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ABSTRACT 

 

MONTHLY AND SEASONAL STREAMFLOW FORECASTING IN THE 

 RIO GRANDE BASIN 

 

BY 

ABUDU SHALAMU 

 

Doctor of Philosophy, Civil Engineering 

 

New Mexico State University 

Las Cruces, New Mexico, 2009 

 

Dr. James Phillip King, Chair  

 

 Improving the quality of streamflow forecasting has always been an important 

task for researchers and water resources managers. In this research, the seasonal and 

monthly streamflow forecasting using various data-driven statistical models was 

investigated for naturalized streamflow at Del Norte Gaging Station, Rio Grande, 

Colorado and observed Elephant Butte Reservoir net inflow, Rio Grande, New 

Mexico. The application of partial least squares regression (PLSR) and hybrid models 
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in seasonal streamflow forecasting, the inclusion of snowpack and El Niño Southern 

Oscillation (ENSO) information in the monthly and seasonal streamflow forecasting 

were investigated. The modeling methods included autoregressive integrated moving 

average (ARIMA) models, transfer function-noise (TFN) models, artificial neural 

networks (ANN) models, principal components regression (PCR), and PLSR. Two 

hybrid modeling approaches, including TFN forecast modification using ANN 

(TFN+ANN) and a combination of principal components analysis (PCA) and ANN 

(PCA+ANN), were also applied in seasonal streamflow forecasting. The ARIMA 

models were used as a benchmark for the comparison of the performance of the 

models. Additionally, the forecasting results were compared to the Natural Resources 

Conservation Service (NRCS) official forecasts to evaluate the performance of the 

proposed models.  

 The results of seasonal flow modeling indicated that using a composite 

precipitation index is a relatively effective method in both improving forecast 

accuracy and developing parsimonious regression models with fewer and readily-

available input variables. In comparison of PLSR and PCR, similar forecast 

accuracies were obtained for both methods in jackknife cross validation and test 

period (2003-2007) although PLSR has higher calibration coefficient of 

determination (R2) and can reach its minimum prediction error with a smaller number 

of components than PCR. The comparison with NRCS official forecasts showed that 

the application of PLSR in seasonal streamflow forecasting is promising. The 

application of hybrid modeling approaches showed potential capability of hybrid 
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models to improve forecast accuracy in seasonal streamflow modeling as compared to 

single models. For Elephant Butte net inflow modeling, the normalized root mean 

square errors (NRMSE) of forecasted and observed net inflow for April-July 

decreased from 0.36 to 0.19 from single TFN model to the TFN+ANN hybrid 

approach. The performance of PCA+ANN approach was also comparable to the 

TFN+ANN. 

 The results of monthly flow modeling suggested that the forecast 

modification using a combination of TFN and ANN methods (TFN+ANN) displayed 

better performance than the ANN models that were specifically calibrated for each 

month of the snowmelt season and was able to improve forecast accuracy 

significantly compared to other models. The normalized root mean square errors 

(NRMSE) for one-month-ahead forecasts for Del Norte Gaging Station were 0.46, 

0.41, 0.24 and 0.21 for simple ARIMA, TFN model, ANN models and TFN+ANN 

approach respectively. These findings suggested that the TFN+ANN method is an 

advantageous approach in improving forecast accuracy and the ANN is a useful tool 

in forecasting monthly streamflow, whether it is used for direct modeling or used as a 

forecast modification technique.  

The findings of this study may provide an impetus for streamflow forecasting 

by using hybrid modeling approach and PLSR method with various operationally 

available climatic variables. PLSR approach can be combined into NRCS’s 

operational forecasting environment for possible forecast improvement. 
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1 INTRODUCTION 

 

1.1 Problem Statement 

Water resources play a crucial role in the economic development of the 

southwestern United States. The region’s explosive population growth and resulting 

new demands on limited water resources require efficient management of existing 

water resources rather than building new facilities to meet the challenge. In the water 

management communities, it is well known that to combat water shortage issues, 

maximizing water management efficiency based on streamflow forecasting is crucial. 

Streamflow forecasting is of vital importance to flood mitigation and water 

resources management and planning. While short-term forecasting such as hourly or 

daily forecasting is crucial for flood warning and defense, long-term forecasting 

based on monthly, seasonal or annual time scales is very useful in reservoir 

operations and irrigation management decisions such as scheduling releases, 

allocating water to downstream users, drought mitigation and managing river treaties 

or implementing compact compliance. Particularly, the seasonal volumetric 

streamflow represents an important hydrologic parameter for water supply purposes 

in the southwestern United States, since it represents spring-summer snowmelt runoff 

which accounts for a large portion of annual runoff. Hence, seasonal snowmelt runoff 

forecasting is particularly important in improving water management efficiency and 

benefiting various water use needs such as irrigation, hydropower generation, 

recreation, and environmental protection. 
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The high-quality streamflow forecasts and efficient use of these forecasts in 

water management can result in considerable economic and social benefits. There are 

many studies regarding the evaluation of value of streamflow forecasting (e.g., 

Burges and Hoshi, 1978; Dong et al., 2006; Hamlet et al., 2002; Kim and Palmer, 

1997; Parker et al., 2005; Yeh et al., 1982). The quality of streamflow forecasting can 

be evaluated in terms of lead time and accuracy. Lead time refers to the time interval 

between the forecast issuing date and the occurrence of the forecasted flow event 

(Lettenmaier and Wood, 1993). Previous studies confirm the increased benefits of 

high-quality streamflow forecasting for flood defense and water management through 

improved reservoir operation. These benefits include improving water quality and 

navigation conditions, protecting wildlife and environmental restoration, reduction of 

expenses in flood mitigation and drought management, and protecting human life and 

property. 

