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DISCLAIMER

The purpose of Water Resources Research Institute (WRRI) technical
reports is to provide a timely outlet for research results obtained on
projects supported in whole or in part by the institute. Through these
reports, we are promoting the free exchange of information and ideas and
hope to stimulate thoughtful discussion and action which may Tead to
resolution of water problems. The WRRI, through peer review of draft
reports, attempts to substantiate the accuracy of information contained
in its reports; but the views expressed are those of the authors and do
not necessarily reflect those of the WRRI or its reviewers.

Contents of this publication do not necessarily reflect the views
and policies of the United States Department of the Interior, nor does
mention of trade names or commercial products constitute their

endorsement or recommendation for use by the United States government.
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ABSTRACT

The primary purpose of this interdisciplinary research was to
develop an irrigated agricultural decision-making model--including the
development of a probabilistic precipitation prediction model, water-
production functions, and an economic decision strategy dynamic program-
ming model (DPM).

The primary findings were: The weather simulation model, which
was a good estimator of yearly rainfall, tended to overestimate solar
radiation but was satisfactory for other climate parameters. The
irrigation scheduling model was generally consistant with the measured
seasonal evapotranspiration (E) for corn but overpredicted seasonal
evapotranspiration for wheat.

Comparison of the DPM with physically based irrigation models
indicated that the DPM increased net returns per acre from $7 to $25 for
corn with flood irrigation and $2 to $106 per acre for sprinkler sys-
tems. For wheat, the DPM increased net returns from $1 to $15 for flood
irrigation and $20 to $38 for sprinkler systems. The DPM also estimated
water demand functions for corn, sorghum, and wheat. These results
indicated that the demand for water was inelastic for corn but elastic
for wheat and sorghum. The DPM can be used by farmers with an on-farm
microcomputer,

The results should lead to improved ground water management in the
declining Ogallala aquifer and should help farmers and public agencies
improve irrigation water management decisions.

Keywords: *irrigation scheduling, *water-production functions,
*dynamic programming model, *water demand functions,

irrigation, models, precipitation model, economic
model, interdisciplinary, risk, uncertainty.
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SUMMARY
IRRIGATED AGRICULTURAL DECISION STRATEGIES
FOR VARIABLE WEATHER CONDITIONS

Steadily increasing production costs coupled with low crop prices
have placed many farmers in a severe economic bind. For producers irri-
gating from deep wells, the sharply higher energy costs for pumping have
increased the uncertainty for the future. The situation is particularly
difficult in areas with declining water tables and low water yields per
well such as those of the High Plains of eastern New Mexico and western
Texas. Farmers in the southern High Plains have attempted to reduce
irrigation water applications with disastrous yield results.

The primary purpose of this report was to develop a comprehensive
irrigated agricultural decision-making model to evaluate the impact and
provide a methodology for improving decision strategies under variable
weather conditions in the southern High Plains. The analysis included
the development and testing of a probabilistic precipitation prediction
model, water-production functions, and an economic decision strategy
model.

An interdisciplinary team approach was used to solve this complex
problem of a declining source of ground water coupled with uncertainties
of yields, increasing production costs, and effects of variable climatic
factors. A probabilistic precipitation prediction model was utilized to
simulate precipitation and other weather variables in the immediate
future. In addition, experiments were conducted in the Clovis, New
Mexico, area to measure crop yield response to various water application
Tevels. The probabilistic precipitation prediction model and the

crop-production function model were integrated into an economic decision
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strategy model. An important component of this research effort was the
inclusion of an information dissemination program to be conducted by a
farm management specialist with the New Mexico Cooperative Extension
Service.

The primary findings of this study are:

The weather simulation model is generally consistent with yearly
measured rainfall, but tends to underestimate rainfall in the first part
of the year and overestimate it in the Tast part. The model tends to
overestimate solar radiation but is in good agreement with the other
measured climate parameters.

The irrigation scheduling model is in good agreement with the
measured seasonal evapotranspiration (E) and yield for corn when the
maximum rooting depth in the model is set at 122 cm (4 ft.). When the
model is run with the maximum rooting depth set at 106 cm (3.5 ft.) it
accurately models measured wheat seasonal evapotranspiration and yields.
The model tends to overpredict seasonal evapotranspiration when the
maximum root depth of wheat is set in the model to 122 cm (4 ft.).

The economic component, a dynamic programming model (DPM}, s a
computer irrigation decision model which has the potential to improve
High Plains agricultural profits and water efficiency. The advantage of
the DPM is that the model output can easily be used by farmers with an
on-farm microcomputer. The DPM has as output a decision matrix which
returns the most profitable irrigation decision based on current condi-
tions of soil moisture and water allocations.

The DPM operates on a mainframe computer which creates a file for
downloading to a microcomputer diskette. Input data consist of soil
type, irrigation system characteristics, crop price, and water pumping

v



costs. This matrix can easily be loaded into a standard microcomputer
diskette for operation with a soil moisture model.

Comparison of the DPM with a physically based irrigation model
indicates that the DPM increases net returns per acre from $7 to $25 for
corn with flood irrigation and a crop price of $3.57 per bushel (long-
term average price). For sprinkler systems, the DPM increases corn net
returns from $2 to $106 per acre. For wheat, with a price of $4.68/bu,
the DPM increases net returns from $1 to $15 for flood irrigation and
$20 to $38 for sprinkler systems.

Another major advantage of the DPM is its flexibility. The econom-
ic threshold for moisture stress changes with soil type, irrigation
system, crop price, and water cost. Physically based models can achieve
maximum profits but only under specific circumstances. The DPM adapts
to a wide variety of different economic and physical conditions.

Other results of the DPM consist of a water demand function for
corn, sorghum, and wheat. The results indicate that, for the Clovis,
New Mexico area, the demand for water is inelastic for corn and elastic
for wheat and sorghum, confirming their dryland capabilities. For a 100
percent increase in pumping costs, water consumption is reduced by 2
inches, or by 7 percent for corn. Sorghum has an elastic demand at low
water prices reducing water consumption by 6 inches as pumping cost
increases from $2 per acre-inch to $5 per acre-inch, but is inelastic at
higher prices. Wheat has a similar elastic portion of demand. As water
costs increase from $2 to $10, consumption declines from 38 acre-inches
to 30 acre-inches. For water consumption below 28 inches, however, the

demand function is inelastic.
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The elasticity of demand indicates the potential water savings and
economic viability of the various crops as water prices 1increase. For
wheat and sorghum, substantial water savings occur (along with reduced
yields) as water costs increase from modest levels. With corn, water
cost dincreases do not encourage water savings, thus increased pumping
costs will substantially decrease net returns, and possibly the crop
will go out of production.

The results from this research effort should Tlead to improved
ground water management in the declining Ogaliala aquifer and should
provide farmers and public agencies in the southern High Plains with
information and techniques for improving decisions concerning the

utilization of scarce resources.
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IRRIGATED AGRICULTURAL DECISION STRATEGIES
FOR VARIABLE WEATHER CONDITIONS

SECTION I
INTRODUCTION

The southern High Plains of New Mexico contain productive, ground
water irrigated agricultural areas (figure 1). These counties are
rapidly depleting their irrigation water supply--ground water sources
with Tittle or no recharge. The Portales Valley in northern Roosevelt
County, with irrigation predating statehood, already has felt the pinch
of a declining water supply. Some irrigated cropland has been abandon-
ed. Irrigation development has been more recent in the other counties.
For example, there was no irrigation in Curry County in 1940, but by
1982 about 220,000 acres had been developed. During that same period,
Lea County irrigated acreage increased from 2,000 to 120,000 and in
Roosevelt County from 10,900 to 138,000 acres (Lansford et al., 1982).
Some of the more recently developed areas also are discontinuing irriga-
tion.

The ground water irrigated acreage of the southern High Plains
region represents about 33 percent of the irrigated acreage in New
Mexico (Lansford et al., 1982). It is estimated that in 40 years the
irrigated acreage in the area will drop significantly (Lansford et al.,
1982).

A series of regional "Citizens' Conferences on Water" was held
throughout New Mexico. The conferences were sponsored by the New Mexico
Water Resources Research Institute (Stucky et al., 1971). Participants
discussed important water-related problems of the different regions.

Participants in the southern High Plains region ranked the following
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Figure 1. Ogallala aquifer region and New Mexico.

problem areas as being most important: (1) declining ground water
table, (2) pollution of ground water, and (3) improvements in water-use
efficiency in agriculture.

