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Near-Infrared (NIR) reflected light, which is the red color in the false-color NIR image, and 
the red reflected light in the natural RGB image can be used to calculate the Normalized 
Difference Vegetation Index (NDVI). NDVI values are used to indicate where and how much 
green biomass is in the observed area. The HANTS algorithm was used to process multiple 
NDVI images, and the results of the process were classified to locate areas with concentrations 
of saltcedar. 
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ABSTRACT 

 

Saltcedar (Tamarix spp.) is one of the most invasive species threatening the ecosystem health 

in riparian regions across the southwestern United States. This research compared maps of 

saltcedar growth in the Bosque del Apache National Wildlife Refuge derived using traditional 

pixel-wise classification methods, to maps derived from a series of normalized difference 

vegetation index (NDVI) images that were processed using the harmonic analysis of time 

series (HANTS) algorithm. For 2000/2001 the overall prediction accuracies for saltcedar 

classification based on traditional methods ranged from 88.0 to 91.0%. Corresponding overall 

accuracies based on the HANTS algorithm ranged from 81.5 to 90.5%. For 2010/2011 the 

overall prediction accuracies for saltcedar classification based on traditional methods ranged 

from 88.0 to 89.0%. Corresponding overall accuracies based on the HANTS algorithm 

ranged from 77.5 to 85.0%. The traditional classification required more data preparation and 

expertise than the HANTS based classification; however, the HANTS based classification 

required a larger dataset. The results show that the HANTS reconstruction of NDVI data can 

be used directly to classify areas with saltcedar. The phenological changes revealed by the 

HANTS algorithm reconstruction could also be used to select data used with other 

classification methods. 
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1 Introduction 

Controlling the spread of invasive saltcedar (Tamarisk spp.) in riparian areas has long been 

recognized as a challenge by land managers. Since its introduction to the United States in the 

early 1800s and its subsequent spread across the southwestern United States, there have been 

numerous studies have investigated saltcedar in riparian areas1. Determining the areal extent of 

saltcedar using hyperspectral remote sensing imagery2-6 and moderate resolution remote 

sensing imagery7-10 has been investigated.  

The problem with using hyperspectral data to map saltcedar is that imagery is expensive to 

acquire and often not available for the required period or location. Landsat moderate resolution 

satellite imagery can be downloaded from the Internet at no charge and includes data archives 

extending back in time to the mid-1970s. Although moderate resolution imagery does not 

supply the detailed information that hyperspectral imagery can produce, it does provide 

information that can support land-management planning. Many previous studies have 

investigated the use of Landsat data for identifying landcover; however, it has been 

demonstrated that some traditional remote sensing classification methods may not provide the 

same level of accuracy in every region (or even different time periods in the same region), even 

when the environmental conditions initially appear to be very similar.11 For this reason, the 

continued investigation of alternative methods of identifying saltcedar using remote sensing 

data is needed. 

This study demonstrates the value of using multiple methods for mapping saltcedar, as each 

method provides useful information on riparian saltcedar. Two methods were investigated: the 

first method used stacked layers of spectral profiles and products derived from selected 
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Landsat imagery (e.g., Tasseled Cap12 and land-surface temperature), and the second method 

used a series of normalized difference vegetation index (NDVI) images derived  from Landsat 

data together with the harmonic analysis of time series (HANTS) algorithm. The HANTS 

algorithm uses the Fast Fourier Transform (FFT) algorithm that has been used with NDVI to 

map agroecological zones in vegetation growth,13 investigate periodic climate processes14 and 

land-surface phenologies,15 to characterize seasonal changes for natural and agricultural land 

use/time,16 and investigate the impacts of rainfall anomalies.17 Although the HANTS algorithm 

was originally devised to remove cloud contamination and reconstruct gapless imagery at 

prescribed times using temporal interpolation,18 it has also been used to investigate the 

phenological response of vegetation to variations in river flow.19 

The HANTS algorithm removes cloud contamination by calculating a Fourier series to model a 

time series of pixelwise observations. The time signal for each pixel is modeled using 

harmonic sine and cosine waves fitted to the period of a complete cycle implied by the 

imagery. In the case of remote sensing imagery, typical cycles include annual (e.g., the 

seasonal growth of vegetation) and diurnal cycles (e.g., the hourly variation in local solar 

elevation). During the HANTS fitting process, outliers are identified and replaced with the 

values given by the Fourier series. HANTS outputs a smoothed time series of imagery where 

the high frequency information such as that caused by cloud cover has been removed. In 

addition, the imagery does not have to be evenly spaced in time when using the HANTS 

algorithm. In this study, the HANTS algorithm was applied to a series of NDVI images derived 

from the Landsat-5 Thematic Mapper (TM) data. The hypothesis was that the HANTS output, 

when combined with an appropriate classification technique, based, for example, on the slope 

of the smoothed time series, would reveal the phenological changes of the riparian vegetation20, 
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21 , thus allowing areas with saltcedar to be differentiated from other vegetation types. Since 

the HANTS algorithm preserves most of the phenological information embedded in the data, 

forehand knowledge of the study area’s plant phenology may be unnecessary, if the phenology 

signal is sufficiently strong.  

2 Methods 

2.1 Description of the Study Area 

The study area (Fig. 1) encompasses the riparian region of Bosque del Apache National 

Wildlife Refuge (NWR) located in central New Mexico, U.S.A. The total area of the Bosque 

del Apache NWR is about 23,162 ha of which 3,440 ha are in the floodplain22. The riparian 

portion of Bosque del Apache NWR studied is approximately 1,600 ha. To the northwest are 

the Chupadera Mountains and to the southeast are the Little San Pascual Mountains. The Rio 

Grande runs through the Refuge and is bordered by riparian vegetation. The terrain ranges 

from flat lands by the river floodplain to the mountainous land. The elevation of the flood plain 

averages 1370 m above sea level (North American Datum of 1927, NAD 27). 