Due to the importance of hydrologic forecasting, a considerable number of 

forecasting models and methodologies have been developed and applied in 

streamflow forecasting. These streamflow forecasting models can be categorized as 

process-driven methods and data-driven methods (Wang, 2006). The process-based 

modeling approach is a knowledge-driven modeling process that explains the 

underlying process. Various forms of rainfall-runoff models such as lumped, semi-

distributed and distributed, and snowmelt-runoff models are in this category. Data-

driven models, on the other hand, are based on a limited knowledge of the internal 

physical mechanism of the watershed system and rely on data describing input and 
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output characteristics. They are essentially black-box models that characterize the 

relationships between inputs and outputs without a consideration of the details or 

explicit simulation of the underlying physical process. They may include regression 

models, time series models, artificial neural networks (ANN) models and non-

parametric models such as K-nearest neighbor method. Recently, data-driven 

modeling has become quite popular in streamflow forecasting, due to the increase in 

data availability from metering stations, real-time data retrieval, and increasing 

computational capability with the development of more robust methods and computer 

techniques (Wang, 2006).   

 Streamflow forecasting is challenging because of the complexity of 

hydrologic systems. Improving the quality of streamflow forecasting has always been 

an important task for researchers and hydrologic forecasters. There is no single  

streamflow forecasting method that provides optimum forecast results under all 

circumstances. No single forecasting model is powerful and general enough to 

outperform others for all types of catchments and under all circumstances or even one 

catchment with different behavioral phases (Shamsheldin, 2004). It is expected that 

better forecasting models can be developed for a specific basin due to increasing data 

availability, computational power, sophistication of modeling theory and software 

development.  

 There are several issues in improving seasonal streamflow forecasting. First, 

more robust multivariate regression methods may be introduced into seasonal 

streamflow forecasting that could efficiently deal with the multi-collinearity of 
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predictor variables. Multivariate regression methods that are currently used in the 

hydrologic community, such as principal components regression and Z-score 

regression, can effectively eliminate the collinearity problem. There are also other 

robust methods such as canonical correlation analysis (CCA), partial least squares 

regression (PLSR) that can be applicable to seasonal streamflow forecasting to deal 

with collinearity issues. However, the application of these alternative methods in 

seasonal streamflow forecasting is only at an early stage. More research efforts are 

needed to introduce them to the field of operational streamflow forecasting. Second, 

the primary operational method of seasonal streamflow forecasting in the western 

United States is still focused on regression based methods. Risley et al. (2005) 

explored the application of artificial neural networks on seasonal streamflow forecasts. 

Although the goal of improved forecast accuracy by using neural networks was not 

conclusive in their study, it provided an impetus for the application of more complex 

methods in seasonal streamflow forecasting. More research work is needed in 

developing more robust and complex modeling methods, including hybrid modeling 

approaches in seasonal streamflow forecasting. Third, there are hundreds of input 

variables available for seasonal streamflow forecasting equation development. The 

selection of important variables and obtaining more reliable forecast equations are 

always challenging. Apart from searching for optimal or near-optimal variable 

combinations as proposed by Garen (1992), other possible data pre-processing 

approaches leading to improved forecast skills, such as developing composite indices 
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and using them as inputs for multivariate regression equation, also need to be tested 

in seasonal streamflow forecasting equation development. 

 Monthly streamflow forecasting is also as important as the seasonal 

streamflow forecasting in water resources allocation and management. In particular, 

the monthly reservoir net inflow forecasting is of great significance to reservoir 

management as it is an indication of water availability from a reservoir. The time 

series models, including ARIMA and TFN, have long been used in the modeling of 

monthly streamflow processes. The challenging problem in monthly streamflow 

forecasting models may be the inclusion of snowpack information in time series 

models for spring-summer season monthly flow forecasting. This may be due to the 

seasonal presence of snowfall in a year and the timing of snowmelt runoff, which 

makes it difficult to get equally spaced snow water equivalent time series and 

systematic cross correlation relationship between monthly snow water equivalent and 

monthly streamflow for entire year in the building of TFN model. Further, the 

separate performance evaluation of monthly time series models for each month of the 

year is crucial because the better performance of monthly models evaluated for the 

entire year do not mean the models are necessarily applicable for every month of a 

year. Sometimes the observed mean will be better than the time series model forecasts 

for some months of a year.  

 Finally, the operational capability of streamflow forecasting models should be 

paid more attention in the development of forecasting models. Operational limitation 

of streamflow forecasting models is the limited application of models in real life 
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forecasting environment due to on-time data availability and/or complexity of model 

itself. Recently developed high-quality spatially distributed hydrological modeling for 

improved streamflow forecasting using remote sensing (RS) and geographic 

information system (GIS) technologies has showed a promising capability of 

improving forecast accuracy. However, the distributed models are often not 

convenient and timely because of limited satellite data availability in the operational 

forecasting environment (Pagano, 2005). In addition to distributed models, some 

models that have been developed using weather station data as predictor variables 

may also not be operationally robust since the weather station data from climate 

networks are not readily available on the first day of a month (Pagano, personal 

communication, September 20, 2007). Therefore, the operational capability may also 

be used as an index in evaluating the robustness of the streamflow forecasting 

models.  

