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Problem  

Growing water demand and increasing contamination remain significant challenges 

worldwide. Current water treatment processes to remove organic contaminants such as membrane 

filtration, activated carbon adsorption, biological treatment, ozonation and advanced oxidation 

processes are typically energy and capital intensive. Photocatalysis is an attractive technology 

because it can use solar energy to degrade organics and inactivate pathogens [1-5]. In comparison 

to traditional oxidation processes, photocatalytic oxidation operates at ambient conditions without 

high temperature or high pressure, and many recalcitrant organic contaminants can be degraded 

without addition of chemical oxidants [6].  

It is critical to design highly efficient photocatalysts in order to enhance the utilization rate of 

solar energy and improve treatment efficiency. Among many different photocatalysts, TiO2 is the 

most widely studied and used in various applications. TiO2 exhibits several advantages as a 

photocatalyst such as strong oxidizing ability, excellent chemical stability, long durability, 

nontoxicity, water insolubility, superhydrophilicity, and low cost [1, 7]. When TiO2 particles 

absorb the ultraviolet (UV) light with energy greater than the band gap of the metal oxide, 

electrons and holes are generated in the conduction and valence bands, respectively. The 

photogenerated holes in the valence band diffuse to the metal oxide surface and oxidize the water 

molecules into hydroxyl radicals (HO•), then oxidize nearby organic molecules on the metal 

oxide surface. Meanwhile, electrons in the conduction band react with the molecular oxygen to 

produce superoxide radical anions (O2•-). Solar powered TiO2 photocatalysis has emerged as an 

energy neutral technique for water purification and pollution control [1, 7-12]. 

However, due to large band gap and low quantum yield, TiO2 can absorb only UV light and 

is limited as a sunlight-driven photocatalyst [13]. Intense efforts have been undertaken to improve 

the light utilization efficiency of TiO2, such as doping through incorporation or decoration with 

metal ions, nonmetal ions, and semiconductors [14-17].  

Traditional photoreactors are mainly heterogeneous slurry systems with suspended catalysts 

[4, 18]. However, these photoreactors are mostly limited to laboratory study due to low light 

utilization efficiency, loss of photocatalysts, and difficulty and high cost for separation of 

photocatalyst particles from aqueous solutions [16]. Thus, an ideal photocatalytic system should 

be able to recover catalysts from treated water easily, and reduce the light loss from liquid 

absorption and catalyst particles scattering.  

Several immobilized photocatalytic systems have been designed over the last few years, such 

as TiO2-coated glass-beads [12], TiO2-loaded membrane filters [4], internally illuminated 

monolith reactor with TiO2 coated on the wall [19], and TiO2-loaded zeolite [20]. However, most 
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wastewater is not transparent and light cannot transmit through the entire water depth, thereby 

limiting photoreactor size. Photoreactors with catalyst-coated optical fibers can solve the light 

transmission problem. Optical fibers have been considered excellent media for light transmission 

and photocatalysts support [21-25]. Light can directly reach the photocatalysts through optical 

fibers instead of passing through the reaction medium, thus reducing light loss and increasing 

light utilization efficiency [16]. Photoreactors with catalyst-coated optical fibers have been 

demonstrated to improve photocatalytic activity compared to conventional photoreactors [11, 16, 

26-31]. For example, the TiO2 coating on fused-silica fibers improved the amount of 

photogenerated H2O2 along with the degradation of contaminants with regards to total organic 

carbon, ethylene, and dye, with no loss of catalysts [32-35]. Under a UV light source, a new water 

treatment system which consisted of an electrochemical oxidation unit and a photoreactor with 

TiO2 coated optical fibers was able to wet-incinerate large amounts of chemical and biological 

contaminants in river water samples [36]. However, there is lack of systematic study investigating 

SOFs coated with nanocomposite photocatalyst thin films for both UV and visible light 

applications. 

 

Objectives  

The objective of the proposed work is to develop highly effective photocatalysts and 

investigate their photocatalytic performance using innovative photoreactor with optical fiber 

coated with nanocomposite photocatalysts for degrading organic contaminants in water, and 

disinfecting water under UV, visible, and natural sunlight.  

 

 

Methodology 

(1) Design, synthesize, and characterize optical fibers coated with metal oxide nanocomposite 

films to produce new functionalities and to improve the quantum yield.  

Polymer assisted hydrothermal deposition (PAHD) method, which has been developed by 

our research team, is used to coat the catalyst films onto side-glowing optical fibers (SOFs). A 

metal complex solution was prepared and followed by a heating process. This method provides a 

cost-effective and straightforward preparation of composites by a simple mixing of the solutions, 

precise control of the stoichiometry, and easy adjustment of film thickness.  

