=b) while the observation

well is partially penetrating from d, to /,, the drawdown can be calculated using

h(rg) = by - Ty, (4-16a)
where
o= _2 gvp (4-16b)
h’Zl 271_sz H ( w)

in which F  is defined by (4-15b).

It is noted that F_ (and thus h, ) is zero if the observation well fully penetrates the

unconfined aquifer (i.e., d, = O and 1, = b). This indicates effects of a partially penetrating
pumping well on drawdown disappear in a fully penetrating observation well. A total of
h

seven cases can be derived from (4-1) through the combination of hy, h,, hy, h;, 7

2 21°

and A,. In computer programming, solutions for these seven cases can be selected by

controlling S,, 1, d,, 1 and d as shown in the flowchart of Figure 4-2. Each of the seven
cases is specifically explained in Table 4-1. Drawdowns calculated using the FHT and the

Stehfest Laplace inverse are compared with results given by Rolfes (1980) and from the

4-10



Input Data
X) K)h KZ) Ss: Sy,
do 1o XY,

K= pKXKy
r? = (Kx Y2 + Ky X?)/K,

Yes

Case 1

No

Case 5

dO - 10 YCS
3
No Case 6
Case 7

Figure 4-2. Flow chart describing calculation of different solutions in the
Laplace-Hankel domain.
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DELAY? program in Tables 4-2 and 4-3. It is seen that this method yields very accurate
resuits.
4.2  DISCUSSIONS AND RESULTS

The Laplace transform parameter, p, is inversely related to t. The asymptotic nature
of drawdown at large t thus can be understood by evaluating the Laplace-domain counterpart
at small p. For p = 0 as for t approaching infinity, both F,, and g; become independent of p
and still remain finite. This indicates that for large times, the water table effects and the
partially penetrating well effects can reach steady state. The Theis solution or h,, however,
never reaches steady state. Thus at large times, depth-specific drawdown for an unconfined

aquifer subject to a partially penetrating well is

Wz, = 2 W)=, (,2) 1,2 (417)

where h,(r,z) and hy(r,z) represent the steady-state water table effects and partially
penetrating effects, respectively. Specifically, h,, and h, are

h, = H'(—FF,) (4-18)

2K,
KI

and
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Table 4-2. Comparison of Dimensionless Drawdown Calculated by the Laplace~Hankel

Method and Other Methods; the Pumping Well is Fully Penetrating and the
Drawdown is Vertically Averaged.

Current Method Rolfes [1980] DELAY2
SIS y= 10 -9
B=10 -13
@u)™! h h h
10! 0.2491x10 "} 0.2492x10 0.2478x10-1
1 ) 0.1044x10 0.1044x10 0.1038x10
10 0.5417x10 0.5417x10 0.5392x10
1013 0.1232x10 2 0.1232x10 2 0.1226x10 2
10 0.2376x10 ? 0.2387x10 2 0.2367x10 2
-5
B=10
10 0.2491x10 0.2492x10 0.2478x10 -1
1 0.1043x10 0.1044x10 0.1038x10
10 2 0.5396x10 0.5397x10 0.5385x10
1013 0.1161x10 2 0.1161x10 2 0.1160x10 2
10 0.1247x10 2 0.1247x10 2 0.1245x10 2
=103
101 0.2467x10 ! 0.2465x10 0.2465x10 !
1 ) 0.1019x10 0.1019x10 0.1017x10
10 0.4765x10 0.4765x10 0.4766x10
10 1: 0.5622x10 0.5622x10 0.5623x10
10 0.5694x10 0.5694x10 0.5696x10
B=10""
10-! 0.1703x10 ! 0.1703x10 ! 0.1702x10 !
1 0.3000 0.3000 0..3001
10 2 0.3173 0.3173 0.3174
1013 03174 0.3174 03175
10 0.3138x10 0.3138x10 0.3140x10
S/ y= 101
8=10 —13
107! 0.2491x107% 0.2492x10™! 0.2478x10™!
1 ) 0.1044x10 0.1044x10 0.1038x10
10 0.5417x10 0.5417x10 0.5392x10
10 l; 0.1232x10 2 0.1232x10 2 0.1226x10 2
10 0.2376x10 2 0.2388x 10 2 0.2367x10 2
ﬁ = 10 -6
107! 0.2491x10 ! 0.2492x10"! 0.2478x10 !
1 0.1043x10 0.1044x10 0.1038x10
10 2 0.5396x10 0.5397x10 0.5385x10
10 13 0.1168x10 2 0.1168x10 2 0.1167x10 2
10 0.2144x10 2 0.2141x10 2 0.2142x10 2
B=10"3
10! 0.2467x10 0.2465x10 ! 0.2465x10 !
1 0.1019x10 0.1019x10 0.1017x10
10 2 0.4806x 10 0.4806x 10 0.4807x10
10 ;g 0.9924x10 0.9924x10 0.9925x10
10 0.2144x10 2 0.2141x10 2 021442102
B=10"
10~} 0.1709x10 - 0.1708x10 ~ 0..1708x10"!
1 0.3452 0.3452 0.3453
10 2 0.3045x10 0.3045x10 0.3047x10
10 5 0.9924x10 0.9924x10 0.9927x10
1010 0.2144x10 2 0.2141x10 2 0.2144x10 2
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- - 4b 2 12 4-19)
hp ; w(lnd)F"K"(n 726)

where Fy, is derived from F,, by setting p to zero and by changing 7 to a’K/K,. Note that

no Laplace inverse exists in (4-18) and (4-19) because p has been dropped for the large time
approximation.

According to (4-17), drawdown at a specific r and z for large times is the Theis
solution offset by a constant composed of h,, and h,. When z changes, h,, and h, varies as
well, indicating drawdown curves for different z at a fixed r are parallel Theis curves. Each
of these curves can be fitted by the Theis solution using a constant T and a value different
from S for the storage coefficient. This "fitted storage coefficient" actually represents the
sum of S, S, and the partially penetrating effects, and thus it is more appropriately termed as
an effective storage coefficient. This effective storage coefficient changes with depth at a
fixed r, since the offset of h, and h, varies with z. Asr is large, h, diminishes, indicating
that the partially penetrating effects vanish at large distances and large times.

If the pumping well is fully penetrating, the offset is only due to the water table
effects. Again, large-time drawdown curves at different depths for a fixed r are parallel
Theis curves. Each of these curves can be fitted by the Theis solution using a value larger
than S for the storage coefficient. This fitted storage coefficient normally is deemed to be
the sum of S and S,. Regardless of whether the pumping well is partially penetrating or not,
large-time drawdown curves at different depths of a fixed r are parallel Theis curves; Figure

4-3 gives quantitative illustration. Depth-specific conditions subject to a fully-penetrating
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Figure 4-3 Drawdown expressed as the sum of Theis solution, water table effect, and

partial penetration effect.
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pumping well (Case 4) and to a partially-penetrating pumping well (Case 6) are shown in
Figure 4-3a. Vertically-averaged conditions subject to a fully-penetrating pumping well
(Case 5) and to a partially penetrating pumping well (Case 7) are displayed in Figure 4-3b.
It can be seen that (1) at large times, the water table effect and the partial penetration effect
are constant for the four cases, and the time-drawdown relationships for the four cases are
indeed straight lines parallel to the Theis solution, (2) at small times, the water table effect is
negligible relative to the partial penetration effect. Thus, drawdown variations of Case 4 and
Case 5, where pumping well is fully penetrating, are coincident with the Theis solution.
Drawdown variation of Case 6 and Case 7, where pumping well is partially penetrating, are

larger than the Theis solution due to the partial penetrating effect only, and (3) at any times,

the water table effects of h,, hy, %, and &, are not significantly different whereas the

partial penetration effects of h, and /£, show noticeable difference.

