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1 Introduction

Age distributions (ADs) encapsulate the net flow and transport characteristics of nat-
ural reservoirs. In particular, ADs represent the time of exposure of water to the sys-
tem’s biogeochemical conditions, and therefore are a key control on the transforma-
tions taking place. This research focused on quantifying the effect that dynamic flow
conditions due, for example, to anthropogenic forcing or weather and climatic vari-
ability, has on modeled ADs of regional groundwater systems and hyporheic zones.
For the purposes of this proposal we did not focus on anthropogenic effects but rather
natural forcings. Here, age is defined as “the amount of time that has elapsed since a
particular water molecule of interest was recharged [or entered the system] into the
subsurface environment system until this molecule reaches a specific location in the
system where it is either sampled physically or studied theoretically for age dating.”
Closely related, residence time (RT) is “the time it takes for a parcel of water to travel
from the recharge area to the discharge area in the system”. We refer to the age distri-
bution (AD) or residence time distribution (RTD) when considering a representative
fluid parcel, which cannot be defined by a single value but for a distribution.

Currently, there is a fundamental gap in the understanding of ADs for dynami-
cally changing systems. With the exception of some recent applications (Kollet and
Maxwell, 2008; Woolfenden and Ginn, 2009), steady-flow is generally assumed and
modeled and/or measured ages neglect the transient nature of the forcings which is
inherited by the system (e.g., Kirchner et al., 2000; McGuire and McDonnell, 2006;
Cardenas, 2007). However, these hydrologic systems, particularly shallow aquifers,
hillslopes, and hyporheic zones, can change dramatically at different time scales from
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diurnal to decadal and longer. This gap translates into uncertainty for the interpre-
tation of environmental tracer data, particularly it makes hard to quantify how much
information about the real AD can be extracted from this data. This is crucial in
several applications of groundwater age such as the evaluation of contaminant mi-
gration, design of nuclear repositories, inference of flow paths and recharge areas,
evaluation of aquifers as storage reservoirs, and estimation of aquifer parameters,
among others.

The NM WRRI student grant allowed the awardee to explore some of the funda-
mental aspects of theory and modeling of age distributions, leading to several confer-
ence presentations in national conferences and two proposals submitted to the Na-
tional Science Foundation (NSF). Also, two publications are in preparation for peer-
review journals. From a hydrologic perspective, this work has important implications
at short spatial scales such as the hillslope scale (e.g., Fiori and Russo, 2008; Fiori
et al., 2009) where the transport of solutes to the stream has an important control at
the watershed scale; however, even though these systems respond to short time scale
forcings and are strongly influenced by weather variability, the RTDs are estimated
experimentally through tracer tests (e.g., McGuire and McDonnell, 2006) and numer-
ically (e.g., Dunn et al., 2007; McGuire et al., 2007; Fiori and Russo, 2008) under the
steady-flow assumption. Also, the hyporheic zone, which is a highly dynamic system,
varying at different spatio-temporal scales, is explored under similar assumptions
(Haggerty et al., 2002; Cardenas, 2008) with the exception of some restrictive appli-
cations (Boano et al., 2007). Furthermore, the knowledge produced in this proposed
research can be transfered to atmospheric and oceanic sciences, where similar prob-
lems are encountered in the interpretation of environmental tracers or the estimation
of ventilation rates with general circulation models (see Haine and Hall, 2002).

2 Mathematical and numerical modeling

In this section, the generalized age equation is introduced together with an applica-
tion to regional groundwater flow systems.

2.1 Modeling of the groundwater age

The concept of age density or age distribution has been widely used to understand
natural and man-made reservoirs in chemical engineering, and oceanic, atmospheric
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and hydrologic sciences (e.g., Bolin and Rodhe, 1973; Delhez et al., 1999; Ginn, 1999).
This function, defined as positive definite, splits the density of water into continu-
ous age classes, then the age density function ρ(x, t, τ) represents the contribution of
material with an age τ to the conventional water density ρT(x, t) so that

ρT(x, t) =
∫ ∞

0
ρ(x, t, ξ)dξ (1)

where x = (x, y, z) is the position vector at any point in the domain Ω, t is time (t > 0)
and τ is age (τ > 0).

Ginn (1999) and others (e.g., see Delhez et al., 1999, for the case of pure fluid
reservoirs) showed that ρ satisfies the partial differential equation

∂(θρ)
∂t

+ G (ρ) + va
∂(θρ)

∂τ
= 0 (2)

This expression is known as the governing equation for groundwater age (GWAE)
in the hydrology literature and, as demonstrated by Ginn et al. (2009), it encapsu-
lates previous equations for the transport of different measures of age such as the
mean age equation (Goode, 1996), the percentile age and momentum equation (Varni
and Carrera, 1998), and the aquitard age equation (Bethke and Johnson, 2002, 2008).
Equation (2) is analogous to the advection-dispersion equation (ADE) but in a five-
dimensional space (3D space - time - age), where v(x, t) = (vx, vy, vz) is the pore veloc-
ity, θ(x) is the porosity, va = 1 is the aging rate for the advective transport in the age
dimension, and G (ρ) = ∇ · (vθρ)−∇ · (θD∇ρ) is the transport operator that, in this
example, includes advection, diffusion and dispersion, where the dispersion diffusion
tensor D = {Dij} is defined as (Bear, 1972):

Dij = αT|v|δij + (αL − αT)vivj/|v|+ ωDm (3)

with αT and αL the transversal and longitudinal dispersivities, ω the tortuosity, Dm

the coefficient of molecular self-diffusion, and δij is the Kronecker delta function.
Eq. (2) assumes no internal sources (e.g., recharge) or sinks (e.g., withdrawals).