The area’s climate is typical of the semiarid region of the southwestern United States. 

Bawazir,23 using climate data of the area from 1948 through 1992, reported mean annual total 

precipitation of 223 mm,  mean maximum temperature for June, July and August of 34.62 oC, 

35.11 oC and 33.63 oC, respectively, and mean minimum temperature of -6.34 oC and -6.37 oC 

for January and December. 

The vegetation at the Bosque del Apache NWR is well described by Taylor and McDaniel.22  

The riparian vegetation primarily included mixed saltcedar/bosque and homogenous thickets of 

saltcedar (Tamarix spp.) and cottonwood (Populus fremontii).  The vegetation species include 
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black willow (Salix nigra), coyote willow (Saliz exigua), seepwillow (Baccharis glutinosa), 

false indigo (Amorpha fruticosa), screwbean mesquite (Prosopis pubescens), wolfberry 

(Lycium andersonii), fourwing saltbush (Atriplex canescens), Russian olive (Elaeagnus 

angustifolia), and other sporadic understory weeds. 

 

 

Fig. 1 Bosque del Apache National Wildlife Refuge (NWR) and riparian study area. 
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2.2 Datasets 

The Bosque del Apache NWR is located in a region that is overlapped by two Landsat paths, 

so that Landsat-5 TM satellite data from Path 34 Row 36 and Path 33 Row 37 were used. Since 

the east and west edges of Landsat-7 data (where the Bosque del Apache NWR is located) 

were most affected by the failure of the scan line corrector in 2003, Landsat-7 imagery was not 

used for this study. There were 30 cloud-free Landsat-5 TM images ranging from November 

1999 to April 2001 for the first period, and 42 cloud-free images ranging from November 2009 

to May 2011 for the second period of the HANTS based trials. 

A smaller series of four cloud-free Landsat images from December 2000 to August 2001 and 

from December 2010 to August 2011 were used for the multi-spectral trials (Table 1). The 

images were selected to reflect the declining, minimum, rising, and maximum phases of the 

annual NDVI cycle (See Table 1), which relate to the overall green vegetation phenological 

cycle. The minimum NDVI values generally coincide with the dormant phase, and the 

declining and rising NDVI values correspond to senescence in the fall and greening of the 

vegetation in the spring. The maximum NDVI values indicate when the riparian area 

vegetation has maximum green leaf coverage. The phases were identified using the maximum 

study area NDVI values from the NDVI series derived from the HANTS based trials. The dates 

were specifically selected to use the last data available before the termination of the Landsat-5 

program in 2011. The HANTS data for a preliminary study originally covered the same time 

frame; however, it was later decided that an entire growing season starting with the lowest 

NDVI values in early spring would be beneficial. Therefore the Landsat data for the HANTS 

algorithm based trials was extended backwards in time approximately one year. 
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Table 1 Dates of the selected Landsat data subsets as related to the NDVI cycle. 

Series Declining Minimum Rising Maximum 

2000 - 2001 12/18/2000 02/04/2001 03/24/2001 08/24/2001 

2010 - 2011 12/14/2010 02/16/2011 03/29/2011 08/27/2011 

 

U.S. Bureau of Reclamation (BOR) land-cover classification maps for 2002 and 2008 and 

digital ortho quarter quadrangles (DOQQ) aerial imagery with one-meter spatial resolution for 

years 1996, 2005, and 2011 were used to help select training and assessment points. A 

Garmin® GPSMAP® 60Cx handheld global positioning system (GPS) unit was used to collect 

coordinate data on saltcedar, cottonwood, and willow stands in June 2012. 

The North American Regional Reanalysis24 (NARR) dataset was used with the North 

American Atmospheric Correction Calculator25 (NAMCORR) atmospheric correction 

parameter calculator to reduce distortion of Landsat thermal band imagery caused by the 

atmosphere. The NARR data cover North America with a 32-kilometer spatial resolution and a 

three-hour temporal resolution.26 

2.3 Classification – Selected Imagery 

Two methods were investigated for classifying areas with saltcedar in 2010 - 2011, which were 

then repeated for the period 2000 - 2001. The first method was based on stacking the reflective 

Landsat-5 bands with products derived from the Landsat imagery (see below). The second 

method used the HANTS algorithm to calculate adjusted time series images based on NDVI 

layers derived from Landsat imagery.  
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In the first method, the reflective Landsat bands were combined with products derived from the 

four selected Landsat datasets. Different stack combinations included some or all of the 

following: 

 Radiometrically corrected Landsat reflective bands 1 – 5 and 7 

 Contrast Texture data calculated for each of the radiometrically corrected 

Landsat reflective bands using a 3 by 3 pixel window 

 Land Surface Temperature (LST) data derived from the Landsat thermal 

infrared (TIR) band 6 

 Tasseled Cap data derived from the Landsat imagery 

 

Although the Tasseled Cap data contain the same spectral information as the reflectance bands, 

preliminary investigation showed that combining the two types of data often increased 

classification accuracy. Images from approximately the same time of the year were selected to 

provide consistency between 2000 – 2001 and 2010 – 2011 trials (Table 1). The ENVI 

FLAASH MODULE™ (an add-on that can be purchased for the ENVI™ software package) 

was used to convert the satellite sensor radiance to a surface reflectance for all of the Landsat 

TM bands except the TIR band. LST can reveal areas with cooler surfaces (e.g., shaded areas) 

and possibly variations in temperature caused by different rates of evapotranspiration between 

plant species. Although TIR surface radiance will provide similar information as LST, 

conversion from surface radiance to LST is simple and LST is easier to understand. 