 

1.2 Objective 

 To address the above issues in seasonal and monthly streamflow forecasting, 

the objectives of this research are the following: 

1) To investigate more robust multivariate regression techniques, namely partial 

least squares regression, in improving seasonal volume streamflow forecasting 

and to examine the utilization of composite indices in obtaining better 

forecasting skills. 
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2) To investigate the application of hybrid modeling approaches such as the 

combination of time series and neural networks modeling methods, and the 

combination of principal components analysis and neural networks methods in 

seasonal streamflow forecasting. 

3) To study the improvement of the performance of monthly streamflow 

forecasting time series models with the inclusion of basin snowpack 

information and El Niño Southern Oscillation (ENSO) signals in the modeling 

and the performance evaluation issues of monthly forecasting models.  

4) To enhance the operational capability of streamflow forecasting models by 

using readily available Snow Telemetry (SNOTEL) data and simpler model 

structures; evaluate the performance of models that are developed using only 

SNOTEL data as inputs. 

5) To make specific recommendations for forecasting target seasonal and 

monthly flows, and present the most functional models for those forecasts. 

 

1.3 Scope and Limitations 

 To achieve the objectives described above, two time scales, seasonal and 

monthly streamflow volume, and two hydrologic variables, naturalized streamflow 

volume at Del Norte Gaging Station, Rio Grande, Colorado and reservoir net inflow 

for Elephant Butte Reservoir, Rio Grande, New Mexico, were selected for modeling 

in this study. The modeling procedures included autoregressive integrated moving 

average (ARIMA) models, transfer function-noise (TFN) models with SNOTEL 
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precipitation input, artificial neural networks (ANN) models, principal components 

regression (PCR), partial least squares regression (PLSR). In addition, the application 

of two hybrid modeling approaches including forecast modification using ANN and a 

combination of principal components analysis (PCA) and ANN in streamflow 

forecasting was also investigated in the study.  

 To build the various models, the predictability of different hydrologic 

variables such as snow water equivalent, SNOTEL precipitation, SNOTEL 

temperature and El Niño Southern Oscillation Index (ENSO) on streamflow processes 

was analyzed using cross correlation between those variables and the streamflow. The 

potential variables and their lag relationships for the model inputs were identified in 

monthly and seasonal time scales for the study sites. The forecast performance 

comparisons of the proposed models were performed and potential capability of 

hybrid modeling approaches were analyzed using various statistical indices for model 

performance evaluation. Based on the analysis of model performance, the final 

models that could be used for operational streamflow forecasting in the study basins 

were suggested for both seasonal and monthly time scales.  

 To develop improved seasonal and monthly streamflow forecasting models 

and enhance the operational capability of the proposed models, the following 

considerations and procedures were used in the study:  

1) In order to reduce forecast error, all the predictor variables used in the 

modeling were observed values; no predicted/forecasted values were used in 

any of the modeling procedures. 
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2) The ANN models including single or hybrid models were developed for only 

spring-summer seasons in the selected basins to include snowpack 

information in the models. 

3) The predictor variables including snow water equivalent, precipitation, and 

temperature used in the study were from NRCS automatic SNOTEL stations. 

Weather station data were used to extend the period of SNOTEL data. 

4) The easily accessible real time data were used in the model development; all 

data used as model inputs were available online from Natural Resources 

Conservation Center (NRCS), United States Geology Service (USGS), and 

National Weather Service (NWS) websites. 

5) The autoregressive integrated moving average (ARIMA) models were used as 

a benchmark for the comparison of the model performance. Additionally, the 

forecasting results were also compared to the NRCS official forecasts to 

evaluate the performance of the proposed models in the study relative to 

current practice. 

 

1.4 Study Sites and Data Used 

 Two Rio Grande watersheds were used as the study basins: the Rio Grande 

Headwaters above Del Norte Gaging Station, Colorado and Rio Grande Basin above 

Elephant Butte Reservoir, New Mexico. The main reason that the two watersheds 

were used in the study is their importance in the Rio Grande Compact compliance and 

water management in the region. Two different hydrologic variables, namely Del 
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Norte natural flow and Elephant Butte net inflow, and two time scales including 

monthly and seasonal flow volumes have been modeled in this study. The hydrologic 

settings of the basins, the basic data including snow water equivalent (SWE), 

precipitation (PRCP), temperature (TEMP), El Niño Southern Oscillation Index (SOI) 

and some approaches that used in the data preparation are described in the following 

sections. 

 

1.4.1 Rio Grande Headwaters Basin above Del Norte Gaging Station 

 The Rio Grande near Del Norte Gaging Station, Colorado was selected for 

modeling site for following reasons: 

1) The Del Norte Gaging Station is one of the main index stations for 

determining water delivery obligations from Colorado to New Mexico based 

on the Rio Grande Compact. 

2) The flow is relatively less regulated and located in the uppermost part of the 

Rio Grande. 

3) Relatively longer natural flow, snow water equivalent, precipitation and 

temperature data are available in the Basin. 