The initial condition for age density in the time dimension, ρ0(x, τ), is generally un-
known and depends on the system’s geological evolution, presence of formation water,
and flow history, which is dictated by climatic variability. In this regard, the influ-
ence of formation water is particularly important in geologically recent aquifers (e.g.,
sedimentary formations) where the initial condition becomes more important and un-
certain (Varni and Carrera, 1998). The example for regional groundwater systems,
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presented in the next subsection, assumes that all the water in the system has an ini-
tial age zero (ρ0(x, τ) = 0), leading to the analysis of the evolution of groundwater age
in a system forced with current climatic conditions and ignoring the flow and trans-
port history. This assumption limits the generality of the conclusions, but it is still
able to provide insights about the net flow and transport characteristics of the sys-
tem. A more adequate approach would be to apply a transient forcing in spinup mode
until a dynamic equilibrium is obtain, but this is computationally more demanding.
Then, the initial condition is

ρ(x, t = 0, τ) = ρ0(x, τ) (4)

Also, the initial condition in the age dimension is given by

ρ(x, t, τ = 0−) = 0, (5)

where the distinction of 0− is made to acknowledge the possibility a discontinuity in
the age distribution at zero due to a source of instantaneous material.

Figure 1: Schematic representation of the
domain Ω. Boundaries are defined by the
flow field as: (i) in-flow (∂Ω1), (ii) out-flow
(∂Ω2), and (iii) no-flow (∂Ω3).

Initial conditions, boundary condi-
tions and sources/sinks terms for physi-
cal interfaces depend on the flow charac-
teristics, application and features to be
highlighted. For instance, the age of in-
coming water flowing through a physical
interface (e.g., recharge R) is prescribed
to be zero (ignoring residence time in the
vadose zone), defining age as the time
since water entered the system, and then
the boundary condition at the inflow area
can be expressed as

n · (vθρ− θD∇ρ) = −Rδ(τ) (6)

where R is the incoming flux (or recharge), δ is the delta Dirac function, and n is the
outward unit vector.

If new water of age τs is introduced into the aquifer, for example by an injection
well, at a rate S in the location xS, a new production term p = Sδ(x− xS)δ(τ− τS) has

4



to be added to the right hand side of Eq. (2). In general, the age of the new material is
set to zero (τS = 0), but this term could be used to represent the introduction of water
with a given age.

Similarly, new water entering the system through the inflow areas will have an
age distribution concentrated at zero age, then the boundary condition mimics the
introduction of an ideal tracer that marks the water at the inflow boundaries

ρ(x, t, τ) = δ(τ) (7)

The complete mathematical statement for modeling the groundwater age in a gen-
eral domain (see Fig. 1) is:

∂(θρ)
∂t

+ G (ρ) +
∂(θρ)

∂τ
= 0 (8a)

ρ(x, t, τ) = δ(τ) on ∂Ω1 (8b)

n · (θD∇ρ) = 0 on ∂Ω2 (8c)

n · (vθρ− θD∇ρ) = 0 on ∂Ω3 (8d)

ρ(x, t, τ = 0−) = 0 (8e)

ρ(x, t = 0, τ) = ρ0(x, τ) (8f)

This model simplifies for steady-state flow (G has no time-dependence), since the
age density not longer depends on time (ρ(x, t = 0, τ) = ρ(x, t, τ)). Then, the derivative
respect to time in Eq. (8a) and the boundary condition in time, expressed in Eq. (8f),
disappear, leading to the traditional advection-dispersion equation (ADE) with time
replaced by age.

The age density of water leaving an outflow boundary Γ is calculated as the flux-
weighted average of ρ over the boundary

RΓ(t, τ) = ρ(x, t, τ)
∣∣∣∣
x∈Γ

=

∫
Γ(n · v)ρ(x, t, τ)dx∫

Γ(n · v)dx
. (9)

2.2 Regional groundwater systems

The classical regional groundwater system (RGS) is represented by a cross-sectional
Tothian-like domain (Tóth, 1962, 1963, 2009), filled with a homogeneous and isotropic
porous media (See Figure 2). The system is bounded by the water table at the top

5



and impermeable boundaries on the other three sides. Ignoring the effects of storage
for this application (assumes transport time constant � compressible storage time
constant; verified by simulation using typical parameters), the porous media flow will
be modeled by Darcy’s law and the continuity equation for incompressible flow in a
non-deformable media (groundwater flow equation):

∇ · (K∇h) = 0 (10)

where h(x, t) is hydraulic head, t is time, x = (x, y) is the spatial location vector, and
K is the hydraulic conductivity tensor. No-flow, n · v = 0, boundary conditions are
used for the bottom and sides (Ω3 for age modeling). The pore velocity is derived from
Darcy’s law as v = −(K/θ)∇h, θ is porosity, and n is an outward unit normal vector.