Texture refers to the spatial distribution of tonal variations within an image (e.g., in a Landsat 

band).27 This study used the grey level co-occurrence matrix to calculate the contrast texture. 

Texture information is most useful when a land-cover class has a unique texture: For example, 
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a stand of trees with uniform canopy height, water features, or an agricultural field;28 saltcedar 

can form dense stands with near uniform height, so texture may be an additional characteristic 

that can help with its identification. 

The land surface temperature (LST) was derived from the TIR band (band 6) of the Landsat 

data using three steps. The first step was to convert the dataset digital numbers to at-sensor 

radiance. The second step was to convert the Top of Atmosphere (TOA) radiance to surface 

radiance using atmospheric correction factors. The final step was to convert the surface 

radiance to LST. In the first step, the digital numbers comprising the Landsat TIR data were 

converted to the at-sensor radiance using:29 

 
(1) 

where ܮఒ
௧ି௦௦ is the at-sensor radiance (W∙m-2∙sr-1∙µm-1), Qcal is the quantized calibrated 

pixel value, Qcalmin is the minimum quantized calibrated pixel value corresponding to LMINA, 

Qcalmax is the maximum quantized calibrated pixel value corresponding to LMAXA, LMINA is 

the spectral at-sensor radiance that is scaled to Qcalmin (W∙m-2∙sr-1∙µm-1), and LMAXA is the 

spectral at-sensor radiance that is scaled to Qcalmax (W∙m-2∙sr-1∙µm-1). 

For the second step, the NAMCORR atmospheric correction parameter calculator was used to 

derive parameters for upwelling radiance, downwelling radiance, and transmissivity. The 

NARR data used for the NAMCORR calculations was obtained for the nearest data point 

southwest of the study area. Not only was this the closest data point, it is also located in a 

riparian area similar to the study area. Once the correction parameters are obtained, they can be 

ߣܮ
ݎݏ݊݁ݏെݐܽ ൌ ൬

ܣܯܮ ܣܺ െ	ܫܯܮ ܣܰ

ݔ݈ܽ݉ܽܿܳ െ	݈ܳܿܽ݉݅݊
൰ ሺ݈ܳܿܽ െ	݈ܳܿܽ݉݅݊ ሻ 	ܫܯܮ  ܣܰ
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used to convert the TOA radiance to surface radiance. The equation used for converting TOA 

radiance to surface radiance is:30 

ߣܮ 
ܣܱܶ ൌ ߣ߬ ቂߣܮߣߝ  ሺ1 െ ߣܮሻߣߝ

ቃ↓݉ݐܽ  ߣܮ
 (2) ↑݉ݐܽ

which can be rearranged as:  

 
ߣܮ ൌ

1
ߣߝ

ߣܮ
ܣܱܶ െ ߣܮ

↑݉ݐܽ

ߣ߬
െ ሺ1 െ ߣܮሻߣߝ

 ൩ (3)↓݉ݐܽ

where ܮఒ is the surface radiance (W m-2 sr-1 µm-1), ߝఒ is the emissivity of the surface object 

(unitless), ߬ఒ is the atmospheric transmittance (decimal percent), ܮఒ
்ை is the TOA radiance (W 

m-2 sr-1 µm-1), ܮఒ
௧↑ is the upwelling atmospheric radiance (W m-2 sr-1 µm-1), and ܮఒ

௧↓ is the 

downwelling atmospheric radiance (W m-2 sr-1 µm-1). This equation depends on using the 

correct value for emissivity. Unfortunately, Landsat-5 data do not provide enough information 

to derive both ߝఒ and LST, so other solutions are required.31 Some methods assume a 

relationship between the leaf area index (LAI) and the surface emissivity32 with assumed 

emissivity value of 0.98 for areas where the LAI is greater than 3.0. For this investigation, 

nearly year-round vegetation cover with LAI values greater than 3.0 was assumed for the 

riparian area; therefore, the corresponding emissivity value of 0.98 was used. 

The final step in the conversion process is to convert the surface radiance to LST. The Landsat 

specific approximation of the Planck function used to convert radiance values to LST is 

expressed as: 

 
ܶ ൌ

݇2

ln ൬݇1ߣܮ
 1൰

 (4) 
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where T is the temperature in Kelvin, ݇ଵ and ݇ଶ are Landsat calibration constants, and ܮఒ is the 

spectral radiance.28, 29
 

 

Initial pre-trials revealed the importance of having accurate training data for the classification 

process. To select the best training points, four main types of information were used: BOR 

land-cover classification maps, orthophotos, manually collected field data, and spectral profiles 

extracted from the Landsat data. The goal was to determine (1) which areas were exclusively 

saltcedar, and (2) which areas had either no saltcedar or a combination of saltcedar and another 

land-cover type. One heuristic commonly used to determine the number of training points is to 

select between 10 and 30 training points per class and map layer used in the classification 

process.33 Using a full stack of 64 layers and 2 classes would require a minimum of 1280 

training points, which is unrealistic for this study area (64 layers ×10 training points per layer 

per class × 2 classes = 1280 training points). A study comparing classification results for a 

binary classification scheme (cotton vs. not cotton) found that using 70 training points gave 

just as good results as using 450 training points.34 As a compromise, 100 training points per 

class were initially selected for a total of 200 training points. 

Preliminary classifications revealed that a number of agricultural and rangeland areas adjacent 

to the study area were misclassified as saltcedar. Although these areas were outside the study 

area, they were included in the classification process because using a rectangular 

computational area simplifies the data processing and classification steps. The relevant 

classification results for the irregularly shaped riparian study area were later extracted from the 

rectangular area for the final analysis. Additional training data were added to reduce the 

misclassification of agricultural and rangeland areas in the larger rectangular area, based on the 

assumption that the classification for the study area would also be improved. Sixty more 
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training points per class were added for a total of 320 training points (2 classes × (100 training 

point + 60 additional training points) = 320 training points). 