In Figure 4-4, the water table effect and the partially penetrating well effect are
separately demonstrated. As shown in Figure 4-4a, the water table effect is the largest at the
water table (i.e., z=0) and continuously decreases as the depth increases. This vertical
variation of water table effect diminishes as r increases; e.g., at r=150 m the water table
effect at the water table and at the bottom of the aquifer is insignificantly different. At large
times, the water table effect reaches a stable condition for all r and z. This indicates that hy
in (4-17) actually is constant for a given aquifer condition. In Figure 4-4b, it is seen that the
partial penetration effect disappears at large 1. At small r, this effect changes with z. The
drawdown due to the partial penetrating effect is positive for depths within the screened

interval (i.e., d<z</. Note that in this particular example d is 3 m below the water table
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Figure 44 Drawdown at different depths due to (a) the water table

102

effect and (b) the partially penetrating pumping effect.
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and / is 3 m above the bottom of the aquifer such that the groundwater flow field is vertically
symmetrical with respect to the center depth, b/2. In this event, the maximum drawdown
due to the partial penetration effect occurs at b/2, and drawdown variations at d and /, at 0
and b, at d/2 and (/+b)/2 are the same, respectively, reflecting the vertical symmetry. At
large times, the partial penetration effect at different depths is of different steady-state

values. If the groundwater flow field is not vertically symmetrical, the drawdown due to the
partially penetrating effect is still positive within the screened interval but the maximum

drawdown does not necessarily occur at b/2. Other symmetrical conditions no longer exist.
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5. AQUIFER ANISOTROPY ESTIMATION

Well hydraulics theories for unconfined conditions have been developed by various
investigators. Boulton [1954, 1963] developed analytical solutions for unconfined well
hydraulics where an empirical constant called the delay index was involved to account for the
delayed yield due to water table decline. Neuman [1972, 1974], however, emphasized on the
three-dimensional nature of unconfined flow and gave three-dimensional analytical solutions.
Recently, Akindunni and Gillham [1992] and Nwankwor et al. [1992] have pointed out that
the yield due to water table decline is time-dependent as influenced by the slow drainage
occurring in the vadose zone and significant vertical flow exists in the saturated zone.

Assuming the aquifer is horizontally isotropic and both the pumping and observation
wells fully penetrate the saturated thickness, Prickett [1965] and Neuman [1975] developed
curve-matching methods to estimate S, S,, K,, and K, ( or the delay index). It is very
difficult to generate appropriate type curves for the full range of times. These authors
employed the asymptotic solutions for small- and large-time to prepare types curves only
valid for drawdown data measured at early and late times. Dagan [1967] and
Lakshminarayana and Rajagopalan [1978] gave curve-matching methods for the condition
where the pumping well was partially penetrating. For other aquifer conditions,
determination of aquifer anisotropy has been studied by various investigators. Hsieh and
Neuman [1985a,b] developed theories and methods to estimate the three-dimensional
anisotropy tensor for a fractured formation, where any of the three principal directions is
unknown as a priori. Way and McKee [1982] presented a method to estimate the three-

dimensional anisotropy of a leaky aquifer. Other aquifer anisotropy studies can be found in
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Hantush [1964, 1966a,b], Papodopulos [1965], Neuman et al. [1984], Stoner [1981], Miller
[1984], nd others. All of these aforementioned methods are not applicable for the current
study, where the drawdown data are depth-specific, the aquifer is unconfined with a three-
dimensional anisotropy, and the pumping well is partially penetrating.

The linear or nonlinear least-square fitting method, which avoids using type curves,
has been frequently used to estimate aquifer parameters [e.g., Johns et al., 1992; Chandler et
al., 1981, and others]. This method becomes ineffective when the number of unknown
parameters is greater than three or four.

Since the mathematical model developed to analyze the tracer test data assumes that
the three-dimensional groundwater flow field reaches the pseudo-steady-state condition (i.e.,
drawdown is transient while the hydraulic gradient is steady-state), the storage coefficient and
the specific yield are not of primary concern. What is important is the planar anisotropy
tensor for the horizontal flow. Here, a method of estimating the planar anisotropy tensor is
developed based on the discussion in Chapter 4 and the drawdown curve patterns at large
times. The depth-specific drawdown data taken from test No. 10 are used to characterize the
anisotropy tensor.

5.1 METHOD DEVELOPMENT AND RESULTS
Since the vertical direction normally is a principal direction for alluvium aquifers, the

anisotropy tensor can be written as



K. .
K- |K, K, (5-1)
0 0 K

where K,,, K, and K,, are elements of horizontal anisotropy.
Using cylindrical coordinates, the three-dimensional groundwater flow field due to

pumping can be expressed as

v K, K, 0] ]onor -
vt = -|K, Kk, o0|{Lamae G2
r
vz 0 0 K||onaz
which can be reduced to
v L _|Ke Ka | OO (5-3)
v, K, K, ||>0md
and
v, = - K, 8h/dz (5-4)



where
K, = K,cos’0 + K sin2f + K sin’f
Ky = K sin’ - K sin20 + K cos’f

K -K
K, = Lﬂ.z_.f‘l sin2f + K_cos26

6 = tan"'(y/x)

In light of (5-3) and (5-4), the horizontal and vertical flow components are separately
related to the planar anisotropy characterized by K,,, K,, and K, and to the vertical principal
hydraulic conductivity of K,, respectively. This means that the vertical flow has no influence
on the horizontal flow and the planar anisotropy can be estimated without involving K, and
V..

As shown in Figure 5-1, the depth-specific drawdowns at large times of SE3, W3,
and NE6 for Test No. 10 are parallel straight lines on the semilog plots. This field evidence
validates the theoretical discussions made in Chapter 4 that depth-specific drawdowns at large
times follow the Theis solution. Using the logarithm approximation, each of the straight

lines of large-time drawdown can be expressed as

e

T -
heey,zn = 01832 [10g2.25°2) + h(r) - h (5-5)
T rZS P W

where
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Figure 5-1 Large-time drawdown at different depths of SE3, W3, and NE6 during
Test No. 10 showing parallel straight lines on semilog plots.
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T, = (T.T, - T\ (5-6)

Xy

r? = (Ty* + Tx* - 2T xy) /T, (5-7

Since transmissivity is the product of the hydraulic conductivity and the constant

aquifer thickness (e.g., Ty, = bK,,), the nature of K is identical to that of T and the planar

anisotropy can be characterized by T,,, T,, and T,, without the loss of generality.
It needs to be reemphasized that the water table effect, hy, is constant in (5-5) as

revealed by Figure 4-4a. Thus, the source of vertical dependence in (5-5) is h,, which can

be calculated with (4-19), provided K is known. The constant hy, can be determined with
(4-18) if S, S, and X are known. These parameters are to be determined, and h, and h,

cannot be known a priori. However, this does not create problems in estimating T using (5-

5) because h, and h,, are constant for a specific r and a specific z when the large-time
conditions are concerned. These two constants can be easily incorporated into the logarithm
function appearing in (5-5) by using the relationship of x = log (107). As a result, (5-5) is
rewritten as

T

2
r<s,

) (5-8)

hx,y,z,1) = 0.183.g_log(2.25



where S, is the product of S and the appropriate logarithmic conversion of h, and h,. Asa
lumped parameter combining the effects of storage, water table and partial penetration, S, is
termed the effective storage coefficient, which is dependent on r and z. At a fixed 1, S,
changes with 2z and each straight line of large-time drawdown thus has a different S,.. The
“directional transmissivity" evaluated at a fixed r of each MLSP is constant due to the fact
that the straight lines of large-time drawdown are parallel and subject to a constant slope.

The method of estimating 7' using the large-time drawdown data is:

(1)  Determine the directional transmissivity for each set of the large-time data collected
from SE3, W3 and NE6 using the relationship

T =013 | =123
where my; is the constant slope associated with the parallel straight lines of large-time
drawdown at ith MLSP. Here, the subindex, i, equal to 1, 2 and 3 represents SE3, W3, and
NES, respectively. As indicated in Figure 5-1, m, is 0.049 m/s, m, is 0.042 m/s/ and m, is
0.041 m/s. Using 3.43 x 10 m%/s for Q, T, is determined to be 1.27x10? m?¥s, T, is
1.49x10? m¥s and T, is 1.54x102 m¥s. These three directional transmissivities are not
significantly different in magnitude, implying the aquifer is not significantly anisotropic in
the horizontal plane.
2) Denote t, as the time at which the extrapolated straight line of large-time drawdown

intercepts the horizontal axis of h being zero. The different S, can be estimated with the



associated t;, at a specific depth. However, this calculation is not necessary since the ratios
of t,/S, at different depths subject to a constant T, are constant. Recalling that t, is associated
with h being zero, the argument of the logarithm function in (5-8) must be equal to unity for

t being t,, that is;

Ll _ 5 (5-9)
S.|. 2257,

where (t,/S,), is the ratio of t, to S, for a specific z, and r; is the actual distance from the ith
MLSP to Well A.