At the top of the domain, boundary conditions are prescribed in order to resemble
a transient climatic forcing, imposing the hydraulic head distribution as a Dirich-
let boundary, which implies transient zones of in-flow (Ω1) and out-flow (Ω2) for the
transient forcing. The following harmonic head distribution is used for this purpose:

h(x, t; y = 0) = mx + hamp cos

(
2π

T
t

)
sin

(
2π

λ
x

)
(11)

where m is the regional head (or topographic) gradient, hamp is the amplitude of the
local fluctuations, T is the period of the temporal fluctuations, and λ is the wavelength
of the spatial fluctuations.

Figure 2 shows the harmonic forcing applied at the top boundary for three different
times (top figure) and a snapshot of the flow field (bottom figure). Arrows indicate
inflow and outflow zones at the snapshot time and the streamlines show a nested
behavior going from local to regional flowpaths.

In this example, the period for the transient forcing is 10 years (decadal fluctua-
tions), the wavelength of the spatial fluctuations is 2 km, and the domain is 10 km
by 1 km, with origin at the upper left corner. Figure 3a shows the spatial variability
of groundwater age distributions (GWADs), scaled with respect to the conventional
water density ρT, for points at x = 6,000 m and depths 100, 300, 600, 900 m after
100 years of simulation. These points capture the general behavior of short, interme-
diate, and long flow paths. It is interesting to notice the complex multi-modality, in
particular of the intermediate flow paths, represented by the point at 600 m depth,
which contain a mixture of different ages due to its time-varying interaction with re-
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Figure 2: Snapshot of the regional flow field at t = 0 and general properties of the
system. Keep in mind the dramatic changes of the flow field with time, which drive
the system from regionally to almost locally dominated.

gional and short flow paths. Figure 3b presents the temporal variability of the scaled
GWADs at a point (x = 6,000 m and y = -300 m) for different times. Given the ini-
tial condition chosen for this example, the distribution at a particular time t does not
have contributions from water older than t. Also, these distributions tend to reach
a dynamic equilibrium with time under this periodic forcing, similar to the expected
state after a spinup run. Finally, Figure 3c integrates the scaled GWADs over all the
time-varying discharge areas for different times. At the early times, e.g., 2.5 years,
most of the water is young, coming from local flow paths, then as time progresses, con-
tributions of different ages arise showing as small bumps in older ages. Again, after
a long time with this periodic forcing, the system converges to a dynamic equilibrium
state. Now the question is, what happens if the system’s forcing is not periodic, but
irregular or chaotic? How will the GWADs evolve over time and what does it tell us
about the interpretation of age data? This are questions that are being explored by
the awardee and represent the main contribution of his PhD dissertation.

3 Funding Products

3.1 Conference Presentations

Preliminary results of this research were presented at the following conferences:
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Figure 3: (a) Modeled groundwater age distributions at different depths after 100
years of simulation, (b) modeled groundwater age distributions at different times for
a point (6000m, -300m), (c) flux-weighted groundwater age distribution at different
times integrated over all the discharge areas.
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3.2 Proposals

The following proposals were submitted to NSF and are pending. The awardee con-
tributed with a considerable part of these proposal, which are based on the findings
of this research.

Dynamically Changing Hyporheic Zone: Interfacial Exchange in Mountain Step-pool
and Pool-riffle sequences, PI. John L. Wilson, submitted June 2009.

Dynamic Groundwater Age Distributions: Exploring Watershed Scale Subsurface Sys-
tems, PI. John L. Wilson and Co-PI. Fred M. Phillips, submitted December 2009.

References

Bear, J. (1972), Dynamics of fluids in porous media, 784 pp, Dover Publications, Inc.,
New York.

Bethke, C. M., T. M. Johnson (2002), Paradox of groundwater age, Geology 30(4), 385-
388.

Bethke, C.M., and T.M. Johnson (2008), Groundwater age and groundwater age dat-
ing, Annu. Rev. Earth Planet. Sci., 36, 121-152.

Boano, F., R. Revelli, and L. Ridolfi (2007), Bedform-induced hyporheic exchange with
unsteady flows, Advances in Water Resources, 30, 148-156.

Bolin, B., and H. A. Rodhe (1973), A note on the concepts of age distribution and
transit time in natural reservoirs, Tellus, 25(1), 58-62.

Cardenas, M. B. (2007), Potential contribution of topography-driven regional ground-
water flow to fractal stream chemistry: Residence time distribution analysis of Tóth
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Tóth, J. (1963), A theoretical analysis of groundwater flow in small drainage basins,
Journal of Geophysical Research, 68, 4795-4812.
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