In the southern High Plains Basin {also referred to as the Texas
Gulf Basin) of New Mexico, water withdrawals in 1975 were 755,000
acre-feet, or 17 percent of the total withdrawals of water in the state.-
In 1980, withdrawals were reduced to 577,300 acre-feet. About 98
percent of the withdrawals were from the ground water source (Sorensen,
1977 and 1982). Ground water depletions in the basin accounted for
about 33.5 percent of the state total ground water depletions in 1975
and about 16 percent in 1980. Agricultural depletions in the three-

county area (Curry, Roosevelt, and Lea) amounted to 551,760 acre-feet



in 1975 and 413,500 acre~feet in 1980, all of which was from the ground
water source. This was about 95 percent of the total ground water
depletions in the three counties (Sorensen, 1977 and 1982).

Irrigation with ground water in the southern High Plains is an
important part of agricultural production. However, it is still consid-
ered a supplemental source of the agricultural water supply. Precipita-
tion, which occurs predominantly in the summer, is also an important
component of the total water supply. With energy costs increasing,
especially for pumping irrigation water, the dependence on precipita-
tion has increased, while the dependence on ground water for irrigation
has decreased to a supplemental level.

Steadily increasing production costs coupled with low crop prices
have placed the farmer in a severe economic bind. For producers irri-
gating from deep wells (1ifts of approximately 370 feet), the sharply
higher energy costs for pumping have tightened their price-cost squeeze.
The situation is particularly difficult in areas with declining water
tables and low water yields per well,

A farm manager views his investment in an irrigation system, which
is a very real expense, differently than he does the cash costs for
operating the system during crdp production. The manager can decide
whether or not to incur future costs for fertilizer, fuel, and hired
labor, but he cannot alter the cost he already has invested in the
irrigation system. Generally, a farmer will continue to produce as long
as he can cover these cash expenses and have something Teft to contri-
bute toward past investments in machinery, irrigation systems, and land

(fixed costs).



In years of average or above average precipitation, irrigating is
limited to supplemental amounts; however, in drought years irrigating
becomes 1imperative. The variation in precipitation leads to ineffi-
ciencies in production and resource use because farm planning decisions
are based on expectations of average weather conditions.

Crops are established and investments in the operational side of
the production process are made before precipitation expectations can be
revised. In seasons when precipitation is above average, reductions in
future pumping, in most cases, can be curtailed. However, other fac-
tors, such as fertilizer incorporation, are beyond adjustment. This may
result in the inefficient utilization of fertilizer, which may influence
yields. In drought years, considerably more irrigation water may be
pumped than is economically feasible. This costly irrigation is neces-
sary, however, to minimize the losses incurred as a result of previous
investments,

Models capable of predicting seasonal precipitation before the crop
production season will allow farmers to plan more effectively and to
improve the efficiency of resource use. In years when drought condi-
tions can be predicted, more water efficient crops and optimum water and
fertilizer application Tevels can be selected. There is a need to know
the impact that decreasing water supplies will have on agriculture and
the economic value associated with a unit of water. Research has
determined the maximum yield from the maximum evapotranspiration
throughout the state (Hanson and Sammis, 1977). However, sufficient
water is not always available to supply the needs for maximum evapo-
transpiration. Also, knowledge is needed concerning what yield reduc-

tion is associated with a wunit reduction in applied 1irrigation water



(Arkley, 1963; DeWit, 1958). This information varies depending on the
type of yield from the crop and whether it is produced for forage or
Tint. Research has been conducted in Arizona, Colorado, and California
to derive production functions for selected crops (Hanks, Stewart, and
Riley, 1976). The need exists to develop crop-production functions that
have not been determined in other states. The development of a compre-
hensive water resources plan in the Southwest requires improved esti-

mates of evapotranspiration and crop-production functions.
Objectives

The primary purpose of this research is to develop a comprehensive
irrigated agricultural decision-making model to evaluate the impact of
weather variables on irrigation decisions and to provide a methodology
for improving decision strategies under variable weather conditions in
New Mexico's southern High Plains. The proposed analysis included the
development and testing of a probabilistic precipitation prediction
model, water-production functions, and an economic decision strategy
model. The specific objectives are:

1. Probabilistic Precipitation Model

a. To test the efficiency of probabilistic (Markov, Monte
Carlo) precipitation predictions for operational decisions

in supplemental irrigation.

b. To develop and evaluate methods for integrating current
weather data into the probabilistic predictions.

2. Crop-sroduction Functions {yield-water and fertilizer require-
ments

a. To measure crop yield response to various water and fertil-
ilized application levels,

b. To test and evaluate crop-production function models for

yield versus seasonal water application plus probable pre-
cipitation and nitrogen fertilizer application rates.

5



3.

Economic Decision Strategy Model

a.

To develop economic base data in conjunction with the
crop-production function models.

To integrate the probabilistic precipitation prediction
model, crop-production function models, and economic base
data into the economic decision model.

To test and evaluate the predictive models by utilizing
the economic decision strategy model.

To develop and evaluate alternative programs for Coopera-
tive Extension Service application.



SECTION II
DESCRIPTION OF AN IRRIGATION SCHEDULING MODEL

An irrigation model was developed to determine the response of
seasonal plant yield to dirrigation timing and amount. The model is
based on a model by Hanks (1974). The model determines the daily
evapotranspiration (E) rate of a crop and accumulates the daily rate to
the end of the season. It then enters the water-production function,
the relationship between seasonal evapotranspiration and yield, and
computes the corresponding yield resuiting from the irrigation manage-
ment for the season. The model also incorporates the effect of a
nonuniform application of drrigation water over a field by modeling
evapotranspiration at several locations within that field. It then
weighs the output of the model according to the percentage of the field
covered by that irrigation amount. The model structure is interactive
in nature so that a predetermined date and amount of water can be
applied. The model also can be programmed to stop at set time intervals
specified by the user and to request that the user input the amount of
irrigation water to be applied. Also, an economic decision map can be
used to specify time and amount .of water. The model provides infor-
mation to the user showing how close the daily evapotranspiration is
following a predetermined level of evapotranspiration and yield specif-

jed.
Materials and Methods

The irrigation scheduling model (IRRSCH) was validated using a cornv
and wheat data set. The crops were grown under deficit irrigation. The

study site was located 20 km (12 mi.) north of Clovis, New Mexico, at



the Plains Branch Agricultural Experiment Station. The soil at the site
was Pullman clay loam, a fine-Toamy mixed Thermic Torretic Palenstall.
The corn variety NKPX74 was planted April 10, 1980, in two plots that
were furrow irrigated for stand germination. Subsequent irrigations
were applied to the field using a sprinkler-line source. This technique
provides adequate water throughout the growing season near the sprinkler
Tine while applying a decreasing water application perpendicular to the
line. Evapotranspiration (E) was determined at each irrigation level

(figure 2) using a water balance equation where:

E=1+R=-D=2 ASM

and:
I = irrigation mm
R = rainfall mm
D = drainage mm
ASM = change in soil moisture, mm

Irrigation was measured with catchment cans installed in the plot. The
cans were read after each irrigation and raised as the crop grew so that
they were 15 cm (6 in.) above the crop. Rainfall was measured with a
standard U.S. Weather Bureau 20 cm {8 in.) rain gauge located next to
the plots. Drainage was assumed to be negligible. Change in soil
moisture was determined from neutron soil moisture readings. Climatic
variables needed by IRRSCH were measured at a climatic station located
less than 1 km from the plots.

The corn plots were harvested with a combine, October 4, 1980.
Each harvested subplot 1 m (3.5 ft.) wide by 28 m (90 ft.) long repre-

sented a different irrigation level. A complete description of the plot
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is given by Sammis et al. (1983). The water-production function used in
the irrigation scheduling model was derived from the total data base of
this experiment.