(3)  Since (5-8) should be applicable to any straight lines of large-time drawdowns, the
argument of its logarithm function under the true anisotropic conditions where T, and r are
defined by (5-6) and (5-7) must be unity for h being zero. Therefore, the following

relationships must be true

to which introducing (5-9) yields



T
= _4 , 1=1,23, (5-10)
rk

Ll

4) Three simultaneous equations of three unknowns, T,,, T,, and T,y, can be derived

from (5-10) after replacing T, and r by their definitions given in (5-6) and (5-7) as

T 2 T !‘2 - 2T 34 "2
i T LX - i - _;T , Q=123 (5-11)
TuTyy - T, i

where (x;, yy refers to the coordinates of the ith MLSP, and r? = x + y2. The solution of
the three simultaneous equations can be determined using either the linear approximation
method or nonlinear methods. The linear approximation method linearizes (5-11) by using
(T, + T, + T3)/3 for (T T,y - T,,)". The three unknowns of T,,, T, and T,, left in the
three linearized algebraic equations can be determined without difficulty. The nonlinear
method deals with the original form of (5-11) without replacing the term (T, T,, - T, by
the arithmetic mean of T,, T, and T;. The solution of the three simultaneous nonlinear
equations can be determined using minimization functions/subroutines available in software
packages (e.g., the function "fmins" in MATLAB). Surprisingly, the solutions determined
with the linear and nonlinear methods for the current case are almost identical, namely, T,, is
1.52x10% m%s, T,, is 1.37x102 m?/s and T, is 1.57x10° m¥s. Accordingly, the principal
transmissivity of T, is 1.62x10? m%s in the direction of N58°E, and the principal
transmissivity of T, is 1.27x10? m%s in the direction of N32°W. The planar anisotropy

ellipse is demonstrated in Figure 5-2, where the eccentricity is 1.13. The eccentricity is
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defined by (T,/T,)"? or (K,/K,)"?. The average saturated thickness between the initial water
table and the low-permeability layer ranges from 9.14 to 11.58 m, depending on the actual
depth where the low-permeability layer locates. Using 10 m for the average saturated
thickness, the principal hydraulic conductivity of K, is 1.62x10® m/s, and the principal
hydraulic conductivity of K, is 1.27x10? m/s. They serve the upper and lower bound for
any directional hydraulic conductivity at a specific direction in between the two principal
directions. In general, the hydraulic conductivities are of the magnitude of about 10 m/s,
which is representative of the hydraulic conductivity for sand and gravel [Table 2.2; Freeze
and Cherry, 1979]. This is also in agreement with the soil classification results discussed in
Chapter 2.3.

Considering that anisotropy is intrinsic to the aquifer and it cannot change with time,
the planar anisotropy condition shown in Figure 5-2 is deemed to be correct for the aquifer.
To prove that this anisotropy condition is accurate, it is used in (5-8) to calculate the large-
time drawdowns at different depths of SE3, W3 and NE6. The comparison of the measured
and calculated large-time drawdowns is shown in Figure 5-3. It is seen that the field data
indeed can be reproduced by (5-8) using the anisotropy condition obtained, supporting the
validity of the method and its results developed here for estimating the planar anisotropy.

After the planar anisotroply is determined, the vertical hydraulic conductivity, K,, can
be estimated based on the fact that at large times the vertical drawdown variation is mainly
caused by the partial penetration effect, h,. For a fixed r, the drawdown difference at z, and

z, thus can be calculated by
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Figure 5-2. The Planar Anisotropy Ellipse Estimated From Large-Time Drawdown Data.
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Figure 5-3. Comparison of measured (symbols) with calculated (lines) drawdown
at large time for Test No. 10.
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Ah = h(rz) - h(rz) (5-12)

where Ak can be estimated by measuring the vertical difference between any two
parallellarge-time drawdown lines associated with z, and z,, respectively. The large-time
partial penetration effect, h,, is given in (4-19). The only unknown in (5-12) is the

parameter, $, which is defined as

g-Kr (5-13)
K b

Therefore, 8 can be uniquely determined from (5-12) for a known Ak. Then, X,
can be determined from (5-13) for the 8 value obtained. As shown in Figure 5-4, the large-
time partial penetration effect, h,, at the three depths of SE3 is plotted against different 8’s.
Reading from Figure 5-1a, Ah between z = 5.55 m and 11.65 m is about 0.1 m, which is
related to about 0.0038 for 8 as indicated by Figure 5-4. The large-time drawdown
difference, Ah, between z=8.6 m and 11.65 m measured from Figure 5-1a is about 0.01 m,
which refers to a 8 value approximately equal to 0.0032. These two §’s determined are
close and their average, 0.0035, is chosen to estimate K, by means of (5-13). Now, K, and
r in (5-13) have to be calculated with the appropriate anisotropic conditions determined

already using (5-6) and (5-7). As a result, K is calculated to be 5.74x10”° m/s, which is

about two order of magnitude smaller than K, or K , being typical for an alluvium aquifer.
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The same procedure was applied to W3 and NE6 to find X,. However, the Bvalues

estimated for different depths in each individual data set are not close, as may be caused by

the vertical heterogeneous conditions. Therefore, K, was not further evaluated using these

two sets of data, and its value is considered to be 5.74x10° m/s.
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6. A NEW TECHNIQUE FOR USING THE MAPPING FUNCTION

As measures of the aquifer response to pumping, drawdowns are usually observed for
various pumping times at observation wells or piezometers during a pumping test. Analysis
of these drawdown histories witﬁ appropriate methods can reveal the hydrogeological
conditions of the aquifer being tested. If the aquifer type (i.e., confined, unconfined, leaky
or fractured) for a set of drawdown data is known, and appropriate well hydraulics theories
are available for interpreting them, model parameters involved in these theories can be
estimated by practical means such as graphic techniques. For example, Theis (1935)
provided the logarithmic type-curve matching method to estimate the transmissivity and the |
storage coefficient of an infinitely large confined aquifer. The type-curve is the
dimensionless log-log plot of the Theis (1935) solution. Cooper and Jacob (1946), however,
presented a semilogarithmic method to estimate these two parameters without needing a type
curve, thereby avoided curve matching. For unconfined aquifer conditions, Prickett (1965)
developed a curve-matching method based on the unconfined well hydraulics theory given by
Boulton (1963) to determine the hydrogeological parameters used in that theory. This was
followed by Neuman’s (1975) curve-matching method for determining the parameters
involved in his unconfined well hydraulics theory (Neuman, 1973). Relatively
comprehensive discussions on graphic methods for various problems (e.g., those related to
confined, unconfined, leaky and fractured aquifers, to the determination of aquifer anisotropy
or hydrogeological boundaries, and others) can be found in Kruseman and deRidder (1990),
and Streltsova (1987).