The BOR land-cover classification maps were used to identify areas that could be used to 

collect field data. The selected sites were visited and the coordinates for areas with various 

combinations of saltcedar and other vegetation were recorded using a handheld Garmin® 60Cx 

GPS unit. The GPS data were plotted on the orthophotos and BOR maps using ESRI® 

ArcMap™. The majority of the training points were selected based on the GPS data because 

the land-cover type for these areas was known. After learning how different land-cover types 

appeared in the orthophotos, training data for unvisited areas were added. This method made it 

possible to include training data for some areas that were inaccessible. 

The six reflective Landsat bands for the four seasons in a series were stacked and the spectral 

profile for each training point was extracted. When the profiles for a point did not match the 

spectral profiles for the majority of the points in the same class, that point was replaced with a 

new training point judged to be more representative of the class. This exercise was used to 

refine all the saltcedar training data. It did not work with the non-saltcedar training data 

because the spectral profiles for the different land covers were too variable to interpret. Thus, 

some data representing saltcedar may have inadvertently been included with the non-saltcedar 

training data. 

For the classification methods tested, profiles comprising various combinations of previously 

described 64 layers were used (Table 2). There is a tendency to assume that the more 

information that is used, the better the classification results will be. However, sometimes just a 

few layers are sufficient to provide the desired information35. 
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Table 2 Classification combinations and the number of layers 

 Classification Layer Combinations 

Layers A B C D E F G H 

Spring Reflective 6 6 6 6 6 6 6 6 
Spring Reflective Texture 6  6 6     
Summer Reflective 6 6 6 6 6 6 6 6 
Summer Reflective Texture 6  6 6     
Fall Reflective 6 6 6 6 6 6 6 6 
Fall Reflective Texture 6  6 6     
Winter Reflective 6 6  6  6   
Winter Reflective Texture 6   6     

Spring LST 1 1 1  1    
Summer LST 1 1 1  1    
Fall LST 1 1 1  1    
Winter LST 1 1       

Spring Tasseled Cap 3 3 3 3 3 3 3  
Summer Tasseled Cap 3 3 3 3 3 3 3  
Fall Tasseled Cap 3 3 3 3 3 3 3  
Winter Tasseled Cap 3 3  3  3   

Total layers 64 40 48 60 30 36 27 18 

Combination Description 

A All layers 

B No Texture 

C No Winter 

D No LST 

E No Texture or Winter 

F No Texture or LST 

G No texture, Winter, or LST 

H Spring, summer, and fall, reflective bands only 
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All the classifications were performed using ENVI™ software (ENVI™ 4.8). Support Vector 

Machine (SVM), and Neural Networks (NN) classification methods were used for this study. 

To minimize the number of choices necessary to perform the SVM classification, the default 

radial basis function kernel type was used. The default gamma in kernel function (calculated 

internally by the ENVI™ software based on the number of layers used) and the default penalty 

parameter of 100 were used. For the NN classification, the default logistic activation method, 

the training threshold contribution (0.9), and the default training momentum (0.9) settings were 

used. The training rate was changed from 0.2 to 0.01 and the number of hidden layers from one 

to three because pre-trials indicated that this combination often produced higher accuracies. 

2.4 Classification - HANTS Algorithm 

The HANTS algorithm was applied to NDVI data because it has been observed that NDVI can 

be used to derive the phenological path of plants, and from this, one can determine plant 

types.19 NDVI is calculated from Landsat data using: 

ܫܸܦܰ  ൌ
ܦܧܴߩ	െ	ܴܫܰߩ
ܴܫܰߩ  ܦܧܴߩ

 (5) 

where ߩேூோ is the near infrared (NIR) band reflectance value, and ߩோா is the red (RED) band 

reflectance value. The NDVI values range from negative one to positive one, with the highest 

positive numbers being associated with dense green vegetation and the lower positive numbers 

being associated with drier, less dense vegetation. Negative numbers are associated with light 

colored or reflective surfaces such as snow and bare soil.34 This study used a series of NDVI 

images to classify saltcedar. 
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All the Landsat-5 TM satellite data that did not have obvious cloud cover obscuring the study 

area from Path 34 Row 36 and Path 33 Row 37 for the relevant time periods were downloaded 

from the Internet.36 An interactive data language (IDL) program was written to process the 

large number of files. The IDL program subsetted the red and near infrared (NIR) Landsat 

bands (Landsat-5 bands 3 and 4) to a rectangular computational area surrounding the riparian 

study area. For the HANTS algorithm classification, a simple conversion to TOA reflectance 

was used prior to calculating NDVI. This makes the method accessible to agencies that may 

not have the tools for converting satellite sensor radiance to a surface reflectance. Each Landsat 

band´s digital number (DN) values were converted to sensor radiance using the bias and gain 

factors for a specific band provided in the Landsat metadata using:28 

ߣܮ  	ൌ 	ܰܦ	 ∗ 	݃ܽ݅݊	   (6) ݏܾܽ݅	

where Lλ is the sensor radiance (W m-2 sr-1 µm-1), and DN is the band’s digital number. The 

bands were then calibrated to TOA reflectance using the earth–sun distance and the sun 

elevation angle provided in the Landsat metadata using: 

 
	௧ܣܱܶ 	ൌ 	

ߨ ∗ ߣܮ ∗ ݀ଶ

ܷܵܧ ߣܰ ∗ sin	ሺ݊ݑݏ	݊݅ݐܽݒ݈݁݁	݈ܽ݊݃݁ሻ
 (7) 

where π is ≈ 3.14159, Lλ is the sensor radiance (W m-2 sr-1 µm-1), d is the earth–sun distance 

(astronomical units), and  ESUNλ is the mean exoatmospheric solar irradiance (W m-2 µm-1). In 

the final step of the IDL program, the NDVI values were calculated.  