 

1.4.1.1 Site Description 

 The Rio Grande near Del Norte, Colorado (USGS Station no. 08220000),  is 

located at latitude 37°41'22"N, longitude 106°27'38"W, Rio Grande County, 

Colorado. The drainage area is about 1320 square miles; the elevation of the site is 
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7980 ft; and the period of record dates back to 1889. The natural flow of stream is 

affected by storage reservoirs, transmountain diversions from Colorado River Basin, 

diversions for irrigation and municipal use, ground water withdrawals, return flows 

from irrigated areas, and effluent flows from sewage treatment plants. Flow has been 

regulated by Beaver Creek Reservoir since 1910, Santa Maria Reservoir since 1912, 

Rio Grande Reservoir since 1912, and Continental Reservoir since 1925, with a 

combined capacity of 126,100 acre-ft, and by several smaller reservoirs.   

 The National Water and Climate Center of the Natural Resources 

Conservation Service (NRCS) operates and maintains  automatic Snow Telemetry 

(SNOTEL) measurement sites in the Basin (Figure 1.1 and Table 1.1) that provide 

continuous measured time series data from the 1980s, and most SNOTEL sites have 

estimated snow water equivalent time series data back to the 1960s. 

 



 
 

Figure 1.1 Rio Grande Headwaters Subbasin above Del Norte Gaging Station. 

12 



1.4.1.2 Streamflow Data 

 The monthly natural flow data of Del Norte Gaging Station was obtained from 

NRCS and was used as the dependent variable in the modeling.  The data period from 

1961 to 2007 was used in this study because of the natural flow and snow water 

equivalent data availability in the Rio Grande Headwater Basin (the natural flow data 

for 2006 and 2007 are provisional data). A monthly streamflow time series, monthly 

averages and standard deviation for the period of 1961-2007 are plotted in Figure 1.2 

and Figure 1.3. As can be seen, the monthly flow has strong seasonality of order 12. 

May-June flow accounts for more than half of the annual runoff, while the April-

September runoff accounts for almost 90% of the annual total runoff. This illustrates 

that the Basin is snow-dominated, since the large portion of the runoff is contributed 

by the snowmelt in the Basin. The spring-summer runoff months have the highest 

standard deviations making the need for developing more accurate forecasting 

models. 
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Figure 1.2 Monthly natural flow time series at Del Norte Gaging Station, Rio Grande 

(1961-2007) 
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Figure 1.3  Averages and standard deviation of monthly natural flow of Del Norte 
Gaging Station, Rio Grande (average of 1961-2007) 
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 For modeling of spring-summer runoff volume, the April-September natural 

seasonal streamflow volume at Del Norte Gaging Station, Rio Grande was selected 

as the forecast target volume so as to be consistent with the NRCS forecast dates and 

volume at the Station and to compare the modeling results with the NRCS median 

forecasts (the 50% percent exceedance probability) for the same period natural 

runoff volume. The NRCS provides seasonal streamflow volume forecasts at the 

same Station on the first day of January, February, March, April, May and June. The 

forecasts consist of the volumes corresponding to each of the 10%, 30%, 50%, 70% 

and 90% exceedance probabilities. 

 The April-September seasonal volume is calculated as the sum of monthly 

natural flow volume from April to September of a year. The data period from 1981 to 

2007 was used for the seasonal runoff volume modeling in this study because of the 

natural flow, real time snow water equivalent, precipitation and temperature data 

availability from automatic SNOTEL sites in the Basin.  To be consistent with the 

NRCS forecast dates and volume, the April-September, May-September and June-

September volumes were used as the dependent variables in the modeling.  

 

1.4.1.3 Snow Water Equivalent  

 The snow water equivalent data were obtained from The Natural Resources 

Conservation Service (NRCS) website: http://www.wcc.nrcs.usda.gov/snow/. The 

NRCS maintains numerous automatic SNOTEL sites in the Basin. Although the 

Molas Lake and Lily Pond SNOTEL sites are physically outside of the Basin, they 
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were still included in the calculation of the study due to their relationship with 

streamflow at the Del Norte Gaging Station and data availability. To ensure the 

operational ability of the forecasting models, only the snow water equivalent (SWE) 

data from Natural Resources Conservation Center (NRCS) automatic SNOTEL sites 

were used in the study. The Beartown SNOTEL site was not used in the analysis 

because of the limited data availability. The detailed information of these SNOTEL 

sites is shown in Table 1.1 and Figure 1.1.  

 

Table 1.1 SNOTEL sites used in the study of Rio Grande Headwaters Basin above 
Del Norte Gaging Station 

 

Snotel sites Location  
Elevation 

(feet) 
 Available data period 

 
West 

Longitude  
North 

Latitude 
   SWE PRCP TEMP 

LILY POND 106.55 37.38  11000  
49-

present 
81-

present 
83-

present 

MIDDLE CREEK 107.03 37.62  11250  
79-

present 
81-

present 
83-

present 

MOLAS LAKE 107.69 37.75  10500  
51-

present 
87-

present 
83-

present 

UPPER RIO GRANDE 107.26 37.72  9400  
61-

present 
87-

present 
83-

present 

UPPER SANJUAN 106.84 37.49  10200  
36-

present 
79-

present 
83-

present 

WOLF CREEK SUMMIT 106.80 37.48  11000  
61-

present 
87-

present 
83-

present 

 
 