The IRRSCH model also was validated for a wheat crop grown under
deficit drrigation at the same study site. Wheat was planted
October 14, 1980 and 1981, and furrow irrigated for germination and
subsequently irrigated using the sprinkler-line source. The plots were
harvested with a combine June 23, 1981, and July 7, 1982. Harvest plots
were 1 m (3.5 ft.) wide located on a bed and 28 m (90 ft.) Tong.
Determination of evapotranspiration was derived as described by the corn
experiment. The full data set of this experiment as described by Sammis
et al. {1983) was used to derive the wheat water production function
used in the irrigation scheduling model. A detailed description of the

model structure is presented in appendix A.
Results and Discussion

Table 1 presents the measured and modeled evapotranspiration and
yield of corn for each irrigation Tevel, two maximum rooting depths
specified as input data, and two selected values of relative available
water in the root zone at which daily evapotranspiration begins to
decrease. The model predicts corn seasonal evapotranspiration within 2
percent of the measured values when the maximum rooting depth of corn is
specified at 122 cm (4 ft.), and the reduction in evapotranspiration
begins when the relative available water reaches 0.6 (table 2 and
figure 3). Under these same conditions, the model tends to underesti-
mate the yield (Y) under severe moisture stress conditions and over-

estimate yield under moderate stress conditions (figure 4). This vari-
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Table 2. Linear regression equations compare modeled
seasonal evapotranspiration (E_) to measured
E; and modeled yield (Y ) to mBasured yield
(Y) for corn and wheat

Conditioning of Coefficient
Parazmeters in the Modal of
3 b [ R* Equatien Determination
Lm
-0.032 1.73 0.8 122 E{cm) = 0.81 + 0.598 Em(cm) 0.93
Y(kg/ha} = 295 + 0.93 Ym(kg/ha) 0.94
0 2 0.5 122 Elcm) = 2.66 + 0.94 Em(cm) 0.98
Y(kg/ha) = 325 + 1.00 Ym(kg/ha) 0.34
-0.032 1.73 0.6 152 g(em) = -7.4 + 1.04 Em(cm) 0.98
Y(kg/ha} = -581 + 0.98 Ym(kg/ha) 0.93

WHEAT 1980-1981

0 2 0.5 91 E{cm) = -6.23 + 1.15 Em(cm) 0.97
Y(kg/ha} = -159 + 1.07 Ym(kg/ha) 0.86
0 2 0.5 122 E{cm) = -13.35 + 1.17 Em(cm) 0.97
Y(kg/ha) = -569 + 1.09 Ym(kg/ha) 0.87

WHEAT 1931-1982

0 2 0.5 91 E(em) = -3.41 + 1.25 Em(cm) 0.97
Y(kg/ha) = -535 + 1.33 Ym(kg/ha) g.¢0
0 2 0.3 122 E{cm) = -9.55 + 1.25 Em{cm) 0.95
Y(ﬁg/ha) = -1265 + i.62 Yq(kg/ha) 0.89

COMBINED 1980-19€2

0 2 0.5 91 E(cm) = -1.79 + 1.13 £_{cm) 0.83
Y{kg/ha) = -143 + 1.22 Ym(kg/ha) 0.73
0 2 0.3 122 E{cm) = -7.82 + 1.13 £_{ca) 0.83
Y(kg/ha) = -372 + 1.19 ¥oikg/ha) 0.7:
FORCED THRCUEGH 0
0 2 0.3 81  EZ{em) = 1.09 Em(cm)
Y{kg/ha) = 1.16 Ym(kgfha)
0 2 122 &{cm) = 0.57 2 [cm)
Y{kg/he) = 0.95 Y (ks/na)
* Version a b T C Maximum Root Depth
cm
1 -0.032 1.73 0.6 122
2 0 2.00 0.5 122
3 1.723 1.73 0.6 152

12
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Figure 3. Comparison of modeled and measured seasonal evapotranspiration
(E) of corn in 1980 at Clovis, New Mexico
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Figure 4. Comparison between measured and modeled grain yield of corn
in 1980 at Clovis, New Mexico
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ability is a result of the nonlinearity in the relationship measured in
the field between evapotranspiration and yield that was not incorporated
into the 1linear water-production function. When the maximum rooting
depth is increased from 122 cm (4 ft.) to 152 cm (5 ft.), the model
consistently overestimates the seasonal evapotranspiration by 7.4 cm
(2.9 in.) as shown by the intercept of the linear regression of modeled
versus measured evapotranspiration (table 2). This overestimate of
seasonal evapotranspiration is due to the increase in the computed plant
available water. This is due to the increased rooting depth, which
allows more of the stored water to become available for plant growth
throughout the growing season. Although the model overpredicts evapo-
transpiration, the prediction of yield compared to measured yield
increases slightly under these conditions.

When the maximum rooting depth is set to 122 cm (4 ft.), but
reduction in daily evapotranspiration is not allowed to occur until the
relative available water reaches 50 percent, the model overpredicts the
seasonal evapotranspiration. This can be seen from the slope of the
regression between modeled and measured evapotranspiration. The slope
of the regression equation decreased from 0.98 to 0.94. Some of this
increase in modeled evapotranspiration was mitigated by the increase in
the intercept to 2.66 cm (1.04 in). The model appears to be more sensi-
tive to the selected maximum rooting depth than it does to the point at
which vreduction in daily evapotranspiration starts to occur. The
model's sensitivity to rooting depth in predicting seasonal evapotran-
spiration also shows up in the verification of the model for wheat

(table 3 and figures 5 and 6).

14



Table 3. A comparison between measured and modeled evapo-
transpiration (E) and yield for wheat grown at
Clovis, New Mexico

Seasonal E Grain Yield
Irrigation Measured Modeled Yersion* Measured Modeted Version
Level 1 2 i 2
cm kg/ha
1980-1981
1 28.5 29.5 34.8 1,204 1,104 1,525
2 30.3 31.0 36.3 1,268 1,229 1,643
3 33.7 34.5 40.1 - - 1,692 1,496 1,958
4 42.2 39.9 45.5 2,196 1,933 2,377
5 46.8 45.5 50.5 2,612 2,383 2,788
6 52.0 50.0 55.1 3,173 2,740 3,161
7 55.8 52.1 57.4 2,718 2,511 3,332
8 57.7 55.9 60.2 2,898 3,212 3,568
9 52.8 53.3 58.2 3,374 3,021 3,399
10 49,7 48.8 54.4 2,697 2,650 3,086
11 45.7 44,7 50.0 2,227 2,323 2,751
12 36.4 40.1 45.5 1,641 1,961 2,391
13 32.8 36.3 41.4 1,325 1,655 2,057
14 32.4 34.0 39.1 891 1,465 1,880
1981-1982
1 38.2 30.7 35.8 1,037 1,195 1,067
2 37.5 32.7 37.8 1,758 1,361 1,772
3 38.0 35.5 40.5 2,165 1,579 1,979
4 46.0 38.6 43.5 1,831 1,730 2,226
5 48.0 42.5 47.3 2,610 2,142 2,527
6 55.4 46.9 51.6 2,874 2,495 2,875
7 61.2 49.8 54,5 3,714 2,728 3,101
8 61.5 51.1 -55.8 4,041 2,835 3,207
9 61.2 50.7 55.3 3,616 2,799 3,170
10 55.0 47.1 54.4 4.026 2,511 2,890
11 49.8 42.9 47.8 3,320 2,173 2,562
12 42.6 38.0 43.2 2,521 1,788 2,197
13 38.5 34.3 39.4 1,860 1,485 1,893
14 36.1 32.0 37.2 1,696 1,302 1,718
15 38.0 30.7 35.9 1,214 1,200 1,615
* Version a b c Maximum Root Depth T =T (a + bw) if W<C
cm T =T 5r usc -
1 0 2 0.5 T T « Tronsoirati
2 0 2 0.5 122 = Transpiration

# = Relative available
water in the root
zone
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Figure 5. A comparison of two years of modeled and measured seasonal
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When the equations relating Em and E are forced through zero, the
model based on wheat data underestimates seasonal evapotranspiration
over the entire range of measured evapotranspiration by 9 percent when
the maximum rooting depth is 91 cm (3 ft.), and overpredicts seasonal
evapotranspiration by 3 percent when the maximum rooting depth is set at
122 cm (4 ft. [table 2]). The individual regression equations of
modeled versus measured evapotranspiration for selected years and
combined over years, but not forced through zero, show the same response
to change in maximum rooting depth but in a slightly different manner.
The intercept, but not the slope, changes indicating that the effect of
the maximum rooting depth is uniform over the range of modeled evapo-
transpiration. The measured and modeled yield show the same picture as
the seasonal evapotranspiration. The optimal rooting depth is located
between 91 cm (3 ft.) and 122 cm (4 ft.) depths as dindicated by
figure 6, and the regression analysis in table 2. In order to model a
rooting depth of 106 cm (3.5 ft.), the model would have to be modified
to make intervals for rooting depth be equal to 15 cm (6 in.) instead of

30 cm (12 in.) as now used in the model.
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SECTION III
WEATHER SIMULATION MODEL

The proper modeling of agricultural systems should include uncer-
tainties due to the stochastic nature of weather. Because of the
complexity of the interactions of meteorological and agricultural
systems, analytical methods of the system's performance are not feasible
(Matalas, 1967). A large number of realistic synthetic sequences can
allow the planner to investigate the effect of different agricultural
management strategies in the presence of weather variations. A stochas-
tic computer simulation model, WTHSIM, was designed to provide the
researcher with a large data base of daily weather profiles.