In recent years, petroleum reservoir engineers have developed the so-called pressure
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derivative method to characterize aquifers (Tiab and Kumar, 1980; Gringarten, 1987;
Bourdet et al., 1983 and 1989; Bourdet and Gringarten, 1980; Clarke and van Golf-Racht,
1985). The pressure derivative is referred to as the derivative of drawdown with respect to
the logarithmic pumping time, dh/d(log t). It has been found empirically that plots of the
pressure derivatives against pumping times on logarithmic paper can yield four curve
characteristics, namely, a maximum, a minimum, a stabilization and an upward/downward
trend. If they exist, these characteristics appear at different pumping times and can disclose
certain hydrogeological features of the reservoirs. A maximum, usually occurring at early
stages of pumping, indicates wellbore storage and skin effects. A minimum, usually
occurring at the intermediate pumping times, indicates replenishment through confining
layers. An upward or a downward trend at late pumping times indicates an impervious
hydrogeological boundary or a constant-head (recharge) hydrogeological boundary,
respectively. A stabilization indicates radial flow under confined conditions without
hydrogeological boundary effects. The pressure derivatives are generated without the use of
any well hydraulics solutions. Thus, they are used not so much to quantitatively determine
the model parameters as to qualitatively understand the pertinent hydrogeological conditions.
The pressure-derivative method is useful, as a screening tool, in selecting the well hydraulics
theories appropriate for the drawdown data of interest.

It has long been recognized (e.g., Wenzel, 1942; Walton, 1960; Prickett, 1965:
Neuman, 1975; Streltsova, 1987) that drawdown histories from unconfined, leaky or
fractured aquifers typically have three distinct sections as compared with the Theis solution.

The early- and late-time sections can be fitted by the Theis solution with different values for
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the storage coefficient. It is also understood that the Theis solution yields larger drawdowns
for smaller storage coefficients and vice versa, provided all other conditions remain the
same. These two facts suggest that a three-section (or even multiple-section) drawdown
history can possibly be reproduced by the Theis solution where different values of the storage
coefficient are needed to fit different sections of the drawdown history . In fact, it is
formally proven below that the set of these different "pseudo-storage coefficients" forms a
mapping function in time, which effectively accounts for drawdown variation caused by
hydrogeological conditions not recognized by the Theis solution. To investigate the
feasibility of using this "mapping function" to diagnose the hydrogeological conditions
involved in drawdown data, a mathematical model is developed in an intuitive manner as

or? r or T ot

h(r,0) = 0 (6-2)
lim , oh, _ -
9y - ¢ (6-3)
r-0¢ ar) 2nT
b (6-4)
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where «(t) is the mapping function. Other terms are defined at the end of the paper.

Here the analytical solution for (6-1) through (6-4) is determined, the method of
finding w(t) is established, the usefulness of employing w(t) in interpreting drawdown data in
terms of aquifer hydrogeologic conditions is evaluated, and the mapping function is used to
estimate important hydrogeological parameters such as the storage coefficient and the specific
yield. The new analytical solution is identical to the Theis solution on a scaled time frame,
which mathematically incorporates the mapping function. Of course, the mapping function,
w(t), is problem-specific; that is, w(t) changes with the hydrogeology. For a confined aquifer
satisfying only the assumptions invoked in the Theis solution, w(t) becomes a constant equal
to the storage coefficient of the aquifer. Under this circumstance, the new analytical solution
reduces to the Theis solution as expected. A robust and self-contained method was
developed to determine w(t) from field data. Through a few case studies, it was noted that a
plot of w(t) versus time exhibits distinctive characteristics that are pertinent to specific
hydrogeological conditions imbedded in the drawdown data. This suggests that these plots
can be used to diagnose the hydrogeology conditions. In addition, w(t) can be employed to
estimate the storage coefficient of a granular aquifer, a fracture or a porous matrix, and the
specific yield of an unconfined aquifer, depending on the type of aquifer being investigated.
Analytical definitions for w(t) derived herein show that the pressure-derivative method is
inversely related to w(t), thereby theoretically justifying the empirical pressure-derivative
method. They are aiso useful in finding quantitative information associated with the curve

characteristics of w(t).
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6.1 THE ANALYTICAL SOLUTION

By making use of a new time,

3 f dx (6-5)

w(x)

the right-hand side term in (6-1) is changed to (1/T) dh/dts while other terms and conditions
in (6-1) through (6-4) are not altered. In‘terms of t;, therefore, the new model becomes
equivalent to the Theis model with a fictitious storage coefficient being equal to unity. Asa
result, the new solution must be mathematically identical to the Theis solution written in

terms of tg, or

hrp) = -2 [ €0 w1 (6-6)

4nT

® S 8
i
g~

where s is defined by (6-5). If w(t) is constant (say, equal to the storage coefficient S), t,
defined by (6-5) reduces to t/S and (6-6) becomes identical to the Theis solution. Thus, the
Theis solution is a special case of the new solution.
6.2 DETERMINATION OF THE MAPPING FUNCTION FROM FIELD DATA

For a given set of observed drawdown data, (h;, t) with i = 1,2, ....N, the mapping
function w(t) can be estimated by the following four steps.

1. The value of the constant T is needed for the determination of w(t). By making use
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of the early-time (the first section) data with the Theis solution through curve-matching

techniques or other appropriate methods, T can be estimated.

2. Once T is known, the only unknown in (6-6) is tg (without recourse to the integral
definition). Since (6-6) is a monotonically increasing function, there is a single
corresponding t,; for each given observation h;. By treating tg as the root of (6-6) for the
given h, each t; can be determined by applying Newton-Raphson or other search methods to
(6-6) and the corre%ponding h;. Thus the one-to-one relationship of (h;, t;) can be determined

without difficulty.
3. The one-to-one relationship of (tg, t) can be uniquely derived from the (h,, tg)
obtained in step 2 and the given field data of (h;, t). These three relationships, (h;, t), (h;,

ts), and (g, t;) are used to determine w(t).

4, Differentation of t; given by (6-5) with respect to t gives

dt . dx
dt 0@  w@®

O~

4
dt

which yields the first functional definition for w(t) as



67

o) = gs-

Since (t;, t) have been determined in step 3, the derivative in (6-7) can be calculated
numerically to obtain w(t). Without contradicting (6-7), another way of mathematically

defining w(t) is

oh _ oh dt _ oh
— = e — = —— w(l)
ar, ot dt, ot

which results in a second functional definition for w(t) as

_ ahferg

B} (6-8)
©0 = S

In (6-8), the derivatives can be numerically calculated from (h;, t;) and (h;, t). Since 8h/dtg
can also be analytically determined from (6-6), using the Liebniz rule for differentiation of
integrals, a third functional definition for w(t) can be derived from (6-8) by replacing the

numerator with its analytical expression as

- ) r2 (6.9)

m(t) = i ._]:_ € 3 U =——
4T t, ohjot 4Tt

where, again dh/dt, is estimated numerically.
Equations (6-7), (6-8) and (6-9) give three different legitimate ways of calculating the
mapping function w(f). They do not contradict one another yet they may lead to different

accuracy calculations, depending on the data frequency, noise and the profiles (i.e., the
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curvatures) embedded in (h;, t), (h;, t,) and (ty, t;). The derivatives involved in (6-7), (6-8)
and (6-9) can be calculated with finite-difference schemes of uneven increments or the
weighted difference method as used for calculating pressure derivatives.

Since discrete data points are included in (h;, t), (h;, ty) or (t,, t), the mapping
function w(t) is obtained in a discrete fashion as well; that is, for each t; there is a
corresponding w(t). The discrete w(t;) can be expressed in certain fitted functions by cubic
spline, polynominal approximation or some other regression analysis. This is discouraged
because the fitted functions are nonunique for the given w(t), do not necessarily provide
more detailed information than the characteristics shown by the discrete w(t) itself, and may
render the integration of (6-5) difficult.

It is understood that drawdowns in the scaled-time domain must follow the Theis
solution with a fictitious storage coefficient equal to unity. Thus, plotting measured
drawdowns against the obtained t; on logarithmic paper should be matchable by a logarithmic
Theis curve with S equal to one and the transmissivity equal to the value of T used in step 1.
When the plot is made on semilogarithmic paper, Jacob’s method can be used to verify the T
and fictitious S values. These practices can reveal the accuracy of tg values obtained.

The accuracy of the estimated mapping function w(t;) can be checked by the following

procedure. The discrete function w(t;) is treated as a piece-wise continuous function

o) = 0, t_, stst,i =12,..Nt =0 (6-10)

Integration of (6-10) in accordance with (6-5) yields a new set of scaled times, denoted by
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t'y, as

_.d_x.. = _tL + 4 + o+ it : nsN (6-11)
w(x) ®, W, ®

Ug =

Okﬁ-'."