The normalized NDVI values from negative one to positive one were re-scaled to values 

between 0 and 2,000 to facilitate the interpretation of the HANTS results. The resulting NDVI 

images were manually inspected and images with previously undetected cloud cover or 
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alignment problems were rejected. The process left 30 NDVI images for the 2000 - 2001 

period and 42 NDVI images for the 2010 – 2011 period. 

Several time series and parameter combinations were compared for the HANTS algorithm 

based classifications (Table 3). The starting dates for the one-year series begin with the 

Landsat scene where the maximum NDVI values are at the lowest part of the annual cycle 

(Day 0 = 2/2/2000 and Day 0 = 2/13/2010). An extended NDVI series (Fig. 2) that captured the 

declining NDVI values from the preceding cycle and the rising NDVI values from the 

following cycle was also tested (11/14/1999 – 4/18/2001; 11/18/2009 – 5/8/2011). 

 

To maintain correspondence with the HANTS software naming conventions, in the following 

text “pif” refers to the HANTS input NDVI data, “pof” refers to the HANTS output containing 

the calculated amplitude and phase values, and “psf” refers to the HANTS output containing 

the calculated smoothed NDVI values. For this investigation, the one-year NDVI series and the 

extended NDVI series were further subdivided into tests with different numbers of frequencies 

(i.e., the one-year base frequency and the first harmonics of the base frequency). One set of 

tests used curves derived by combining the base frequency and the first two harmonics (3 

frequencies total) and another set of tests used curves derived by combining the base frequency 

and the first four harmonics (5 frequencies total). For each set of tests HANTS produced the 

amplitude and phase (pof) images for each frequency, and based on the selected starting date, 

ending date, and interval, HANTS produced a smoothed NDVI time series reconstruction (psf). 

For this study, a reconstructed series of images for 365 days at five-day intervals was selected 

(365 days / 5 days per interval = 74 reconstructed images). 
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Table 3 HANTS parameters classification matrix. 

 Layer Combinations Year #layers FETa Frequency Db DFc DODd 

HANTS 24 pif 2000/2001 24 20 - - - - 

HANTS FET20 5F 24 pof 2000/2001 24 20 5 11 6 7 

HANTS FET20 5F 24 psf 2000/2001 24 20 5 11 6 7 

HANTS FET20 3F 24 pof 2000/2001 24 20 3 7 6 11 

HANTS FET20 3F 24 psf 2000/2001 24 20 3 7 6 11 

HANTS 30 pif 2000/2001 30 20 - - - - 

HANTS FET20 5F 30 pof 2000/2001 30 20 5 11 6 13 

HANTS FET20 5F 30 psf 2000/2001 30 20 5 11 6 13 

HANTS FET20 3F 30 pof 2000/2001 30 20 3 7 6 17 

HANTS FET20 3F 30 psf 2000/2001 30 20 3 7 6 17 

HANTS 30 pif 2010/2011 30 20 - - - - 

HANTS FET20 5F 30 pof 2010/2011 30 20 5 11 6 13 

HANTS FET20 5F 30 psf 2010/2011 30 20 5 11 6 13 

HANTS FET20 3F 30 pof 2010/2011 30 20 3 7 6 17 

HANTS FET20 3F 30 psf 2010/2011 30 20 3 7 6 17 

HANTS 42 pif 2010/2011 42 20 - - - - 

HANTS FET20 5F 42 pof 2010/2011 42 20 5 11 6 25 

HANTS FET20 5F 42 psf 2010/2011 42 20 5 11 6 25 

HANTS FET20 3F 42 pof 2010/2011 42 20 3 7 6 29 

HANTS FET20 3F 42 psf 2010/2011 42 20 3 7 6 29 
a Fit Error Tolerance (FET) is the absolute deviation allowable in curve fitting 
b D equals two times the number of frequencies plus one 
c Degrees of Freedom (DF) equals #layers – (D + DOD), maximum number of samples that can be eliminated in curve fitting 
d Degrees of Over Determinedness (DOD) 

 

For each period (2000 – 2001 and 2010 – 2011), the SVM and NN classifiers were used. The 

classifications were run on the stacked NDVI images as a control (i.e., pif layer combinations). 

The classifications were repeated using both the stacked amplitude and phase images (i.e., pof 

layer combinations), and the smoothed time series (i.e., psf layer combinations). In summary, 

two different frequencies combinations (3 and 5) and two different series (a one-year cycle; 

and an extended cycle) were run. 
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Fig. 2 Highest NDVI value per Landsat scene. One-year NDVI cycle begins Day 0. The extended NDVI 
series includes falling (Day < 0) NDVI values from the preceding cycle and rising (Day > 365) 
NDVI values from the following cycle; data series for years 1999 –2001 and 2009 – 2011. 

 

2.5 Accuracy Assessment 

The binomial distribution was used to determine how many data points were needed for the 

accuracy assessment. This distribution is valid for use with land-cover classification maps that 

only have two classes.37, 38 The number of points is calculated using: 

 

 ܰ ൌ
ݍ2ܼ

2ܧ
 (8) 

 

where N is the number of reference points required, Z is the standard score based on the 

selected confidence interval, p is the expected accuracy, ݍ ൌ 1 െ  and E is the allowable ,

error. The expected overall accuracy p was set to 85%, which was considered the lowest 
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acceptable accuracy for this study. For this level of accuracy, the accuracies were expected to 

vary by at least 5%, so this was used as the allowable error. Using a 95 percent two-sided 

confidence probability, the binomial distribution indicated that 204 reference points were 

needed for the accuracy assessment. This was rounded down to 200 points to make it easier to 

compare the results of the various accuracy assessments. 