The model produces a stochastic representation of a given day's
weather profile. This weather profile has eight components: rain
occurrence (R0), rain amount (RA), maximum temperature (TX), winimum
temperature (TN), maximum humidity (HX), minimum humidity (HN), solar
radiation (SR), and wind (WI). This model is based on a model proposed
by Richardson (1981). The approach is to generate rainfall occurrence
and amount independently of the other variable, then generate the other
variables conditioned on the wet or dry status of that day. While the
precipitation components of the model are necessary for its use, the
other variables are somewhat arbitrary. By suitable redefinition of the
elements of the day's profile, different variables can be used. Because
precipitation is generated independently of the other variables, a
discussion of the model can be divided into two parts, precipitation and

the other variables.
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Model Description

Precipitation

The modeling of precipitation was done in two parts. A first order
Markov model was used to determine the occurrence of precipitation and
the amount of precipitation was treated as a deviate from a gamma
distribution. The Markov model assumes that the occurrence of rain is
dependent only on the previous day's state (wet or dry). Two parameters
are needed to characterize this process, the probability that a day is
dry given the previous day was dry (P[D/D]) and the probability that a
day 1is dry given the previous day was wet (P[D/W]). A wet day fis
defined as a day receiving greater than or equal to 0.0l cm of rain.

The probability of a wet day can be found by the equations:

P(W/D)
P(W/W)

1 - P(D/D)
1 - P(D/W).

To generate the value for occurrence or not, a uniform (0,1) deviate is
drawn and compared with the respective parameter.
If a rainfall occurs, the distribution of rainfall amount (RA) is

assumed to follow a gamma distribution function given by:
dF(RA) = (r (a)b?) e RA/D(pay (a-1)

Two parameters (a, b) are needed to characterize this distribution.

To account for the seasonal variation of these parameters, separate
values of P(D/D), P(D/W), a, and b are used for each week. (March 1 to
March 7 = week 1.)

19



Temperature, Humidity, Solar Radiation and Wind

In order to model the other variables, it was desirable to include
the interrelationship of these variables with precipitation, the inter-
relationships of these variables for both the same day and the previous
day, and the seasonal variation. To accomplish this, a continuous
multivariate time series model was used to produce "standardized"
weather scores which were then transformed back to the raw scores
conditioned on the week number and wet or dry status of that day. The
time series component of this model requires that the series is weekly
stationary (see Matalas, 1967); that is, every variable in the series
has a constant mean and variance through time. To meet this require-
ment, some method of standardization of the data is necessary. This
standardization should take into account the temporal variation of both
the mean and variance, and the differences due to the occurrence of
precipitation (Richardson, 1981).

The values are standardized by obtaining separate estimates of the
mean and standard deviation for each week and rain event. To standard-
ize the variables throughout the year, 104 (52 weeks x 2 rain events)
values are needed for each variable. The standardized score is then the

usual z~transform:

= (w

t,i " Mg TUiLg) /5600

where the variables are:

x = standardized score
w = observed value
U = mean value
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s = standard deviation and the indices refer to

t = time

i = weather parameter (i = TX, TN, HX, HN, SR, WI)
j = rain event (1 = dry, 2 = wet)

For example, the maximum temperature in Clovis, New Mexico, on April 10,
1980, was 27°C; also, no rain occurred on that day. The appropriate

time period is 6. The needed parameters are:

Sg,Tx,1 = 476

The resulting standardized score is:

X21,TX ~ (W41,TX - u6,TX,1)/56,TX,1 = (27-22.85)/4.76 = 0.802

The values of Xt,i will have a mean of 0 and a variance of 1 regardiess
of the particular value of the indices; hence, they are the standardized
scores that are used in the time series model.

Matalas (1967) presents a multivariate model that will characterize
a historical sequence in terms of their lag 0 and lag 1 cross correla-

tions. His model is based on the matrix equation:

X, = Ax,, = Be

t tl

where X¢ is a vector of length 6 whose ith element is the standardized
score for the ith variable (i = TX, TN, HX, etc.) at time t, and e is a
vector of length 6 whose ith element is a random number from a normal
(0, 1) population; A and B are 6 x 6 matrices whose elements are design-

ed so that the generated sequences have the desired 1lag 0 and lag 1
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cross correlations. The individual elements of A (aij) can be thought
of as the effect of the jth variable at time t-1 on the ith variable at
time t. Likewise, bij can be thought of as the effect of the jth
variable at time t on the ith variable at time t.

Once the standardized value for a particular day is generated, the

vector is transformed back to its raw values by the equation:

Wi = Sk,1,i 0,1t Uk,,g)

The result of this process is a sequence of variables that represents
the historical sequence in terms of its mean, variance, lag 0, and lag 1
cross correlation coefficients. If one also can make the assumption
that the variables in question are normally distributed, this process
will produce a synthetic sequence that also will match the distribution

of the historical sequence (Matalas, 1967).

Estimation of Parameters

Estimation procedures have been previously published in various
sources. For the Markovian submodel, only the probability of any given
day being dry (P[D]) and the probability of a given day being dry given
the previous day was dry (P[D/D]) are needed to completely specify the
model. These estimates are obtained following the methods given by
Heerman et al. (1971). The estimates of the gamma distribution param-
eters use asympotic approximations of the maximum 1likelihood estimators

given by Thom (1947). These are:

= (1+/1+4A/3)/4A

o>

=x/ a
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where

A= - 1Tn(x) - (1/n)23n(x1)

and X; is the daily amount of rainfall (if it occurs).

For the rest of the variables, estimates of their respective means
and standard deviations are necessary. The mean and standard deviation
for each category (ith variable, kth week, and jth rain event) are the

usual estimates:

A

uk,‘i,j = (1/n ) zwkﬂ.

k’iﬁj ’j’

~ 1
= . . - . » . . . L ¢
Koind T U5 7 M, Ying) (g, - D))

The estimates of A & B are designed to produce a stationary se-
quence of variables that reproduce the desired lag 1 and lag 0 cross
correlation coefficients. Because the standardized variables have a
mean of zero and variance of 1, the individual lag O and 1 cross cor-

relation coefficients are given by:

0>

. .z
0 (Jsk) - t
L sk =

5.t Rk,t

>

Xi,t *k,t-1
Where P, (j» k) is the correlation between variable j and variable k

lagged one day. Matalas (1967) showed that the estimates of A & B

satisfy the equations.

= MMy

MO - M, M M

BB
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Where M, is the matrix of lag 0 cross correlations (E[xtxt ) and my is
the matrix of lag 1 serial correlations (E[Xt’ xt-IJ)‘ In terms of this

model, the matrices M0 and M1 have this form:

M

= (P (i:0))

My = (Py(i,))

M0 is the typical correlation matrix and is symmetric but M1 is not
symmetric since Py (j,k) is generally not equal to P, (k,j). The matrix
B is any matrix that is a solution to equation 2. The Cholesky decompo-
sition was used to compute B.

The total number of variables needed for this model is 889. The
precipitation portion uses four variables for each week, the standardi-
zation portion uses 12 for each week, and the matrix A needs 36 param-
eters. Matrix B, if BBT is factorized into a triangular matrix, needs
only 21 parameters since all elements above the main diagonal are O.

Two subroutines have been provided to estimate and read the para-
meters into the proper arrays for WTHSIM'S use. SUBROUTINE SETPAR reads
the parameters off of any unit and places the values in the proper
arrays. PAREST estimates the parameters from weather data and places
these estimates on a unit in such a way that SETPAR can be used direct-
ly. The routine PAREST is only run once for each location if the

results are saved.
Results and Discussion

Weather data for the New Mexico State University Agricultural
Plains Branch Experiment Station near Clovis, New Mexico, were obtained

from two sources. A cooperative weather station has been housed at the
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station since 1950 and data until 1979 was obtained from the U.S.
Weather Service. Also, four years (1976-1977, 1980-1981) of data were
collected by the New Mexico State University Agricultural Engineering
Department in conjunction with their field experiments. The cooperative
weather station did not routinely collect information on humidity,
whereas the other site did. A1l of the other variables were present in
both data sets.

Because of the large number of parameters needed for this model and
the relative scarcity of complete weather records, some compromises had
to be made to ensure good estimates of the parameters. Compounded with
this is the relative aridity of the location, resulting in very few data
on "wet" days. Because rain is treated separately in this model, the
rain parameters were estimated from the U.S. Weather Service data and
the other variables were estimated from the smaller data base. Only the
Markovian model used weekly increments, all other parameters were done
by four-week intervals.