Now it is seen that the piece-wise continuous expression of w(t) renders the integration of
(6-5) a simple algebraic function, significantly simplifying the calculation of t's;. If w(t) is
exactly estimated from field data, t’s; should be identical to tg; as calculated in step 2.
Numerical computation of derivatives across discrete field data, as required in determining
w(ty), is sensitive to data noise. Therefore, t’g; is never identical to tg, which is determined
without the involvement of w(t). In general, tg; is more accurate than t’g, and thus the
comparison of them indicates the accuracy of the estimated mapping function w(t). It should
be noted that the accuracy of numerical search for tg can also be checked by the method
given above; additional improvement of this accuracy as needed can be achieved through the
searching schemes without difficulty.

There are three relationships, (6-7), (6-8) and (6-9), that can be used to determine
w(t). They yield different degrees of accuracy for w(t) for the same set of given data. It
seems that (6-9) should give the best estimation for w(t) as the term of dh/dts is analytically
determined in it. However, this is not the case, and ﬁo general rules are available for
guiding the selection of these three equations for the most accurate estimation of w(t). It is
thus suggested that all of them be used to obtain three sets of w(t), which can then be used to
generate three sets of t’g;, respectively. Comparing each set of t’s; with tg; gives information

on the most accurate set of w(t).

6-9



The set of t’y; associated with the most accurate w(t;) is used in (6-6) to determine the
“calculated drawdowns" for known Q, r and T. The comparison of calculated and measured
drawdowns indicates the reproducibility of the field data behavior by (6-6) and the proposed
modelling approach. Although being more accurate than t’g, tg is not employed to determine
the calculated drawdown because its estimation is independent of the essential element in the
new solution, the mapping function w(t). Specifically, tg; is developed as ad hoc information
for completing the estimation of w(t) and the calculated drawdown. It has been found that
this mapping function is not very sensitive to the value of T in the sense that no significant
changes in magnitudes and curve characteristics of w(t) are noted by varying T up to about
fifteen percent of the difference. However, if the T value used is incorrect, the calculated
drawdowns will not converge to the observed. In this event, T needs to be redetermined
with more care.

The method of determining the mapping function w(t) developed here is robust. The
completeness of this self-contained method is ensured by the fact that only the field data and
mathematical relationships rigorously derived from the solution of interest are used.

In (6-8), the numerator of dh/dt, actually represents the drawdown rate for the Theis
solution. The denominator of dh/dt represents the actual drawdown rate, which is a function
of the field hydrogeological conditions. Thus, the logarithmic w(t) demonstrates the
difference between the hydrogeological conditions involved in actual drawdown data and

those in the Theis solution, as shown by
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log w(t) = log% - log 1 (6-12)

5

This suggests that for diagnostic purposes, the mapping function w(t) should be
plotted on log-log paper. It also proves that the mapping function indeed involves

information on hydrogeological conditions not set forth in the Theis solution.

6.3 APPLICATION AND DISCUSSIONS

To demonstrate the usefulness of this new approach in diagnosing the
hydrogeological conditions embedded in drawdown data, (6-6) is first employed to analyze a
set of hypothetical data prepared with the Theis solution using Q = 1.74 m*min, T= 0.77
m?/min and S = 2x10*. The observation well, where the hypothetical drawdown is
calculated, is 60 m from the pumping well (i.e., r = 60 m). The mapping function w(t)
obtained using the method discussed above with an input T of 0.77 m*min is indeed a
constant, of which the magnitude is 2x10* as shown in Figure 6-1.

To understand the effects of boundary conditions on the mapping function, (6-6) is
employed to analyze another two sets of hypothetical data prepared with the Theis solution
and image wells for a recharge or an impervious boundary. The recharge or the impervious
boundary is 300 m from the pumping well in a direction normal to that formed by the
pumping and observation wells. Thus, in the calculation, the image well substituting the
impermeable or the recharge boundary is 540 m from the observation well (i.e., r; = 540

m). For comparison purposes, the analysis results are also shown in Figure 6-1.
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At large pumping times, an upward trend of w(t) is associated with a recharge
boundary and a downward trend with an impermeable boundary. These trends can be
formally verified in light of (6-8). After the recharge boundary influences the drawdown, the
actual drawdown rate (0h/dt) becomes smaller than that without the boundary influences
(i.e., dh/dt). Accordingly, under the influence of a recharge boundary, w(t) continuously
increases with time. The mapping function w(t) will increase to infinity when the steady-
state condition is established because dh/dt is zero under such a condition. The influence of
an impermeable boundary is that the drawdown rate (3h/dt) becomes large relative to dh/dt,.
As a result, w(t) continuously decreases under the influence of an impermeable boundary.

As a matter of fact, quantitative information on the large-time trend of w(t) can be
found by calibrating (6-8) against the theoretical dh/dt. For large times, the drawdown
function in tg can be written, using the logarithmic approximation of the Theis well function,
as

2
hry = -C (L), ¢ =2 (6-13)
4Tt 4T

where 6 = exp(0.5772) = 1.78. The following two relationships can be derived from (6-13)

(6-14a)

and
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Figure 6-1 Mapping function analysis of hypothetical data with influence of an
.impermeable or a recharge boundary.
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r= D xp Thrt (6-14b)
s = o exp [H(re)C]

The hypothetical drawdown subject to an impervious boundary for large times can be

determined as

1
W) = -Clla) + In(x)) (6-152)
or
oh _ 2C (6-15b)
ot t
where
_ &r2s
r 47Tt
or}s
u. =
! 4Tt

It is important to note that at the appropriate scaled time tg, h(r,t) equals h(r,t;). Therefore,
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the substitution of (6-15a) into (6-14b) gives

ty = t}C,
where
orls?
C, =
4T
Substituting (6-16) into (6-14a) gives
a _cc
ot 2

By introducing (6-17) and (6-15b) to (6-8), the mapping function w(t) at large time is

C 1
t = ——
w(?) 3 1

or

C,
log w(®) = Iog-z— - log ¢
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Therefore, when subject to an impervious boundary, the downward trend of w(t) at large
times has a slope equal to -1 on a log-log plot of w(t) versus t. This negative unity slope is
clearly shown in Figure 6-1.

For a recharge boundary, the hypothetical drawdown at large times can be calculated
with (6-15a) where a negative sign instead of a plus sign is used between the two logarithmic
functions. As a result, the drawdown becomes independent of time (the steady-state
condition), and dh/dt is zero. This proves that the upward trend of w(t) for a recharge
boundary increases to infinity on a log-log plot of w(t) versus t.

This analysis shows that the mapping function w(t) reflect the existence of a nearby
impervious or recharge boundary condition, in spite of the assumption of an infinite flow
domain for the new model. In a log-log plot of w(t) versus t, the downward trend for an
impervious boundary has a slope equal to -1 at large time, and the upward trend for a
recharge boundary increases rapidly to infinity at large times. The analytical definitions of
w(t) are useful in interpreting the information contained in the empirical plots of w(t).

Application of (6-6) to analyze field drawdown data is given below for three case
studies. It will be shown that the mapping function is significantly different for each
situation, and can be used to estimate the storage coefficients and the specific yields,

depending on the type of aquifers involved.

Case Study 1: Tabulated field data from Walton (1987; Table 5.6)

This data set was taken from an unconfined aquifer where Q = 3.79 m*/min (1000

gpm) and r = 61 m (200 ft). Using the method given by Neuman (1975), Walton (1987)
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Figure 6-2 Mapping function analysis of field data given by Walton [1987; Table 5.6].
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obtained the following results: S = 2.33 x 10%, S, = 3.17 x 10? and the average T = 2.35
m?/min.