 The Basin average snow water equivalent index was used in the time series 

and neural networks modeling of monthly and defined seasonal flows.  The six 

SNOTEL sites located in the Basin (as shown in the Table 1.1) were used for 

calculating the average SWE index of the Rio Grande Headwater Subbasin above the 

Del Norte Gaging Station. The simple average was used calculate the average SWE 
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index. The Middle Creek SWEs were not included in the averaging before 1979, 

because no records or estimated values were available at this site for that period. The 

time series of the average SWE index for the Basin was plotted in Figure 1.4.  
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Figure 1.4 Average snow water equivalent index in Rio Grande Basin above Del 

Norte Gaging Station (1961-2007) 
 

1.4.1.4 SNOTEL Precipitation  

 The precipitation measured at the SNOTEL sites selected was used for 

analysis. This is also due to operational forecasting practices, since weather station 

data from other climate networks are not readily available on the first day of a month 

(Pagano, personal communication, September 20, 2007). However, the real-time 

precipitation data of the SNOTEL sites have a short record of measurement (some 

SNOTEL sites started only after 1987, as shown in Table 1.1). To ensure the same 
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data covering period with other hydrologic variables, two precipitation data 

preparation methods were employed in the study: 

1) For the April-September seasonal flow regression equation development, the 

precipitation of some single sites was extended back to 1981 using linear 

regression with precipitation of nearest weather stations. As indicated in the 

Table 1.1, the Molas Lake, Upper Rio Grande and Wolf Creek Summit 

SNOTEL sites were needed to be extended from 1987 back to 1981. 

2) For time series and neural networks modeling of monthly and defined 

seasonal flows, a basin average precipitation index was developed for the 

period covering 1961 to 2007 using linear regression with average 

precipitation of the weather stations located near to the SNOTEL sites used in 

the study. 

 The following method was used to extend the average SNOTEL precipitation 

back to 1961: 

1) Locate weather stations that had a longer precipitation record (beyond 1961)  

and were located within a 15 mile buffer of the SNOTEL sites; 

2) Calculate the simple average precipitation of the SNOTEL sites using the data 

period of 1981-2007. Some sites that did not have records back to 1981 were 

excluded from these calculations; 

3) Calculate the average precipitation measured in the selected weather stations 

(as shown in Table 1.2) for the period of 1961-2007; 
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4) Develop a linear regression equation between monthly average precipitation 

of selected weather stations and average SNOTEL precipitation index; 

5) Extend the SNOTEL precipitation data through the use of the regression 

equation forced with the weather station precipitation data from 1961-1979. 

The resulting extended average SNOTEL precipitation index covering the period of 

1961-2007 is shown in Figure 1.5. The SNOTEL precipitation data were obtained 

from NRCS website: http://www.wcc.nrcs.usda.gov/snow/.  The weather stations 

used for extending the precipitation data were shown in Table 1.2 and Figure 1.1. The 

monthly precipitation data of weather stations were obtained from the Western 

Region Climate Center (WRCC) website: http://www.wrcc.dri.edu/. 

 

Table 1.2 Weather stations use in the study of Rio Grande Headwaters Basin above 
Del Norte Gaging Station 

 

Station Name 
North 

Latitude 
West 

Longitude 
COOP NWS State County Elevation(ft) 

HERMIT 7 ESE 37.77 107.13 53951 HERC2 CO MINERAL 9000 

RIO GRANDE 
RESERVOIR 

37.73 107.27 57050 CRRC2 CO HINSDALE 9455 

WOLF CREEK 
PASS 1 E 

37.48 106.78 59181 SFKC2 CO MINERAL 10640 
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Figure 1.5 Extended monthly average SNOTEL precipitation index in Rio Grande 

Basin above Del Norte Gaging Station (1961-2007) 
 
 

1.4.1.5 SNOTEL Temperature  

 The real time measured temperature data of the SNOTEL sites started from 

1983. Some sites even started measuring temperature data from 1987 in the Basin. 

The interannual variability of temperature data displays strong regional coherence and 

therefore a basin-average temperature index was calculated from the individual 

station data. The basin average SNOTEL temperature index was calculated as follows:  

1) Calculate the average monthly temperature of six SNOTEL sites (as shown in 

Table 1.1) to obtain an SNOTEL average temperature index for the period of 

1983-2007; 
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2) Calculate the average temperature measured in the weather stations located 

near to the SNOTEL sites (as shown Table 1.2) in the Basin for the period of 

1981-2007; 

3) Develop a regression equation between monthly average temperature of 

selected weather stations and SNOTEL average temperature index; 

4) Extend the SNOTEL average temperature index through the use of the 

regression equation forced with the weather station average temperature from 

1981-1983. 