The estimates of the precipitation components are presented in
appendix B (table B-1) and graphically in figures B-1 and B-2. The
estimates for the mean and standard deviations of the other variates are
presented graphically in table B-2 and figures B-3, B-4, and B-5. The
estimates of the lag 1 and Tlag 1 cross correlation coefficients are
presented in table B-3.

Verification of this model utilized 20 years of simulated weather
using WTHSIM, and various traits were graphed with their real counter-
parts. The cumulative distribution of rain amount for each of the 13

periods is shown in figures 7, 8, and 9.
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There seems to be a skewness in the actual distribution of precipi-
tation that is not accounted for by a gamma distribution. This skewness
tends to underestimate rain depth in the first part of the year and
overestimate depth in the last part.

The model described above assumes that the standardized values of
the weather variates are normally distributed and have a correlation
structure similar to a first-order autoregressive process. The dis-
tribution of the actual standardized scores are compared to the
simulated ed scores in figure B-6, appendix B. The modeled distribu-
tions compare well to the standard normal distribution. The serijal
coefficients for both observed and simulated sequences are shown in
figures B-7 through B-10 in appendix B. Except for wind, the model
seems to simulate the behavior of the system adequately. The serial co-
efficients of wind to the other variables probably could be consid-
ered 0. The serial correlation of wind to itself seems to be under-
estimated by the model. This is probably due to a persistence of wind
through time that is not accommodated by a first order model. Perhaps a
second order autoregressive model is more appropriate for wind sequences

through time.
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SECTION IV
ECONOMIC ANALYSIS OF IRRIGATION
SCHEDULING IN THE HIGH PLAINS

Current dirrigation scheduling models, while efficient 1in the
engineering sense in the use of irrigation water, do not maximize net
dolTar returns from irrigation. These physically based models apply
irrigation water only when the soil moisture content reaches a predeter-
mined level independent of economic conditions. This Tevel is generally
the crop stress point {usually 50 percent of plant-available water in
the root profile). The models do not consider the price of water, the
value in use, or any ultimate pumping constraints that exist in some
designated New Mexico water basins. Therefore, the use of technical
water efficiency models by producers will not necessarily lead to profit
maximization.

The dynamic programming model (DPM), presented in this section, has
the express objective of maximizing net returns to water for corn and
wheat. Although the model 1is based on the soil water balance concept
and on crop-production functions used in physically based models, it
makes an economic decision to irrigate only if the dollar benefits
exceed the costs. The model simultaneously accounts for the probability
of rainfall, the cost of pumping water, pumping restrictions, and the
price of the crop.

The DPM also has the highly desirable characteristic in that the
profitable irrigation plan can be utilized for actual on-farm use,
through the use of a microcomputer., Initially, the DPM must be run on a
large mainframe computer because of size and calculating requirements.

Data on an individual farm, such as soil type, irrigation system, and
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pumping capacity, are entered into the model with a resulting decision
matrix (DM) as output. The DM indicates whether or not a farmer should
irrigate a particular crop at a given point in time by evaluating
farm-specific data on soil moisture, remaining water allocation, and
date. A farm microcomputer could execute a simple soil moisture ac-
counting model and search for the appropriate irrigation decision.
Unusual weather or delays in the irrigation schedule do not diminish the
effectiveness of the decision map, although of course net income may be
affected. The DPM determines an optimal (income maximizing) future
irrigation schedule for all possible current conditions.

The decision matrix contains a large amount of data. A typical
growing season for corn, for example, is 175 days. Fach daily matrix
consists of 1,100 different elements representing different possible
soil moisture and water allocation positions. The entire seasonal
matrix would contain 193,600 elements. At 2 computer bytes per element,
this amounts to 387,200 bytes of data--the approximate size of a micro-
computer diskette. The DM then would be useable on microcomputer
diskettes for actual farm operations. The farmer could review the farm
and firrigation characteristics with Cooperative Extension Service
agents. The agent could then transmit the data to the university
mainframe computer and receive the individualized DM diskette for actual

operation.
Procedures

Conceptually, the DPM, which is similar to that developed by Yaron
et al., proceeds backward in time to parameterize the value of irriga-

tion decisjons. By parameterizing all possible future outcomes, the
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model decides which irrigation decision is optimal for a given time,
water allocation, and soil moisture. The large number of possible
outcomes requires considerable computer time and speed; and so the DPM
is designed to work only on a mainframe computer. A mathematical
description of the model follows. (Readers interested in dynamic
programming should refer to Nemhouser [1977].)

Because of the complex dynamics of soil moisture and the proba-
bilistic distribution of rainfall, conventional economic models such as
Tinear programming are inadequate for irrigation decisions. Specifi-
cally, Tinear programming cannot deal with nonlinear functions. It also
is more difficult to incorporate probabilistic functions into a Tinear
programming model than a dynamic model. However, the major advantage of
the DPM is the decision matrix output. A dynamic probabilistic Tinear
programming model only operates as a unit. Therefore, if weather condi-
tions do not follow expected patterns, the planned irrigation schedule
becomes inadequate. The DPM with the decision matrix output automatic-
ally adjusts to current conditions. In short, the DPM is operational in
a stochastic farm environment, while linear programming models would

remain less operational.

Mathematical Description

The DPM 1is conceptually divided into state equations describing the
state of the system using equations and an objective function. The
state equations describe the change in soil moisture from one time
period (stage) to the next, based on evapotranspiration, irrigations,
deep soil percolation, and precipitation. Defining percent soil mois-

ture at time t as Mt’ then:
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Mg = My + v (IRR + RAIN, - ET}) (1)
where M% = percent soil moisture in the current root zone
v, = a factor which transforms water volume {inches)
into percent soil moisture. (Note as the root
zone increases in depth over time, ¥y decreases)
IRR, = an irrigation at time t (inches)
RAIN, = precipitation at time t (inches)
ET% = evapotranspiration at time t {inches)

There are two constraints placed on equation 1. Once the soil
moisture is at capacity (depending on soil type), any additional mois-

ture added to the profile will deep percolate, thus:

My < SC for all t (2)
where SC = soil water capacity as defined by Sammis et al. (1982)
(percent)

Likewise, the moisture content of soils will only slowly drop below
the permanent wilting point. To 1imit the number of calculations, it is

convenient to place the restriction:

Mi > WP for all t | (3)

where WP = the permanent wilting point

Changes in moisture occur from evapotranspiration, precipitation,
and irrigation. Research has established that evapotranspiration is a
function of soil moisture, leaf cover, and potential evapotranspiration.

According to Sammis et al. (1983), evapotranspiration can be written as:

i _ . i
ETt = (1 + (PAV x STR) x (Mt - WP) x Kt X PETt (4)
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where ET; = actual evapotranspiration under consistent irrigation
practices

PAV = maximum plant-available water in the root zone
(percent)

STR = s0il moisture level when plant stress occurs
(percent)

K, = empirical crop coefficient
PET = potential evapotranspiration (inches)

S.T.

(1 + (PAV x STR) x(M] - WP) < 1

This equation, while well documented, is valid only if the crop
coefficient (K) is estimated from a consistent pattern of irrigations.
The equation is less reliable for irrigation schedules with varying
frequencies. To account for changes in irrigation frequency, evapotran-
spiration must be subdivided into three components, transpiration,
energy limiting soil evaporation, and soil Timiting evaporation. With
frequent 1ight drrigations or rainfall, evapotranspiration is not
restricted by soil moisture or plant cover, and the relative propor-
tions of energy Timiting soil evaporation increases, thus equation
number 4 understates the actual evapotranspiration. The dynamic pro-
gramming model was modified to account for increased soil evaporation in

the following manner:

ETl = PET x 2 - (5)

where ET% = initially determined by equation 4

The factor (2) is used to account for the observation that a wet
soil and plant cover (following a rain event or irrigation) evaporates
at an unrestricted rate for approximately two days. The structure of

the dynamic model does not allow for the incorporation of a two-day
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state variable without a large increase in model size--thus, twice the
current potential evapotranspiration was used as an approximation. This
procedure will slightly overstate the seasonal total evapotranspiration
because the K coefficient was estimated to account for some soil energy
1imiting evaporation. The model will at time double count this. This
may be corrected in future versions of the dynamic programming model,
however, the estimated error caused by this does not significantly alter
the deviation of the optimal irrigation schedule.