The structure and morphology of the catalyst-coated SOFs was characterized by transmission 

electron microscope (TEM) and scanning electron microscope (SEM). The elements and their 

ionic states in the surface of catalyst films were measured by energy-dispersive X-ray 

spectroscopy (EDX) mounted on the SEM, and X-ray photoelectron spectroscopy. X-ray 

diffraction was used to analyze the crystal phase of the catalysts. 

(2) Evaluate the photocatalytic efficiency of the nanocomposite films.  

The batch photocatalytic reactor with UV light and visible light source is shown in Figure 1. 

The continuous-flow experimental assembly for testing the photocatalytic reactor with natural 

sunlight is shown in Figure 2. 
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Figure 1. Batch photoreactor with catalyst-coated SOFs 

 

 

 

 

Figure 2. Continuous-flow photoreactor with catalyst-coated SOFs 

 

Rhodamine B (RhB) was selected as the model micropollutant due to its complex structure and 

high recalcitrance for water treatment. Based on the results of RhB, the photocatalytic 

performance of environment contaminants (e.g., pharmaceuticals and disinfection by-products) in 

water will be further investigated. E. coli was used as indicators to evaluate the efficiency of 

photocatalysis for water purification and disinfection. Spectrophotometer and E. coli test kits 

were used for water quality analysis. In addition to the properties of the SOFs and nanocomposite 

films, the study also investigated the impact of different operating conditions such as water 

chemistry, light wavelength, and energy intensities on photocatalytic activity. 
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Results, conclusions, and recommendations for further research 

The photocatalytic efficiencies of the catalysts coated SOFs were studied by the degradation 

of RhB as a representative organic contaminant [37]. The results showed that 5% Fe-TiO2 thin 

films (Fe:TiO2 molar ratio), mixture of anatase and rutile phases, achieved the highest 

photocatalytic activity under the irradiation of ultraviolet (UV) and visible light. The coupled 

adsorption and photocatalytic oxidation of RhB by the SOFs coated with photocatalyst 

nanocomposite thin films followed the Langmuir-Hinshelwood kinetic model, and the apparent 

first-order rate constants achieved 0.50 h-1 and 0.33 h-1 under UV and visible light irradiation, 

respectively. The Langmuir–Hinshelwood kinetic model expressed well the heterogeneous 

photocatalysis degrading RhB. It implies that only adsorbed molecules contributed to the 

photocatalytic process and the oxidation process was the controlling step. 

 

Photocatalytic degradation efficiency was affected by pH and initial organic concentration. 

Reactivation and regeneration of the used catalysts, and long-term photoactivity testing of 

catalysts coated SOFs demonstrated the durability of synthesized photocatalysts for water 

treatment. Treatment of desalination concentrate can reduce concentrate volume for disposal, 

increase water recovery, and convert a waste stream to a water resource. Photocatalytic oxidation 

process provides a potential energy-efficient technology for desalination concentrate treatment by 

degrading organic contaminants in the water. High ionic strength and presence of high 

concentrations of chloride, bicarbonate, sparingly soluble salts, and natural organic matter in 

desalination concentrate may affect the photocatalytic performance. High ionic strength 

accelerated the photocatalytic process by reducing electrostatic repulsion between RhB molecules 

and catalyst. The divalent electrolyte ions in reverse osmosis (RO) concentrate increased the RhB 

degradation efficiency, while the presence of carbonate species and natural organic matter 

hindered photodegradation rates, due to photon and active species scavenging and adsorption sites 

competition. The overall photocatalytic efficiency was reduced in RO concentrate as compared to 

NaCl solution with similar ionic strength. 

 

Disinfection experiment was conducted using outdoor continuous-flow photoreactor. E. coli 

inactivation as a function of time was monitored for up to 8 hours. Control experiment was 

operated in the same conditions, the inactivation rate of E. coli increased by 100% in the presence 

of catalyst-coated SOFs as compared to photolysis. 

 

This work built a foundation for developing an innovative closed continuous-flow 

photoreactor for water treatment using solar energy and optimized photocatalysts. This type of 

photoreactor will be suitable for arid and semi-arid regions because solar resources are abundant 

and water resources are limited. 

 

Beneficiaries of research 

Due to high recalcitrance to conventional wastewater treatment processes, the presence of 

emerging contaminants (e.g., pharmaceuticals, pesticides, endocrine disrupting compounds, and 

disinfection by-products) in water and wastewater has become a significant challenge for many 

water utilities. Current water treatment technologies towards micropollutants including high-

pressure membranes, advanced oxidation, ozonation and adsorption, are often energy and capital 

intensive. The designed photocatalytic reactor is an energy effective/neutral technology for the 
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removal of emerging organic pollutants. Using solar energy to drive the oxidation process will 

significantly reduce the energy cost for the water utilities. Therefore we believe this technology 

will have broad applications for providing safe drinking water and water reuse. Moreover, this 

technology is very suitable for the areas with abundant solar energy, such as southwestern of the 

US, rural communities, and remote areas that do not have access to electricity and drinking water.  
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