A statistically valid method for selecting the reference points was also needed. The best 

method would be to select 200 points randomly; however, the saltcedar stands might not be 

adequately represented using this method. To ensure that saltcedar was included, the stratified 

random method was used and 100 points were randomly selected to represent the saltcedar 

class, and 100 points were randomly selected to represent the non-saltcedar class. The best 

initial information concerning the location of saltcedar stands was the BOR landcover maps. 

The BOR maps and ArcGIS™ were used to locate areas that were classified as saltcedar only. 

Only areas classified as saltcedar in both the 2002 and 2008 BOR landcover maps were used to 

increase the likelihood that there were areas with only saltcedar among the randomly selected 

points. 

A tool in ArcGIS™ was used to assign randomly 100 points to the areas designated as 

saltcedar only, and to randomly assign the remaining 100 points to the other areas. The other 

areas could be any land-cover type, ranging from areas with no saltcedar to area with saltcedar 

mixed in with some other land-cover type. It was necessary to check each reference point 

manually to verify the point was in the correct class. Each point was visually compared to its 

location in the orthophotos and the point’s spectral profile was compared to the saltcedar 

profiles previously generated from the training data. If these comparisons did not match, the 

point was transferred to the correct class. 
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When the re-classification of the reference points was complete, the number of saltcedar 

reference points was less than 50% of the total number of reference points for both 

classification periods. Since the location of the saltcedar stands could vary from one 

classification period to the next, the verification process was performed for both classification 

periods. The same 200 points were re-used for each period to maintain some consistency 

between classifications; however, the ratio of saltcedar reference points to non-saltcedar points 

varied between classification periods. 

3 Results and Discussion 

At Bosque del Apache NWR, the overall saltcedar prediction accuracies from 2000 – 2001 for 

the stacked data ranged from 88.0 to 91.0% (Table 4). The corresponding overall accuracies 

obtained using the HANTS algorithm ranged from 81.5 to 90.5%. The lowest accuracy for the 

stacked data was 71.19% for the producer’s accuracy and 50.85% for the HANTS algorithm 

producer’s accuracy. 

The 2000 – 2001 stacked data classification with the highest accuracy used the spring, summer, 

and fall reflective, LST, and Tasseled Cap layers (Combination E, Table 2) with the SVM 

classification method (Fig. 3(a)). The saltcedar producer’s accuracy was 81.36%, and the 

user’s accuracy was 87.27%. The producer’s accuracy for areas other than saltcedar was 

95.04% and the user’s accuracy was 92.41%. The overall accuracy was 91.0%. The 

corresponding HANTS classification with the highest saltcedar producer’s accuracy used 5 

frequencies and a smoothed time series (psf) based on the extended NDVI series (30 NDVI 

datasets) with the NN classification method (Fig. 3(b)).  The saltcedar producer’s accuracy was 
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79.66%, and the user’s accuracy was 81.03%. The producer’s accuracy for areas other than 

saltcedar was 92.20% and the user’s accuracy was 91.55%. The overall accuracy was 88.5%. 

The overall accuracies from 2010 – 2011 for the stacked data ranged from 88.0 to 89.0% 

(Table 5). The corresponding overall accuracies obtained using the HANTS algorithm ranged 

from 77.5 to 85.0%. The lowest accuracy for the stacked data was 72.84% for the producer’s 

accuracy and 45.68% for the HANTS algorithm producer’s accuracy. 

The 2010 – 2011 stacked data classification with the highest accuracy used the spring, summer, 

and fall reflective, LST, and Tasseled Cap layers (Combination E, Table 2) with the SVM 

classification method (Fig. 3(c)).  The saltcedar producer’s accuracy was 83.95%, and the 

user’s accuracy was 88.31%. The producer’s accuracy for areas other than saltcedar was 

92.44% and the user’s accuracy was 89.43%. The overall accuracy was 89.0%. The 

corresponding HANTS classification used 5 frequencies and the stacked amplitude and phase 

images (pof) based on the extended NDVI series (42 NDVI datasets) with the NN 

classification method (Fig. 3(d)).  The saltcedar producer’s accuracy was 81.48%, and the 

user’s accuracy was 81.48%. The producer’s accuracy for areas other than saltcedar was 

87.39% and the user’s accuracy was 87.39%. The overall accuracy was 85.0%. 

The results indicate that not all the stacked layers were necessary. Including the texture layers 

and winter layers actually reduced the accuracy. The fact that the most accurate stacked data 

classifications for both 2000 – 2001 and 2010 - 2011 used the same layers and classification 

algorithm is a coincidence. A previous investigation at the same study area using four time 

series found that the layer combination and classification algorithm with the best accuracy 

varied over time.39 In one case, a simple stack of the reflective bands gave the best accuracy 
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and in most cases the NN algorithm produced higher accuracies than the SVM algorithm. 

However, this study is focused on comparing the stacked method with the HANTS algorithm 

method. 