The resulting extended monthly SNOTEL average temperature index covering 

the period of 1980-2007 is shown in Figure 1.6. The SNOTEL temperature data 

were obtained from NRCS website: http://www.wcc.nrcs.usda.gov/snow/.  The 

monthly average temperature data of weather stations were obtained from the 

Western Region Climate Center (WRCC) website: http://www.wrcc.dri.edu/. 
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Figure 1.6 Extended monthly average SNOTEL temperature index in Rio Grande 
Basin above Del Norte Gaging Station 

 

 

1.4.2 Rio Grande Basin above Elephant Butte Reservoir 

 Elephant Butte Reservoir net inflow is an important hydrologic variable that is 

used for determining water delivery from New Mexico to Texas according to Rio 

Grande Compact (Rio Grande Compact Commission, 2006). In this study, the 

monthly and seasonal net inflow of Elephant Butte Reservoir, Rio Grande, New 

Mexico was selected for modeling using different data-driven modeling approaches 

aiming at providing a decision basis for the operation of Elephant Butte Reservoir for 

water management and compact compliance purposes in the region. 
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 Net inflow into a reservoir can be defined as the metered and unmetered 

surface water flows entering the reservoir, direct precipitation, and groundwater 

exfiltration entering the reservoir minus releases from the reservoir, evaporation, 

seepage, and any other reservoir losses.  It is computed as the sum of the change in 

storage volume within the reservoir and the volume of all measured flow releases and 

spills for a given period. Although the reservoir net inflows are usually difficult to 

forecast due to heavy upstream regulation and human development effects, reservoir 

net inflow forecasting is of great importance to reservoir management as it is an 

indication of water availability from a reservoir.   

   

1.4.2.1 Site Description 

The study area, shown in Figure 1.7, is the Rio Grande watershed in Colorado 

and New Mexico upstream from Elephant Butte Dam, New Mexico. The primary 

reservoir inflow from the Rio Grande is metered at San Marcial, New Mexico at the 

upstream end of the reservoir.  Two US Geological Survey gaging stations are used to 

quantify the flow at San Marcial:  the Rio Grande Floodway at San Marcial, NM 

(USGS Station no. 08358400), which is the river channel, and the Rio Grande 

Conveyance Channel at San Marcial, NM (USGS Station no. 08358300), a 

constructed channel that parallels the Rio Grande.  The sum of these two gaging 

stations is the total flow at San Marcial used in this study.   The gaging station data at 

the Rio Grande below Elephant Butte Dam, NM (USGS Station no. 08361000) were 

used as the reservoir outflow. All the water released from Elephant Butte Reservoir 
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including irrigation use, hydropower generation, and reservoir spill is measured at 

this site.  For both San Marcial and below Elephant Butte, the historical daily average 

flow rate in cfs were retrieved and then converted into monthly total flow in acre-ft. 

The Elephant Butte storage data were obtained from U.S. Bureau of Reclamation as 

daily storage volume in acre-ft, and then the monthly change in storage was 

calculated as the difference of volume stored at the end and the beginning of each 

month. Stage-Storage relationships for Elephant Butte reservoir are developed from 

bathymetric surveys that are updated roughly every ten years. 
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Figure 1.7 Rio Grande Basin above Elephant Butte Reservoir 
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1.4.2.2 Reservoir Net Inflow  

 The monthly Elephant Butte Reservoir net inflow was calculated as the sum of 

monthly releases measured below Elephant Butte Dam and the monthly change in 

storage of the reservoir. The calculated monthly net inflow time series for the period 

of 1961- 2007 is shown in Figure 1.8. Unlike the Del Norte monthly natural flow, the 

Elephant Butte monthly net inflow is heavily regulated and has been highly variable 

over the years. The standard deviations of monthly net inflow (as shown in Figure 

1.9) also suggest the highly variable features of the net inflow, particularly in the 

spring-summer season, starting from April through October. The summer net inflows 

of July, August, September and October are of particularly high variability.  

 The Figure 1.9 also shows the comparison of the average monthly flow at the 

San Marcial Gaging Station and the average Elephant Butte Reservoir monthly net 

inflow. In all months, the average Elephant Butte Reservoir net inflow is smaller than 

the average flow that is measured at the San Marcial Gaging Station, but the two are 

highly correlated (correlation coefficients of 0.98). This indicated that the main 

contribution to the Elephant Butte Reservoir net inflow comes from the Rio Grande 

streamflow although there are other factors, such as reservoir evaporation, seepage 

and infiltration, unmetered tributaries, and operational practices that affect reservoir 

net inflow. The data period from 1961 to 2007 was used in this study for developing 

monthly and defined seasonal net inflow time series and neural networks models so 

as to keep the same time period of snow water equivalent data available from 

SNOTEL sites in the Basin.  
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Figure 1.8 Monthly net inflow time series Elephant Butte Reservoir, Rio Grande 
(1961-2007) 
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Figure 1.9 Comparison of monthly average San Marcial measured flow and Elephant 

Butte Reservoir net inflow (average of 1961-2007) 
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 For the modeling of spring-summer seasonal net inflow volume, the March-

July seasonal net inflow volume of Elephant Butte Reservoir was selected as the 

forecast target volume. The March-July net inflow was calculated as the sum of 

monthly net inflow from March to July. The data period from 1981 to 2007 was used 

to develop forecast regression equation in the Basin because of the net inflow flow 

and real time snow water equivalent, precipitation and temperature data availability in 

the Basin.   

 The NRCS does not provide seasonal net inflow volume forecasts at Elephant 

Butte Reservoir, but does provide March-July San Marcial natural flow volume 

forecasts at San Marcial Gaging Station on the first day of January, February, March, 

April, and May. The forecasts consist of the volume corresponding to each of the 

10%, 30%, 50%, 70% and 90% exceedance probabilities. To be consistent with the 

NRCS forecast dates and volume, the March-July, April-July and May-July volumes 

were used as the dependent variables in March-July seasonal volume modeling in the 

study.  