Precipitation is modeled as a stochastic event; various levels of
possible precipitation amounts are assigned a probability of occurrence.
Therefore, soil moisture has a range of possible outcomes proceeding
from stage to stage. This is important for the objective function, but
for any given precipitation amount, equation 1 holds. This equation is
best considered a set of equations:

i i
=M

MTt+1 t

+ RAIN; - erh (6)

+ Yt(IRR £

t

where RAIN} = a range of possible precipitation amounts,
each assigned a probability

and

no~ =

E(RAIN,) =

1 PROBt X RAINt (7)

1
The implications for the objective function are outlined in a foT]owingv
section,

The amount of irrigation water applied for a flood system has two
alternative decisions defined as 0 or 4 1in of water. For a sprinkler
irrigation system, there are three alternative decisions defined as 0,

2, or 4 in,
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A second state equation accounts for the remaining water 1in the
total water allocation. Pumping in a typical declared New Mexico water
basin is legally restricted to 3.5 acre-feet per acre per year. Though
this water can be diverted to other crops, typically this is not the
management practice. Therefore, the DPM has a restriction of 42 acre-
inches on water used during the season. With each irrigation, the
cumulative water balance is reduced, restricting the water usage later

in the season:

W =W, - IRRt (8)

t+l t
where wt = remaining water balance

and

Immediate Loss Function

The objective of the DPM 1is to maximize the annual profits
associated with a specified crop. The model accomplishes this by using
an "immediate loss function® (ILF) in the ith period. The ILF is the
cost of irrigation plus the economic value of yield loss associated with
a particular moisture state relative to the ideal moisture state. This

function is specified as follows:

LOSSl = (PH, x IRR,) + [(NET, - ETH) = NETT x PG, X PCROP *(10)

t t t

where LOSSt the immediate loss

i

PW, = the cost of water ($ per inch)

t
PG, = the potential growth of the crop (1bs per acre)
based upon an empirically based crop water
production function
PCROP = the price of the crop in pounds
NET = non-stress evapotranspiration
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Recursive Dynamic Control Equations

Equations 1 through 11 describe the fundamental relationships in
the dynamic control model. The core of the DPM is the recursive rela-

tionship defined as follows:

n .
;
At(Mt,Nt) Min [LOSS (M 1+ ¢ Prob, X Ay 4 (Mt+1’wt+1)
IRR i=1
_ i i
S.T. wt+l = N - IRR Mt+1 M + Yt (IRRt + RAINt - ETt) (11)

fori=1. .n

- Ty .
LO?St = PW, x IRRt + [(NETt - ETt) + NET)] x PGi x PCROP

t

= [(1 + (PAV x STR) x (Mi ¢ WP) x K, x PET,

M,,W.) = the value of a node at a given stage

-t( -t’ )

Conceptually, the model works backwards in time, assigning a value
to all "nodes” in each time period where a node is a discrete Tevel of
the state variable. To value the current state node(t), the model
calculates the (t+1) node positions derived from alternative irrigation
decisions and Tooks up the value for those nodes (previously calcu-
Tated). The loss function value is added to the expected value of these
nodes. A discrete optimizing routine selects the optimal decision and
simultaneously values the current node.. With the two state variables

and 50 different potential soil moisture levels,

PAY x i
(Wp . . . WP+ 50 . . . SC) for i=1 . . 50

and 22 different water resource levels:

(0 ... 42)
there are a total of 1,100 nodes per stage. The net return associated
with each alternative irrigation decision is the cost of the irrigation

subtracted from the expected value (based on anticipated rainfall
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through the remainder of the season) of the resulting nodes in stage
i+1. (Fach decision has a range of possible outcomes because of the

probability distribution for precipitation.)

Operation of the Model

The DPM is an APL program and is interactive model, the listing of
the program is provided in Appendix C.

The model interactively prompts (asks the user) for the following
data:

1. Soil capacity

2. Wilting point

3. Planting and harvest date

4, Crop type - corn sorghum or wheat

5. Crop stress point

6. Type of irrigation system ~ flood/irrigation

7. Cost of water - $/acre-inch

8. Price of the crop

9., Initial water allocation
Specific crop coefficients (Kt and yt) are generated from equations in
Sammis et al. (1983).

The DPM runs in one of two modes--deterministic or stochastic. The
deterministic mode uses historical weather data for a particular year.
Because the model conceptually moves backwards in time, and thus is able
to forecast weather perfectly, the model is unrealistic. It is used
only to test the operation of the model and to correlate results with
empirical data.

The stochastic mode uses the previously outlined equation structure

with a probability distribution for precipitation. Five alternative

hel
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rain events were defined, each with an associated probability.
This distribution was generated from an historical weather file. The
rain event is a mean value of precipitation within a specified interval.
For example in Clovis, New Mexico, the mean value of total precipitation
between 0.3 and 0.6 inches for July 1-15 s .464; this event has a
probability of occurrence of 2.65 percent. The distributions of the

five alternative rain events in Clovis on this date are as follows:

Mean rain value 0 0.209 .464 .748 1.75
Probability of occurrence .861 .066  .027 026 .020
DPM Qutput

The DPM has two types of output depending on mode of operation.
The deterministic model vresults in an optimal drrigation and soil
moisture time path, which can be verified empirically for accuracy.

The stochastic mode has as output the decision map. This decision
map specifies an irrigation decision for any given data, soil moisture
level, and water allocation. To use the map, it is only necessary to
find the appropriate matrix element that corresponds to the data, soil
moisture, and water allocation, and return the decision. For example,
if on July 10 corn is in a field that has a soil moisture of 30 percent
and there 1is a remaining water allocation of 22 inches, the DPM map
would return a zero value, meaning do not irrigate. For the same water
allocation and date, but at a field moisture level of 25 percent, the
decision matrix element would return a value of 4, meaning irrigate 4
inches. The advantage of the map is that the decision on any date is

not dependent on previous conditions, only the current value of the
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state variables. Therefore, for either wet or dry years, the model
returns the appropriate irrigation decision.

A secondary output of the DPM is the value of water in production.
The model can vary the initial water allocation at the start of the
season and determine the corresponding expected net return. From this
information, it is possible to value the water in use. For example,
with an 1initial allocation of 36 acre-inches on corn, the net return
might be -$150 (al1 values are in negative costs). With 32 acre-inches,
the net return might be -$170, thus the (marginal) value of additional
(intially allocated) water is $20 + 4 or $5 per allocated acre-inch.
The average cost of water for a furrow system in Clovis is $3.33 per
acre-inch, implying that the incremental value in use exceeds costs and

the profit maximizer should use the additional water.

DPM Performance Test

To be credible, the DPM must be economically superior to the physi-
cally based irrigation scheduling models currently available for use.
Economic superiority is defined here as increased net returns to water
(crop revenue minus water costs). Because of the lack of actual plot
data, a test of the economic superiority was derived using the soil
moisture and the weather simulation model of Sammis et al. described in
Section III. The test statistically compared net returns of the DPM to
three alternative physical irrigation strategies for 35 years of weather
data. The comparison was made for both flood and sprinkler irrigation
systems. The three alternative irrigation strategies applied water when
soil moisture reached 40, 50, and 60 percent of maximum plant-available

water. To prevent overwatering at the first of the season, the physical
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model was restricted to applying one irrigation during the first 30
days. The test consisted of statistically comparing the difference in

means by a student-t distribution.

Prices Used for the Test

Another major advantage of the DPM is 1its ability to adjust to
varying crop and water prices. To fully test the DPM against the physi-
cally based model, prices were varied according to historical data. The
past 20 years of corn prices, adjusted to 1982 dollars, have averaged
$3.59 per bushel (6.4¢/1b) with a standard deviation of $.79/bu
(1.4¢/1b}. Three prices were used: $.05, $.064, and $.078, the average
and a plus and minus standard deviation. For wheat, the price per
bushel averaged $4.85 (8¢/1b) with a standard deviation of $1.47
(2.45¢/1b). For the test, $.055, $.08, and $.104 per pound were used.

Water costs in Curry County, New Mexico, are a function of type of
well, depth to ground water, price of pump energy source, and type of
irrigation system. It was assumed that the representative irrigation
system consisted of a natural gas engine pumping 1,000 gallons per
minute with 350 feet of pumping depth. Furrow irrigation used a free-
flow system, and the sprinkler system required pressurization. Table 4
presents the price of water per acre-inch for labor, natural gas, and

repairs for 1982 prices in Curry County.