In both cases, the combination of parameters and classification algorithms that produced the 

highest accuracy was found through trial and error. This investigation revealed that the range 

of accuracies varied more for the HANTS trials. It also demonstrated that the extended NDVI 

series produced better accuracies than the one-year cycle. If a study is to be repeated for a 

given area, a sensitivity analysis to determine which parameters affect the accuracies most 

could be performed. The entire classification process could also be automated to test a larger 

number of parameter combinations, which could result in higher accuracies. However high the 

accuracies are, the results must reflect reality and not just a set of reference data. 
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Table 4 Bosque del Apache National Wildlife Refuge (NWR) riparian area - saltcedar classification accuracy in percent (2000-2001). 

 saltcedar Other  

 Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy Overall Accuracy 

Layer Combinations SVM NN SVM NN SVM NN SVM NN SVM NN 

All layers + NDVI 71.19 81.36 89.36 84.21 96.45 93.62 88.89 92.31 89.0 90.0 

All layers 69.49 74.58 87.23 89.80 95.74 96.45 88.24 90.07 88.0 90.0 

No Texture 67.80 74.58 88.89 86.27 96.45 95.04 87.74 89.93 88.0 89.0 

No Winter 72.88 79.66 84.31 81.03 94.33 92.20 89.26 91.55 88.0 88.5 

No Temperature 88.14 79.66 76.47 83.93 88.65 93.62 94.70 91.67 88.5 89.5 

No Texture or Winter 81.36 79.66 87.27 88.68 95.04 95.74 92.41 91.84 91.0 91.0 

No Texture or  Temperature 84.75 77.97 83.33 83.64 92.91 93.62 93.57 91.03 90.5 89.0 

No Texture, Winter, or  
Temperature 

83.05 79.66 80.33 88.68 91.49 95.74 92.81 91.84 89.0 91.0 

3 Seasons, Landsat bands only 84.75 79.66 80.65 88.68 91.49 95.74 93.48 91.84 89.5 91.0 

 SVM NN SVM NN SVM NN SVM NN SVM NN 

HANTS 30 pif 69.49 71.19 89.13 95.45 96.45 98.58 88.31 89.10 88.5 90.5 

HANTS FET20 5F 30 pof 72.88 74.58 86.00 89.80 95.04 96.45 89.33 90.07 88.5 90.0 

HANTS FET20 5F 30 psf 50.85 79.66 85.71 81.03 96.45 92.20 82.42 91.55 83.0 88.5 

HANTS FET20 3F 30 pof 50.85 71.19 78.95 77.78 94.33 91.49 82.10 88.36 81.5 85.5 

HANTS FET20 3F 30 psf 52.54 74.58 86.11 81.48 96.45 92.91 82.93 89.73 83.5 87.5 

HANTS 24 pif 69.49 71.19 93.18 89.36 97.87 96.45 88.46 88.89 89.5 89.0 

HANTS FET20 5F 24 pof 61.02 69.49 73.47 89.13 90.78 96.45 84.77 88.31 82.0 88.5 

HANTS FET20 5F 24 psf 45.76 67.80 87.10 86.96 97.16 95.74 81.07 87.96 82.0 87.5 

HANTS FET20 3F 24 pof 64.41 71.19 82.61 80.77 94.33 92.91 86.36 88.51 85.5 86.5 

HANTS FET20 3F 24 psf 50.85 71.19 78.95 77.78 94.33 91.49 82.10 88.36 81.5 85.5 
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Table 5 Bosque del Apache riparian area - saltcedar classification accuracy in percent (2010-2011). 

 saltcedar Not saltcedar  

 Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy Overall Accuracy 

Layer Combinations SVM NN SVM NN SVM NN SVM NN SVM NN 

All layers + NDVI 79.01 87.65 88.89 74.74 93.28 79.83 86.72 90.48 87.5 83.0 

All layers 81.48 82.72 86.84 76.14 91.60 82.35 87.90 87.50 87.5 82.5 

No Texture 82.72 91.36 85.90 75.51 90.76 79.83 88.52 93.14 87.5 84.5 

No Winter 76.54 74.07 87.32 80.00 92.44 87.39 85.27 83.20 86.0 82.0 

No Temperature 76.54 87.65 88.57 74.74 93.28 79.83 85.38 90.48 86.5 83.0 

No Texture or Winter 83.95 82.72 88.31 75.28 92.44 81.51 89.43 87.39 89.0 82.0 

No Texture or  Temperature 85.19 88.89 83.13 77.42 88.24 82.35 89.74 91.59 87.0 85.0 

No Temperature or Winter 74.07 79.01 88.24 73.56 93.28 80.67 84.09 84.96 85.5 80.0 

No Texture, Winter, or  
Temperature 

82.72 72.84 84.81 83.10 89.92 89.92 88.43 82.95 87.0 83.0 

3 Seasons, Landsat bands only 82.72 76.54 83.75 77.50 89.08 84.87 88.33 84.17 86.5 81.5 

 SVM NN SVM NN SVM NN SVM NN SVM NN 

HANTS 42 pif 64.20 45.68 83.87 94.87 91.60 98.32 78.99 72.67 80.5 77.0 

HANTS FET20 5F 42 pof 76.54 81.48 75.61 81.48 83.19 87.39 83.90 87.39 80.5 85.0 

HANTS FET20 5F 42 psf 67.90 80.25 82.09 74.71 89.92 81.51 80.45 85.84 81.0 81.0 

HANTS FET20 3F 42 pof 80.25 93.83 71.43 67.26 78.15 68.91 85.32 94.25 79.0 79.0 

HANTS FET20 3F 42 psf 67.90 46.91 78.57 76.00 87.39 89.92 80.00 71.33 79.5 72.5 

HANTS 30 pif 62.96 51.85 82.26 95.45 90.76 98.32 78.26 75.00 79.5 79.5 

HANTS FET20 5F 30 pof 72.84 90.12 72.84 69.52 81.51 73.11 81.51 91.58 78.0 80.0 

HANTS FET20 5F 30 psf 64.20 54.32 76.47 80.00 86.55 90.76 78.03 74.48 77.5 76.0 

HANTS FET20 3F 30 pof 66.67 79.01 78.26 73.56 87.39 80.67 79.39 84.96 79.0 80.0 

HANTS FET20 3F 30 psf 62.96 92.59 80.95 71.12 89.92 75.63 78.10 93.75 79.0 82.5 
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(a) (b) (c) (d) 