Results from (6-6) with an input T of 2.01 m %min are presented in Figure 6-2. As
shown by Figure 6-2a, good agreement is observed for the measured and calculated
drawdowns, demonstrating the ability of (6-6) to reproduce field data. In Figure 6-2b
measured drawdowns are plotted against the logarithmic scaled times t,. As expected, a
straight line is found at large scaled times. Its slope of about 1.14 leads to a value of 1.99
m?/min for T, which is about one percent different from the input T. The intercept occurs at
t, equal to about 823 min, which yields a value of 1.02 for the fictitious storage coefficient,
close to the desired value of 1. These results indicate that t, and w(t) are accurately
estimated.

The estimated mapping function from the approach outlined above is shown in Figure
6-2¢, where four sections can be noticed. The first section lasts for about two minutes after
pumping starts. In the first section, w(t) is nearly a constant approximately equal to
3.2 x 10°. This constant value is consistent with the storage coefficient of the unconfined
aquifer, 2.33 x 10?, as estimated by Walton (1987). The second section is from 2 minutes
to about 23 minutes; during this period w(t) gradually increases to a maximum which occurs
approximately around 23 minutes and equals 5.5 x 102, The third section is from 23
minutes to around 95 minutes; during this period w(t) gradually decreases from the maximum
to a minimum which occurs approximately around 95 minutes and equals 3.6 x 102, The
fourth section is from 95 minutes to the end of pumping; during this period w(t) increases

from the minimum to a plateau which has a relatively constant w(t) approximately equal to
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about 4.2 x 102, This temporal variation of w(t) can be attributed to the water table decline
effects on the drawdown data, which are initially negligible, change to a maximum and a
minimum during the intermediate pumping period, and then are stabilized at large pumping
times.

The relatively constant w(t) in the first section indicates that at small pumping times
unconfined groundwater flow can be approximated by the Theis solution using the aquifer
storage coefficient instead of the specific yield; here S is estimated as 3.2 x 10? from the
value of w(t) obtained at early time. The stable w(t) in the fourth section indicates that
unconfined groundwater flow at large pumping times can also be approximated by the Theis
solution where the sum of S and S, is used in lieu of the storage coefficient; here the sum of
S and S, is 4.2 x 107 as determined from w(t). As a resuit, S, is calculated to be
3.88 x 102, which is in reasonably good agreement with 3.17 x 10?2, as determined by
Walton (1987). Therefore, the mapping function w(t) can also be used to estimate the
storage coefficient and the specific yield of an unconfined aquifer.

Comparing «(t) with the drawdown history shown in Figure 6-2a, it is interesting to
note that the maximum and minimum points of w(t) correspond with the two inflection points
of the drawdown history. The maximum of w(t) occurs at about 23 minutes, while the first
inflection point of drawdown history is at about 25 minutes. The minimum of w(t) occurs at
about 95 minutes, while the second inflection point is at about 100 minutes. This
correspondence is theoretically based, and can be mathematically verified. Differentiation of

(6-8) with respect to t gives
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do _ 9 | 0RO 5k 8%nar (6-19)
ahlot dt, (dhldty?

at o
where dh/dt, is independent of t.

The maximum or minimum of w(t) occurs at the point which dw/dt is zero. The
right-hand side of (6-19) can be zero only if drawdown acceleration 9%h/dt? is zero, since
dh/dt, can never be zero and dh/dt is always finite and nonzero for the conditions of interest.
The points with 4*h/dt> being zero are the inflection points of the drawdown history.
Therefore, it is formally shown that the maximum or minimum of w(t) corresponds to the
inflection point in the drawdown history.

Case Study 2: Tabulated field data from Kohlbeck and Alvarez (1991; Table 2.a)

This data set has been inadequately analyzed with the leaky aquifer solution given by
Hantush and Jacob (1955), as recognized in the original paper. When the measured
drawdowns are plotted against the logarithmic pumping times as shown in Figure 6-3, a
sigmoid curve appears, which is typical for drawdown data taken from a confined aquifer
connected to a recharge (constant-head) boundary. The appropriate inflection-point graphic
method developed by Hantush (1959) was used to analyze the data, where Q = 8.7 m*/min
and r = 105 m. Pertinent information for the graphic method is: the maximum drawdown is
2.16 m, the straight line passing through the inflection point has a slope of 1.05 m/min, and
the inflection point occurs at h = 1.17 m and t = 52 minutes. As a result, T is estimated
to be 1.44 m*min, and S is 1.34 x 103,

The results obtained by (6-6) with an input T of 1.49 m%min are presented in Figure

6-4. Comparison of measured and calculated drawdowns is given in Figure 6-4a, where an
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excellent agreement can be noted. The semilogarithmic plot of measured drawdowns against
the scaled times from integration of w(t) is shown in Figure 6-4b, from which T is estimated
to be 1.49 m?/min and the fictitious storage coefficient to be 1.01. Both of them are very
close to their assumed values of 1.44 m*min and 1.0, respectively.

The mapping function obtained is shown in Figure 6-4c. A relatively constant value
of about 1.3 x 10? prevails for approximately the first 50 minutes, and then w(t) increases
continuously to the end of pumping. This variation of w(t) fits the finding discussed above.
That is, the relatively long prevailing time for a constant w(t) implies that the aquifer is
under confined condition (at least for this time period), and the upward trend at the later
pumping period is caused by recharge-boundary effects. The deviation time of 50 minutes
coincides with the time of the inflection point on the drawdown data, the later increase in

w(t) indicates the boundary recharge.

Case Study 3: Tabulated field data from Moench (1984: Table 2)

The drawdown history of the observation well (UE-25a #1) was taken from the
fractured formation in the vicinity of Yucca Mountain at the Nevada Test Site. According to
Moench (1984b), the fractured formation has a thickness of about 400 m, and consists of five
major zones of groundwater entry. The observation well is 110 m from the pumping well
(UE-25b #1), which had a constant pumping rate of 2.15 m*/min (35.8 I/s) for the pumping
test of interest. Using a fracture skin model with consideration of wellbore storage, the
hydraulic conductivity and the specific storage of the fissure system were estimated to be

6x10* m/min (1x10®° m/s) and 1.5x10® m™, respectively.
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For the current study, the early time scattered drawdown data from 0.5 minute
through 1.4 minutes, and at 1.8 and 2.0 minutes are discarded. Also, data points showing
the same measured drawdowns for sequential observation times are smoothed by assigning
the drawdown values to the intermediate time. For example, 0.528 m reported for t = 800
and 900 minutes was assigned to t = 850 minutes, and the two data points of 800 and 900
minutes were discarded. Without doing this, the derivative of drawdown with respect to time
between t = 800 and 900 minutes is infinity, leading to erroneous estimation of w(t). The
early time, first-section drawdown history covers data points from 1.6 minutes to about 20
minutes, from which the transmissivity and the storage coefficient of the fractures were
estimated by the Theis curve matching method as 0.71 m*min and 9.5x10*, respectively.
They are not converted to hydraulic conductivity and specific storage due to the lack of
information on fracture apertures.

The results of the data analysis using (6-6) are demonstrated in Figure 6-5. Again,
Figures 6-5a and 6-5b show the accuracy and reproducibility of (6-6) in dealing with this set
of field data. In Figure 6-5c, the characteristics of w(t) obtained are shown. Four distinct
sections can be noted. The first section ends at t = 20 minutes and shows a constant w(t) of
about 103, in good agreement with the storage coefficient value obtained from the Theis
curve matching method. The second section starts at t = 20 minutes, linearly increases, and
ends at about 140 minutes where w(t) is equal to about 2.6x10?. In the second section, w(t)
has increased by about 26 times (i.e., from 10? to 2.6x10?) over a pumping period of about
120 minutes. This increase of w(t) can be related to the replenishment effects generated by

the fact that the porous matrix stores and then releases water to the fracture. Accordingly,
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Figure 6-5. Mapping function analysis of field data given by Moench [1984; Table 2].
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the porous matrix starts to replenish the fractures at about t = 20 minutes, under a steadily
increasing rate until about t = 120 minutes. After the end of the second section, w(t)
remains constant for about 360 minutes; that is, the third section has a constant w(t) of
2.6x107 from t = 140 to about 500 minutes. For the stable w(t) in the third section, one can
consider that the vertical hydraulic gradients and thus the associated replenishing tflow from
the porous matrix to the fractures reaches a local equilibrium condition. If the stable w(t) of
2.6x107 is considered to be the sum of the storage coefficient of fractures and porous
matrices, S of the porous matrix is 2.5x102. This converts to 3.13x10* m™ for the specific
storage using 80 m for the block thickness as suggested by Moench (1984b). This value is in
agreement with the porous matrix specific storage, 3x10* m™, as obtained by Moench
(1984b). Here, it is seen that the mapping function w(t) is able to estimate the storage
coefficient of the fracture and the matrix.