Other Parameters

Table 5 presents the values of other parameters used in the statis-
tical comparison of the DPM on corn. Wheat used the same parameters

except where noted.
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Table 4. Specified water costs per acre-inch for furrow and sprinkler
irrigation, clay loam soil, Clovis, New Mexico, 1982

Furrow Sprinkler
($/inch) ($/inch)
Labor .38 .28
Fuel 2.75 4,16
Repairs _.21 .28
Total 3.34 5.21

Table 5. Model assumptions for statistical test on Dynamic Programing
model for furrow and sprinkler irrigation, clay loam soil,
Clovis, NM, 1982.

Parameters
Soi1l capacity* 0.375 (by value)
Wilting point 0.176 (by value)
Planting date” 4/10
Harvest date’ 10/3
Crop stress point# .60 PAY
Initial water allocation 42 1inches

*
The soil type for this capacity and wilting point is clay Toam.
* The planting and harvest date for wheat is 10/1 - 6/23.

# The crop stress point for wheat is 50 percent PAV.
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Results and Discussion

Results of the DPM are presented in two sections: (1) the test of
the DPM against physically based irrigation scheduling models, and (2)
the demand analysis for water.

Comparison of Dynamic Programing Model to a
Physically Based Irrigation Scheduling Model

Table 6 presents the statistical comparison of the DPM used with a
furrow irrigation system against the results of a physically based model
using three threshold soil moisture levels to apply irrigations (40, 50,
and 60 percent of plant-available water [PAV]). For corn, the point at
which the crop comes under stress is 60 percent of plant-available water
and for wheat the stress point is 50 percent. In all comparisons,
average net revenues of the DPM exceed the physically based model. For
the average price of corn of 6.4¢ per pound, the DPM increased net
returns by $17 per acre over the nonstress, physically based model with
the 60 percent threshold by achieving higher yields with Tess water.
This would be the typical irrigation schedule for corn. It is apparent
that some stress is optimal for the furrow system on this soil type
because the 50 percent threshold 1eve1 has a higher net return. Though
the DPM was not greatly superior to the 50 percent threshold Tevel, the
results for corn are significant at the higher price levels. For wheat,
the 50 percent threshold is the optimal for irrigation applications.
The DPM is not significantly different in yield, water application, or
net revenue.

With the sprinkler irrigation system (table 7), the optimal stress

point for corn increases to the 60 percent level, i.e., the nonstress
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point. The DPM achieves a higher net revenue (though not statistically
significant) with less yield and less water. For wheat, the optimal
threshold remains at 50 percent. The DPM has significantly higher net
returns, increasing profits by $20 per acre at the average price of 8¢
per pound. The increased profits again result from higher yield and
reduced use of water.

The change in the optimal threshold for corn using a furrow versus
a sprinkler f?rigation suggests that soil type may be an important
factor in the determination of the most economical soil moisture thresh-
old. For the furrow irrigation with its 4-acre-inch water applications,
a 60 percent nonstress threshold resulted in deep percolation. The
sprinkler system with 2- or 4-acre-inch applications would not exceed
the water capacity of soil and thus achieve a higher yield with Tess
water. The DPM adjusts automatically to soil type as presented in
table 8. As indicated in the table, the optimal soil stress threshold
is now 40 percent for corn and wheat. Again, however, the DPM selected
the optimal stress point and was significantly better than all physic-

ally based models.

Demand Analysis

The DPM in the stochastic mode also can be used to construct water
demand functions for individual crops. The demand function indicates
the value of additional units of water in terms of extra net revenue.
Figures 10, 11, and 12 present the demand functions for corn, sorghum,
and wheat.

The demand functions also indicate the amount of expected water usé
given a price or cost for water. For instance with corn, at a pumping

cost of $5.21, expected seasonal water usage is 32 acre-inches. What is
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apparent from the demand analysis is that the demand for water is very
inelastic for corn and sorghum but elastic for wheat, indicating the
dryland capability of this crop with rising prices/reduced allocations.
The significance of the elasticity of demand is that corn is much Jess
1ikely to be grown given a great increase in water costs, since it is
not transferable to dryland status. Because the crop is Tlimited in
profitability, increases 1in water costs directly 1increase costs as
opposed to resulting in water savings. Increases in water costs for
wheat result in substantial savings of water enhancing the long-term
viabjlity of the crop and decreased water efficiency.

Sorghum has an elastic demand function at low prices but the
function becomes more inelastic at higher prices. The amount of water
required by sorghum is less, and so water costs are a smaller percentage
of total operating costs. Increases in water costs initially result in
water savings, and possibly result in a conversion to dryland produc-
tion.

$-COST/ACRE THCH GF VATER

§, 884/
OF CORH

ML THOES OF WATER
Figure 1G. Demand for water in corn.
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APPENDIX A



Description of IRRSCH

The IRRSCH (irrigation scheduling model) consists of a main program
and a series of subroutines. In the main program, the model first calls
STARTR, which initializes the arrays in a simulation weather subroutine.
Subroutine Input reads in the basic information about the soils, crop,
and irrigation. The model then initiates iterations 1 through 7 where
the first irrigation is read and becomes the mean value. The subsequent
irrigations are +1, 2, and 3 standard deviations of that applied irriga-
tion water. The model resets the initial conditions each time it comes
back to a new computation of the irrigation amount. The model then
reads the maximum rooting depth for the particular crop and asks whether
to use a simulated weather file or a read-in weather file. Subroutine
Climate is called to read a weather file or subroutine Simulate, which
simulates weather for a year's time period. The model prints out the
weather and potential evapotranspiration (EO). The operator is asked if
he desires to enter the irrigation amounts and then through the inter-
acting process the model asks the operator to input the amount of
irrigation. If the interactive part is not activated, then the model
uses the input irrigation amounts and dates read in subroutine input.

The main program calls subroutine E, which calculates evapotran-
spiration (E), based on Penman's equation and then the main program in
the model adds up and prints out the total possible yield based on
nonstressed E, the total amount of irrigation in inches, the total

amount of rainfall in inches, the deep drainage in inches, and the
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amount of evaporation due to transpiration (T) and due to soil
evaporation (ES).

The model also has a series of subroutines described below, which
calculate and print out in the main program the following data: (1)
date; (2) root zone 1-10, each representing one-foot depth; (3) the
growing-degree-days; (4) a crop coefficient that reduces potential E to

actual E; (5) E_;

o (6) nonmoisture stress transpiration; (7) soil

evaporation; (8) accumulated nonmoisture stress E; (9) projected daily
E, the E that is needed for uniform moisture stress throughout the
growing season and will result in the projected yield specified as input
by the users; (10) actual E, which is the resulting E based on soil
moisture stress; (11) accumulated actual E; (12) difference between the
projected and actual E; (13) difference between the projected and actual
yield based on the difference between the projected and actual E; and

(14) the difference between the nonstress E and the actual E.
Description of the Various Subroutines

Subroutine Input

1. Title.

2. Number of iterations if oberator desires to put on more than one
set of irrigation conditions for the field.

3. Elevation.

4. Temperature code centigrade or Fahrenheit.

5. Input which controls echo print of the climate data.

6. Number of depths in which the model will run for a maximum of 10

compartments of the soil reservoir.
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10.

11.
12.

13.

Soil types for each one of the depths with the codes being:

1 = sandy

2 = sandy loam
3 = Toam

4 = clay loam
5 = silty clay
6 = clay

Field number and the crop by:

1 = alfalfa

2 = corn s
3 = sorghum

4 = wheat

5 = pecans

6 = barley

Planting date, emergence date, harvest date.

Growing-degree-day code which is equal to 1 if the GDD calculation
is desired in deriving the crop coefficients (K), otherwise, the
value is 0 and the crop coefficients are computed based on a time
determined function.

The projected yield for the growing.season.

Initial soil moisture content percentage by volume, if the initial
values equal 0, then the initial soil moisture content will be‘
determined by the field capacity and the soil type. The model
writes out the initial moisture content in the soil profile.

The minimum level of the plant-available water which will be used

to force an irrigation and the amount in inches of that which
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forces irrigation. Any percentage over 50 percent will be reset to
50 percent.

14. The Christian uniformity is converted to the proper units of a
normal distribution function and the distribution of the
application for the water over the field is assumed to be normally
distributed from both center pivot and flood type irrigation

systems.

Subroutine Soil

Subroutine soil determines the field capacity and permanent wilting
point for the designated soil type determined from subroutine Input

(Hanson, Isradson, Stringham, 1980}.

Subroutine Julian

Subroutine Julian returns a Julian date with an 1input of

month/day/year, a correction is made for leap year.