Fig. 3 Riparian area saltcedar classification results with the highest accuracies: (a) 2000-2001 Stacked, (b) 2000-2001 HANTS, (c) 2010-2011 
Stacked, (d) 2010-2011 HANTS. Areas classified as saltcedar are shown in black. Arrows indicate areas where saltcedar eradication measures 
were implemented. 
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Comparing the mapped classification results for the stacked data and the mapped 

classification results for the HANTS algorithm with the highest accuracies shows that the two 

methods can produce similar results (Fig. 3). Both the stacked data and HANTS algorithm 

methods show that in 2000 – 2001 saltcedar already dominated large areas in the southern 

half of the riparian area. Both methods also show the results of saltcedar eradication efforts 

(arrows in Fig. 3(c) and Fig. 3(d)) and the expansion of the saltcedar in the northern half of 

the riparian area between 2000 and 2010. The agreement between the two methods is best 

where saltcedar forms dense, continuous, and homogenous stands. There is more variation in 

the classification results where saltcedar borders areas with other vegetation types or where 

there are mixed pixels (i.e., where saltcedar is spreading to areas with other types of 

vegetation). The results indicate that both methods provide useful information for land 

managers. 

The tabulated accuracy results (Tables 4 and 5) reveal that the accuracy of a particular 

method and dataset can vary from year to year. This is partly because the areas being 

classified often have similar characteristics. For example, areas dominated by saltcedar have 

similar NDVI values as the areas dominated by cottonwood. In some years, the area with the 

highest NDVI values can change from saltcedar to cottonwood over the course of the season 

as revealed by the output of the HANTS algorithm smoothed reconstruction (Fig. 4). This 

demonstrates the utility of using a variety of data sets and classification algorithms if the time 

and resources are available. This is especially important in riparian areas where the channels 

may change course over time and where drought and flood events can produce erratic 

changes over the course of a year. 
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2000 - 2001 

   
2010 - 2011 

Fig. 4 Example of NDVI data points (PIF) and smoothed time series lines (PSF) using the 
HANTS algorithm for saltcedar (SC) and cottonwood (CW) dominated areas. 

 

For both the HANTS based classification and the stacked layer classification, a number of 

trials were necessary to determine which combination of parameters or layers provide the 

highest accuracies. While the stacked layers provided somewhat higher classification 

1000

1200

1400

1600

1800

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

(N
D

V
I 

+
 1

) 
×

1
,0

0
0

Day

PIF SC

PIF CW

PSF SC

PSF CW

1000

1200

1400

1600

1800

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

(N
D

V
I 

+
 1

) 
×

1
,0

0
0

Day

PIF SC

PIF CW

PSF SC

PSF CW



27 
 

accuracies, the preparation of the layers is time consuming and may be beyond the skill level 

of some researchers. It also used atmospheric correction tools that may not be available to the 

researcher. The advantage of using the HANTS algorithm is that calculating the smoothed 

reconstruction is relatively rapid and easy to understand. The direct classification of the 

amplitude and phase data used to produce the smoothed reconstruction provides an additional 

path for classification with relatively little extra effort. What is interesting is that the HANTS 

algorithm-based classification method can use phenological information embedded in the 

data even when a researcher has no prior knowledge of the classified plant’s phenology. The 

smoothed reconstruction may even reveal important phenological information that is useful in 

itself. The disadvantage is that a large number of remote sensing datasets are required to 

obtain useful classification results as compared to the traditional method that only used four 

data sets per classification; however, there may be ways to overcome this disadvantage. 

Other satellite sensors exist with spectral and spatial resolution similar enough to the Landsat 

red and NIR bands that could be used to augment the Landsat data and data from new 

satellite sensors should be available in the near future. Using multiple satellite sensors is 

possible because the HANTS algorithm does not require the data to be spaced evenly over 

time. Also, this study specifically used cloud-free imagery even though this is not necessary. 

One significant advantage of the HANTS algorithm is that it can utilize imagery with some 

cloud cover. The HANTS algorithm parameters can be adjusted to remove the cloud 

contamination and the resulting smoothed reconstruction (and/or amplitude and phase data) 

can be used to perform the classification. 

Another advantage is that calculating NDVI is simple and the HANTS algorithm 

computations are relatively rapid such that the method can be performed using any computer 

hardware and software combination capable of manipulating and classifying satellite 

imagery. A researcher with programming skills could automate the entire process and 
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perform a large number of trials using different parameters to discover the combinations with 

the best accuracies. Future classification work using the HANTS algorithm could investigate 

other vegetation indices or any other data characteristic(s) (e.g., albedo, land surface 

temperature) that vary over space and time. 

4 Conclusion 

Remote sensing tools based on Landsat data can provide land managers with useful 

information about saltcedar expansion in riparian areas of the desert Southwest. Normally 

inaccessible areas can be evaluated without disturbing vulnerable wildlife or vegetation. This 

research shows traditional classification methods can be complemented or replaced entirely 

using the HANTS algorithm. The phenological changes revealed by the smoothed HANTS 

reconstruction of NDVI data can be used directly to classify areas with saltcedar, or the 

reconstruction can be used to aid the selection of data used with other classification methods. 

The HANTS algorithm software could also be incorporated in an automated classification 

processes to test a wide variety of frequencies and parameters, thus identifying combinations 

with the highest accuracies. The HANTS algorithm and the method described in this research 

provides a low cost (or no cost depending on the software selected) alternative to methods 

requiring more expensive software, and should be investigated by agencies with limited 

resources that need to perform similar classification and mapping tasks. 
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