It is interesting to note that w(t) starts to steadily increase again after 500 minutes.
This steady increase does not resemble the rapid growth representing a recharge boundary as
shown in Case Study 2. One possible explanation for the fourth section is that the fractured
aquifer is a "penta-porosity" system consisting of five major zones of water entry. The inter-
fracture porous blocks may replenish these water entry zones at different times and with
different rates. These delayed influences may create the multiple sections of w(t). Other
additional drawdown/mapping function sections could have appeared if more data points had
been available. Abdassah and Ershaghi (1986) demonstrate three sloped sections of triple-
porosity fractured reservoirs in the semilogarithmic plot of drawdown versus pumping times.

To verify further this penta-porosity phenomenon, more drawdown data from longer pumping
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tests are needed. Nevertheless, it is of interest to know that the characteristic features of w(t)
for this fractured formation are distinctively different from those of granular aquifers as
shown in Case Study 1. That is, multiple straight line sections appear in w(t) for the
fractured conditions while smooth, curved straight sections are shown in w(t) for granular
aquifers.
6.4 RELATION BETWEEN THE MAPPING FUNCTION AND PRESSURE-
DERIVATIVE DATA

It is of interest to recognize that some of the pressure derivative characteristics are
inversely related to those of w(t). For example, replenishment to the aquifer leads to a
maximum in w(t) and a minimum in pressure derivative data. An impervious (or a recharge)
boundary induces a downward (or an upward) trend at the end of w(t) while an upward (or a
downward) trend at the end of the pressure derivative data. This inverse relationship can be
understood by noting that the denominator of (6-8) can be replaced by its equivalent form of

dh/d(log t) (i.e. the pressure derivatives). As a result, w(t) can be redefined as

230t dhfor (6-20)

2 ohfd (log 1)

Equation (6-20) mathematically demonstrates that the characteristic features of
pressure derivative data are inversely exhibited by w(t). This, however, does not mean that
w(t) is the inverse of the pressure derivative because they have completely different
mathematical and practical significance. As a matter of fact, the characteristic features of

w(t) are more versatile than those shown by the pressure derivative data. For example, the
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feature of multiple linear sections of w(t) in Case Study 3 is not among the four curve
characteristics of the pressure derivatives. The minimum of w(t) as shown in Case Study 1 is
not displayed as a maximum in the associated pressure derivative data. In pressure
derivative data, a maximum, if it exists, always occurs at "early times", indicating the
wellbore storage or skin effects. Our own studies and available literature never document
that a maximum of pressure derivative data can occur in the same way as a minimum of w(t)
does. Also, the mapping function w(t) can yield information on the estimation of important
hydrogeological parameters such as the storage coefficient and the specific yield. This can

not be done by the pressure-derivative method.

6.5 CONCLUSIONS

A mathematical model is developed to investigate the feasibility of using the mapping
function in interpreting drawdown data. The analytical solution of this model and the method
of determining the mapping function are obtained. The mapping function is problem-
specific; i.e., different drawdown data yield different mapping functions. When plotting the
mapping function on logarithmic paper, distinctive curve characteristics exhibited are related
to specific hydrogeological conditions. For example, a maximum and a minimum stand for
an unconfined aquifer, an upward trend at the end for a recharge boundary, a downward
trend at the end for an impermeable boundary, multiple linear sections for fractured aquifers,
and an stabilization (constant) for confined aquifers satisfying the assumptions of the Theis
solution. Functional definitions for the mapping function are obtained. They prove that (1)

the pressure-derivative data are inversely related to w(t), thereby rendering some theoretical
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justification of the pressure-derivative method which was developed empirically, (2) minima
or maxima of w(t) correspond to the inflection points on the drawdown-history curves, and
(3) w(t) indeed represents hydrogeological conditions not set forth in the Theis solution when
plotted on logarithmic paper. The functional definitions are also useful in finding
quantitative information contained in the curve characteristics of the mapping function. It
has been demonstrated through a few case studies that the mapping function not only can
reveal pertinent hydrogeological features influencing the drawdown data but also is capable
of estimating the storage coefficients and the specific yields of aquifers. This method
complements other available methods for interpreting pumping test data, and is useful in
diagnostically understanding the hydrogeological conditions imbedded in drawdown data.
This method is able to handle a broader spectrum of hydrogeological conditions than studied
here. More research is needed to fully explore how to use the mapping function in
diagnosing and determining the aquifer anisotropy, the partially penetrating pumping effects,
the wellborne storage effects, the wellbore skin effects, and other practical concerns. It is
also of great interest to find how to relate the mapping function to the hydrogeological

conditions investigated by various available well hydraulics theories.
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7. ISSUE OF ASYMPTOTIC CALCULATION OF WELL HYDRAULICS

The Laplace transform with respect to time has been normally used to find analytical
solutions of well hydraulics problems. When the Laplace-domain counterparts are
complicated, their Laplace inverse can be difficult and sometimes asymptotic solutions valid
only for small or large times were determined. The relation that t is inversely related to p
has been normally employed to determine the asymptotic solutions. Although this relation is
correct, its application in finding asymptotic solutions can generate erroneous resuits. Chen
and Stone [1993] investigated this issue and suggested that the Tauberian theorem be used to
check the validity of asymptotic solutions obtained using this relationship. For the sake of
conciseness, detailed discussions under the title of this section is referred to the paper given
by Chen and Stone [1993], and a reprint of it is given in the appendix as a substitute of this

section.
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8. CONCLUSIONS
The following conclusions can be drawn from the studies:
The Laplace-Hankel domain calculation method provides an effective means to

evaluate complicated well hydraulics theories.

The Laplace-Hankel domain solution for the three-dimensional well hydraulics theory
given by Neuman (1974) separates the complicated hydraulic influences due to the
water-table effect and the partially penetrating pumping effect into specific and

individual terms. This separation makes detailed understanding of the problem easier.

For an unconfined aquifer subject to partially penetrating pumping, the large-time
drawdown histories at different depths of a fixed distance are parallel Theis curves.
This indicates that the water-table effect and the partially penetrating pumping effect

at large times are constant for a fixed distance.

A method based on the large-time drawdown data and an appropriate well hydraulics
theory in its Laplace-Hankel domain is developed to estimate the three-dimensional
aquifer anisotropy tensor. For the Sevilleta aquifer, the aquifer anisotropy determined
by this method has one principal transmissivity of 1.62x10? m?s in the direction of
N58°E, and another of 1.27x10? m%s in the direction of N32°W. The eccentricity of

the anisotropy ellipse is 1.13.
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The mapping function technique is useful in diagnosing the field drawdown data.
This mapping function is mathematically derived from a new well hydraulics
analytical solution and represents the difference between the hydrogeological
conditions embedded in the field drawdown data and the assumed invoked in the

Theis solution.

In addition to'diagnosing field drawdown data, the mapping function also offers some
theoretical justification of the empirical pressure-derivative data method widely used

by petroleum reservoir engineers.

More research is needed to fully develop the applicability of the mapping function
technique and the Laplace-Hankel domain calculation method because they have the

potential to deal with appropriate problems not being investigated in this project.