Subroutine NOSTRS

Subroutine NOSTRS computes a nonstressed daily E based on potential
E using Penman‘é equation described by function POTET and a crop
nonstressed coefficient (K) Sammis et al. (1979). Function POTET
computes the potential evapotranspiration (Eo) using Penman's equation.
The function represents potential evapotranspiration over a short green
grass and uses the data and equations described by Sammis et al. (1979).
The relationship between net and solar radiation used in computing POTET
is described by Alla A. Abder-Jabbar (1983). The necessary data to
compute potential evapotranspiration is maximum temperature, minimum

temperature, maximum humidity, minimum humidity, solar radiation,



and wind. The computed potential evapotranspirations are stored in the

eighth position on the climate array.

Subroutine Climate

Subroutine Climate reads the climate data from a file. It searches
for the planting date and then places that data in the first position in
the climate array and continues to read the file to the harvest data.
The climate array is in column 1; maximum temperature, column 2; minimum
temperature, column 3; maximum relative humidity, column 4; wminimum
relative humidity, column 5; solar radiation in langley/day, column 6;
wind in miles per day, column 7; pan evaporation inches per day, column
8; computed potential evapotranspiration, column 9; the irrigation
amounts in inches, read previously, and column 10; the precipitation in
inches. The climate array echo prints the climate file.

Function ETylLd: calculates the yield reduction or addition in 1bs/acre
from the projected and maximum yield based upon the slope of the water
production functions. The functions are described by Sammis (1979) for

sorghum, Sammis (1983) for wheat, and Sammis (1983) for corn.

Subroutine Coefficient.  Subroutine coefficient <computes the crop

coefficient (K). It reduces potential evapotranspiration to nonstressed

actual evapotranspiration based upon GDD; Sammis et al. (1979).

Subroutine Coefficient 2. Subroutine coefficient 2 accomplishes the

same objective based upon the Julian date; Sammis et al. (1979).

Function Irrigation: computes the amount of irrigation water that is
applied to other portions of the field based on *1, 2, and 3 standard
deviations of the mean application using Christian's uniformity (1942).

to describe the mean and standard deviation of a normal distribution.
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Subroutine ET

Subroutine ET returns the daily E computed based upon the effect of
soil moisture stress on the nonstressed E. The model first computes the
rooting depth based upon a time dependent crop coefficient that is in a
data statement, based upon the crop ID. Moisture accounting is then
accomplished from the surface to the maximum rooting depth. Rainfall
and irrigation water is applied, filling the first depth with the
remainder going to fill subsequent depths. Deep drainage is the amount
of water that passes below the maximum rooting depth. The irrigation
efficiency or rainfall efficiency is that percent of deep drainage that
occurs. The model subtracts yesterday's T from the soil rooting depth
based upon the 40 percent, 30 percent, 20 percent, and 10 percent
rooting extraction pattern in the fourth quarter of the rooting depth.
Consequently, if there is only one depth containing roots, all of the T
is extracted from that depth. If the roots are two feet deep, 70
percent is extracted from the top and 30 percent from the second depth.
If the roots are three feet deep, 50 percent is extracted from the top
foot, 35 percent from the second foot, and 15 percent from the third
foot, etc. Evaporation is subtracted form the top foot. Evaporation
(E) and transpiration (T) are separated into the component parts based

upon the following equations:

T=T  (a+b)ifu<c (1)
T=T ifW>c (2)
W= SWS/AW
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max KIEO

where:
Tmax = maximum Transpiration
K =0.9 K a crop coefficient derived form lysimeter data, Sammis
et al. (1979)
SWS = s0il water stored in the root zone cm between permanent
wilting point and field capacity
AW = available water in the root zone equal to the difference
between water content and permanent wilting point
¢ = some level of W less than one
E0 = potential evapotranspiration based on Penman's equation
(1948)
fEsdt = Escum = C (T—Tp) if SWS (1)/AW(1) < 0.8 (3)
where:
7 = the time when E = E_ which occurs when L§NS(1)/AN(11J
P equals 0.8 P
T = Time in days
SWS (1) = the soil water greater than permanent wilting point stored
in the first foot of soil cm
AW (1) = the available soil water in the first foot of soil cm
¢ = an empirical constant for a given soil type, Jensen
(1978).
Es = E0 - Tmax if SWS(1)/SW(1) > 0.8 (4)

When rainfall amounts do not bring the first foot of soil to-
greater than 80 percent of available water, then that day's evaporation
is described by equation 4 or the amount of rain, whichever is smallest.

The current daily E is the sum of the evaporation and transpira-
tion. After subtracting the computed E and T from the soil reservoir,
the model checks to see if a forced irrigation is necessary because

relative available water (W) has fallen below the specified amount.
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Subroutine  Growing-Degree-Days. This  subroutine  computes  the

growing-degree-days (GGD) based upon the following function:

GDD = (max temp - min temp)/2 - base temp

where:
max temp is set to the upper limit if max exceeds this temperature

min temp is set to lower Timit if it decreases below this Timit

The value of maximum cutoff temperature, the wminimum cutoff

temperatures, and base temperature by crops are given in Table A-1.

Subroutine WTHSIM. Subroutine provides a day's weather profile for

output. The variables passed to WTHSIM are as follows:
DSEED~An integer in double precision form used as a
seed for generation of random numbers.
WTHR(7)-Array containing the previous day's weather
profile on input or output and the generated
profile for that day.
Each element of the array is:
1 TX (centigrade)
2 TN (centigrade)

HX (percent)

B W

H

=

(percent)
5 SR (langelies)
6 WI (miles/day)
7 Precipitation (centimeters)
If WTHR(7) is 999, it is assumed that the previous day's profile is

missing.
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Table A-1. Maximum, minimum, and base temperatures used to compute
growing-degree-days for selected crops.

Maximum Minimum Base

Crop Temp. Temp. Temp.
5T Ty T
Alfalfa - - 5
Corn 30 10 10
Sorghum - - 7
Wheat - - 0
Barley 30 5 | -5

DAY-~Integer with the value of the current day (Day 1 = March 1).
IER--Counter telling how many random draws were made before a

profile was created that was within the 1imits set.

In addition to the passed variables, there are five arrays placed
in a common area with name PAR. These arrays contain the parameters
used in the simulation model. They are:

MUVARS (L, J, K)-~The mean for the jth weather variable conditioned
on the kth week and presence (L = 2) of rain. J is the variable index
which is, TX, TN, HX, HN, SR, WI.

The last part is necessary due to the nature of the deviates. They
are all normally distributed and have a range of the entire real line.
It is, therefore, possible for the program to generate unrealistic
numbers. This is due to the nature of the normal distribution and the

large variances typically seen in weather parameters. The following six

Timits are checked by the program:
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1. TX < TN

2. HX < HN
3. HX > 100
4, SR <0
5. WI <O
6. HN <O

If any one of the Timits is exceeded, the standard scores for that day
are regenerated, and the limits are checked once more. This process
repeats itself until a profile within the Timits is obtained. The
number of iterations depends on the values of the parameters used. For
parameters estimated using the data of Clovis, New Mexico, it was found
that about 15 percent of the generations fall outside of the given
1imits.

As a final aside, the parameters, other than rain, are only
arbitrary definitions of the elements of a matrix equation. This model
was constructed to fill the needs of a crop production model but it is
not limited to just that. For example, Richardson (1981) developed a
model involving the simulation of temperature and evaporation, in
addition to precipitation. This model can accommodate such a simulation
by redefining the elements of fhe weather array. The only changes in

the program would be in the last section which checks the Timits.
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APPENDIX B
WEATHER SIMULATOR MODEL
COMPONENTS AND STATISTICAL COMPARISONS
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Figure B-5.
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Table B-3.

Estimates of the lag 0 and lag 1 cross correlations

coefficients for Plains Branch Agricultural Experiment
Station, Clovis, New Mexico.

Lag 0 Cross-Correlations Between Standardized Variates

TX N HX HN SR WI
TX .90 .51 -.20 -.40 .25 .02
TN .87 -.10 -.13 -.02 .06
HX .87 .27 -.03 .06
HN .75 -.26 04
SR .95 .08
WI .94
Lag 1 Cross-Correlations Between Standarized Variates
TX TN HX HN SR WI
TX .29 .14 -.15 -.21 .10 .10
TN .30 .29 -.03 -.09 -.03 .09
HX -.23 -.06 .34 .35 -.08 .02
HN -.16 .06 .13 .24 -.09 .02
SR .03 -.02 .02 -.03 .27 .04
WI 0.1 -.12 -.03 .04 -.01 .44
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