 

1.4.2.3 Snow Water Equivalent  

 The snow water equivalent data from the NRCS automatic SNOTEL sites 

were used due to their readily availability on the first day of a month. Eighteen 

SNOTEL sites that are located in the Rio Grande Basin above Elephant Butte Dam 

were initially selected for analysis. To use the SNOTEL sites that are spatially 

representative for the Basin and highly correlated with Elephant Butte Reservoir net 
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inflow, the following procedure was carried out to select the final SNOTEL sites for 

use in the study: 

1) Calculate the correlation coefficients of April 1st SWE of eighteen SNOTEL 

sites with Elephant Butte Reservoir April-July seasonal net inflow; 

2) Select the SNOTEL sites that have correlation coefficients above 0.7 as the 

first group candidate sites; 

3) Select several more SNOTEL sites that represent different regions of the basin 

even if the correlation coefficients are little lower. 

As a result, twelve SNOTEL sites were selected for this study (Figure 1.7 and Table 

1.3). The correlation analysis showed that the SNOTEL sites located in the Rio 

Grande west region in Colorado and New Mexico have a stronger correlation than the 

SNOTEL sites located in the Rio Grande east region in New Mexico. Three SNOTEL 

sites in the Rio Grande east region in New Mexico (Culebra #2, Gallegos Peak and 

Red River Pass #2) still were selected in the study considering the spatial 

representation of the whole basin.  
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Table 1.3 SNOTEL sites used in the study of Rio Grande Basin above Elephant Butte 
Reservoir, New Mexico. 

 

Snotel sites  Location  
Elevation 

(feet) 

 
Available data 

period 

 
West 

Longitude 
North 

Latitude 
Region   SWE PRCP 

BATEMAN 106.32 36.51 
Rio Grande west 
in New Mexico 

 9300  
61-

present 
80-

present 

CHAMITA 106.66 36.96 
Rio Grande west 
in New Mexico 

 8400  
61-

present 
80-

present 

CULEBRA #2 105.20 37.21 
Rio Grande east 
in New Mexico 

 10500  
61-

present 
80-

present 
CUMBRES 
TRESTLE 

106.45 37.02 
Rio Grande west 

in Colorado 
 10040  

61-
present 

81-
present 

GALLEGOS PEAK 105.56 36.19 
Rio Grande east 
in New Mexico 

 9800  
78-

present 
81-

present 

HOPEWELL 106.26 36.72 
Rio Grande west 
in New Mexico 

 10000  
72-

present 
80-

present 

LILY POND 106.55 37.38 
Rio Grande west 

in Colorado 
 11000  

49-
present 

81-
present 

MIDDLE CREEK 107.03 37.62 
Rio Grande west 

in Colorado 
 11250  

79-
present 

81-
present 

QUEMAZON 106.39 35.92 
Rio Grande west 
in New Mexico 

 9500  
61-

present 
81-

present 
RED RIVER PASS 
#2 

105.34 36.70 
Rio Grande east 
in New Mexico 

 9850  
61-

present 
80-

present 

UPPER SANJUAN 106.84 37.49 
Rio Grande west 

in Colorado 
 10200  

36-
present 

79-
present 

WOLF CREEK 
SUMMIT 

106.80 37.48 
Rio Grande west 

in Colorado 
 11000  

61-
present 

87-
present 

 

 For time series and neural networks modeling of monthly and defined 

seasonal flows, the basin average snow water equivalent index was used. The selected 

twelve SNOTEL sites (as shown in Table 1.3) were used for calculation of the 

average SWE index of the Rio Grande Basin above Elephant Butte Reservoir. The 

calculated basin average SWE index that covering the period of 1961-2007 is shown 

in Figure 1.10. 
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Figure 1.10 Average snow water equivalent index of Rio Grande Basin above 
Elephant Butte Reservoir (1961-2007) 

 
 
 

1.4.2.4 SNOTEL Precipitation  

The precipitation data from the same SNOTEL sites selected were also used 

for analysis due to operational forecasting practices. For March-July seasonal flow 

regression equation development, the precipitation at some single sites was extended 

back to 1981 using linear regression with precipitation at the nearest weather 

stations (as shown in the Table 1.4). Only the Wolf Creek Summit SNOTEL site 

needed to be extended from 1987 back to 1981. The other SNOTEL sites have 

precipitation measurement records back to 1981 (as shown in Table 1.3).  
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For time series and neural networks modeling of monthly and defined 

seasonal flows, a basin average precipitation index was calculated for the covering 

period of 1961 to 2007 by applying the same approach that was used in section 

1.4.1.4. The extended average monthly SNOTEL precipitation index that covers the 

period 1961-2007 is shown in Figure 1.11. The SNOTEL precipitation data were 

obtained from NRCS website: http://www.wcc.nrcs.usda.gov/snow/.  The weather 

stations used for extending the precipitation data were shown in Table 1.4 and 

Figure 1.7. The monthly precipitation data of weather stations were obtained from 

the Western Region Climate Center (WRCC) website: http://www.wrcc.dri.edu/. 
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Figure 1.11 Extended monthly average SNOTEL precipitation index of Rio Grande 

Basin above Elephant Butte Reservoir (1961-2007) 
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Table 1.4 Weather stations used in the study of Rio Grande Basin above Elephant 
Butte Reservoir 

 