In finding the asymptotic well hydraulics solutions from the Laplace domain
counterpart, the Tauberian theorem should be used to check the validity of the

asymptotic solutions obtained.
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The Laplace transform with respect to time. . is normally used in finding analytical solutions for
transient groundwater problems. The behavior of a function at large or small ¢ is known to correspond
to that of its Laplace transform counterpart at small or large p, respectively; p is the Laplace transform
parameter of . This condition is generally translated as ¢ being inversely related to p and vice versa.
By this relationship many asymptotic solutions for large or small ; have been determined from the
Laplace domain solutions valid only for small or large p. However, an example is given here which
shows this kind of asymptotic calcuiation may fail to yield correct asymptotic solutions. Hence, the
asymptotic calculation must be exercised with care. To deal with this possible failure. the Tauberian
theorem is offered to evaluate the asymptotic behavior of functions from their Laplace transform

counterparts.

INTRODUCTION

The Laplace transform technique has been frequently
used to find analytical solutions for transient groundwater
problems. In such instances, the Laplace transform is ap-
plied with respect to time, ¢, to the function of interest.
Taking the drawdown function for a well, A(r, 1), for
example, the Laplace transform of h(r, ¢) with respect to ¢ is
H(r, p) as defined by

H(r, p) = f’ e =P h(r. 1) dt (n
0

where p is the transform parameter for ¢, and r represents
the spatial coordinate.

When the original mathematical models of 4(r, ) are
transformed through (1) to the Laplace p domain, the
governing equations of H(r, p) become ordinary differentiai
equations, for which the analytical solutions usually can be
determined without difficulty. To obtain the original ¢ do-
main solutions of A(r, ), the Laplace inverse needs to be
carried out on H(r, p) with respect to p. If H(r, p) is
complicated. the Laplace inverse can be rather difficuit. To
avoid this, sometimes the Laplace inverse is only carried out
on the asymptotic forms of H(r, p), which are less compii-
cated and valid only for small or large p. Given that the
behavior of a function at large ¢ (or small ¢) corresponds to
that of its Laplace transform counterpart at small p (or large
7). the Laplace inverse of the asymptotic H(r, p} for smail
p (or large p) gives the solutions of a(r, ¢) for large ¢ (or small
).

Although this kind of asymptotic calculation has been
successfully employed to deal with different problems [e.g.,
Van Everdingen and Hurst, 1949: Hantush, 1960; Neuman
and Witherspoon, 1969: Chen, 1986], its usage requires
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careful consideration. Here, we give one example invalidat-
ing this kind of asymptotic calcuiation and offer an alterna-
tive method for determining the correct asymptotic answers.

EXAMPLE

The example deals with drawdown distributions caused by
a flowing weil in an extensive, confined aquifer. The flowing
well is subject to a constant drawdown, /q. This problem
was studied by Jacob and Lohman [1952], where the ana-
lytical soiution for the time-dependent flow rate instead of
the drawdown distribution is given. The complete model is

3*h 1ah S oh 5
“‘—;'l'—"'-':——
ar= rar T ot @

h(r.0) =0 (3)
h(rw: t) = hO (4)
(o, 1) =0 (5)

where r,, is the finite well radius; that is. the flowing well is
simulated as a cylindrical sink with a radius of r,, on which
a constant drawdown #q is maintained. This model differs
from the well-known Theis model in the well bore boundary
condition; the latter assumes a constant pumping rate main-
tained at the well which is simulated as a line sink.

Application of the Laplace transform defined by (1) to
(2¥{5) and making necessary calculations on the trans-
formed model gives the Laplace domain solution of draw-
down as

12
H(,-, p)= ﬁ?. _.K_OWLUZ] (6)
p Ko[fw(&PJ 1
where @ = 5/T and K,(x) is the modified Bessel function of
the second kind of order zero. Application of Darcy’s law to
{6) and setting r equal to r, gives the Laplace domain
solution of flow rate at the well bore. @, (p), as

0T
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where K(x) is the modified Bessel function of the second
Kind of order one. Now the question of interest is, What is
Q.w(1) as r is large? The answer is readily found; @, ()
decreases as ¢ increases and is zero at large . However, we
are going to determine Q. () for large ¢ from (7) with the
asymptotic calculation mentioned above.

Since large ¢ corresponds to small p, the two Bessel
functions in (7) can be substituted by their asymptotic
expansions of small arguments; that is,

ho
QuW(p) =2aTr, ;‘ (e (7)

lim X R —
im K[r,(ap)"] P (8)
p—0
2 4
lim Ko[ru(@p)'?] = log ———= = ~log 2 =
’w(aP) = a roc
p—0
(%9

As a result, the asymptotic form of Q.(p) for small p is

lim Q,(p) = —d4=Thyi[p log {pla)] (10)
p=0

The Laplace inverse of (10) gives @,,(#) for large 7. This can
be accomplished by the tabulated Laplace inverse formula
given by Oberhettinger and Badii [1973, equation 6.75, p.
2761,

(at)*

lim Q,(f) = ~dm Thy f —  dx

1
o I{x+1) (1)

t—s @

where I'(x) is the gamma function. The Gamma function has
the special property that [(x+1) = xI'(x) = x! and its
integral definition is given below.

In (11), Q,,(#) changes with ¢ in the sense governed by the
integral. Therefore, to evaluate how 0,,(¢) behaves at large
¢ one needs to understand the limit of the integral as ¢
approaches infinity. Denoting the integral by I(z) and using
the special property of I'(x), ina straightforward manner one
can obtain an inhomogeneous ordinary differential equation

for I(¢) as
df ; 1! J .
dr “J;m)x (12)

Subject to the condition of I(0) = 0, the solution of (12) is

1 |
f(f)=6’rf le-‘vyx_l"—f'd}‘ dx
0Jo I'(x)

As t approaches infinity, the doubie integral in (13) can be
rewritten as

I l = 1 ]
— Py ldy = | —(x) dx =1
for(x)dxfo T fo”x)rm 3

where the infinite integral is the integral definition of ['(x).
By (14), the limit of /(z), the.integral in (11), as ¢ ap-
proaches infinity can be found as

(13)

(14)
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lim 7(:) = lim e'(1) = =

= % [

or

lim Q,(r) = —c

Iy

This formaily proves that the asymptotic solution of Q.
for large + approaches negative infinity, which is incorrect.
This example demonstrates the asymptotic calculation nor-
mally used can be subject to error and shouid be used with
care. That is, although ¢ and p are inversely reiated. appli-
cation of this general rule to the determination of the
asymptotic Laplace inverse may yield inaccurate results.
Unfortunately, there are no mathematical laws that can
guide us to avoid this pitfall. Nevertheless, we noticed that
the Tauberian theorem (e.g., see Sneddon [1972. pp. 184,
185] and Wylie and Barrert (1982, pp. 420, 421]) provides an
effective alternative in evaluating the asymptortic behaviors
of a function from its Laplace domain counterpart. In
essence, the Tauberian theorem states that if a funcrion f(t)
is bounded and its limits at # = 0 and « exist, as denoted by
F(07) and f() respectively, then

£07) = lim pF(p) (15)
p—iﬂ
f(=) = lim pF(p) (16)

p=0

where F(p) is the Laplace transform of f(2). Equations (15)
and (16) indicate that the correct asymptotic Laplace inverse
can be obtained by applying the inverse relationship between
t and p to the product of p and F(p). However, (15) and (16)
do not involve the operation of the Laplace inverse and yield
information on f(0~) and f(») not in terms of r domain
asymptotic *“‘functions’ but in terms of their “‘magnitudes."”
Application of (16) to (10) leads to

—47 Thg

Qw(®) = lim Yoz (pla) 0

-0

(17

which is the correct resuit. It should be noted that the
aforementioned asymptotic solutions given by Van Everdin-
gen and Hursr (1949], Hantush [1960), Neurnan and With-
erspoon {1969] and Chen [1986] yield corfrect resuits at small
and large ¢ values as predicted by the Tauberian theorem.

CONCLUSIONS

In the Lapiace transform technique, ¢ is inversely refated
to p. This relationship can be used to aid in finding asymp-
totic solutions for the Laplace inverse. However, it should
be used with care because of possible failure as demon-
strated above. It is suggested that the Tauberian theorem be
used in evaluating the asymptotic behaviors of Sf(e) from its
Laplace transform counterpart 7( p), regardless of whether
the asymptotic calcuiation usually conducted fails or suc-
ceeds.
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