Station Name 
North 

Latitude 
West 

Longitude 
COOP NWS State County Elevation(ft) 

HERMIT 7 ESE 37.77 107.13 53951 HERC2 CO MINERAL 9000 

SAN LUIS 2 SE 37.18 105.41 57430 SLSC2 CO COSTILLA 8033 

SAN LUIS 3 SE 37.18 105.41 57428 SANC2 CO COSTILLA 8017 

WOLF CREEK 
PASS 1 E 

37.48 106.78 59181 SFKC2 CO MINERAL 10640 

BRAZOS LODGE 36.75 106.45 291180 CMAN5 NM 
RIO 

ARRIBA 
8009 

CANJILON R S 36.48 106.45 291389 CJLN5 NM 
RIO 

ARRIBA 
7828 

CHAMA 36.92 106.58 291664 CHMN5 NM 
RIO 

ARRIBA 
7850 

LOS ALAMOS 35.87 106.32 295084 LOAN5 NM 
LOS 

ALAMOS 
7424 

RED RIVER 36.70 105.40 297323 REDN5 NM TAOS 8676 

TAOS 36.38 105.60 298668 E23 NM TAOS 6965 

 

 

1.4.2.5 SNOTEL Temperature  

As described in the previous sections, only March-July seasonal net inflow 

modeling included the monthly basin average SNOTEL temperature index as one of  

the potential input variables in the regression equation development. The monthly 

basin average temperature index was calculated using the same approach described 

in section 1.4.1.5.The resulting monthly extended SNOTEL average temperature 

index covering the period of 1981-2007 is of similar magnitude and pattern as the 

average monthly SNOTEL temperature index for the Rio Grande Headwaters Basin 

above Del Norte Gaging Station. The weather stations used for extending the data 

are shown in Table 1.4 and Figure 1.7. The SNOTEL temperature data were 

obtained from NRCS website: http://www.wcc.nrcs.usda.gov/snow/.  The monthly 
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average temperature data of the weather stations were obtained from the Western 

Region Climate Center (WRCC) website: http://www.wrcc.dri.edu/. 

 

1.4.3 El Niño-Southern Oscillation Index 

 To analyze the correlations between large-scale climate indices and Rio 

Grande streamflow, the monthly Southern Oscillation Index (SOI) data from 1961 to 

2007 were used in the study. The El Niño-Southern Oscillation (ENSO) phenomenon 

is associated with anomalous sea level pressure, surface winds and sea surface 

temperature near the equatorial Pacific. The signature of an ENSO event is in the sea-

level pressure gradient currently measured between Darwin, Australia and Tahiti. 

This gradient is the primary variable used to measure the magnitude of an ENSO 

event in the form of the Southern Oscillation Index (SOI). As a measure of the state 

of the ENSO, the SOI is computed as the normalized difference in standardized sea-

level pressure anomalies between Tahiti and Darwin relative to its root mean square. 

The monthly standardized SOI data used in this study was retrieved from the Climate 

Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/soi) and is shown in 

Figure 1.12. 
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Figure 1.12 Monthly Southern Oscillation Index (SOI) for the period 1960-2007 
 
 
 According to the criteria proposed by Redmond and Koch (1991) and Cayan 

et al. (1999), when the previous calendar year averaged SOI from June to November 

is -0.5 or less, then the present water year is designated as El Niño . If it is greater 

than or equal to +0.5, then present water year is designated as La Nina. If it is 

between them, then present water year is neutral.  Based on this criteria, the data 

period years used in the study, including calibration years (1961-1999) and 

forecasting years (2000-2007) were categorized as El Niño  years, La Nina years and 

neutral years (as shown in Figure 1.13).  
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Figure 1.13 Designation of ENSO phases for the data period (1961-2007) used in the 

study (Adapted from Lee, 2004) 
 

1.5 Organization of the Dissertation 

This dissertation is composed of six chapters. The general organization of the  

dissertation and the focus of each chapter can be described as follows:  

 Chapter 1 introduces current issues existing in seasonal and monthly 

streamflow forecasting, and covers the scope and objectives of the study. The study 

sites, data used and some data preparation procedures used in the study are also 

presented in this chapter. 

 Chapter 2 conducts a comprehensive literature review regarding seasonal and 

monthly streamflow forecasting, and current issues concerning the application of 
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hybrid modeling methods in streamflow forecasting. Methodologies that are used in 

the study, including algorithms of partial least squares regression (PLSR), principal 

components regression (PCR), autoregressive integrated moving average (ARIMA) 

models, transfer function-noise (TFN) models, artificial neural networks (ANN) are 

described in detail. In addition, the possible categorization of hybrid modeling 

methods and the hybrid models that are used in the study are also presented in this 

chapter.  

 Chapter 3 investigates the application of partial least squares regression 

(PLSR) in seasonal streamflow forecasting. The chapter focuses on the development 

of PLSR and principal components regression (PCR) models for seasonal streamflow 

volume forecasts using snow water equivalent, precipitation, temperature, and 

previous flow conditions as input variables. The selection of an optimal number of 

components using the jackknife cross validation scheme and variable selection 

approach using PLSR are discussed in detail. The performance of the PLSR and PCR 

models in seasonal streamflow forecasting are compared to each other and to NRCS 

official forecasts. The final regression equations and conclusions are presented at the 

end of the chapter.  

 Chapter 4 proposes an application of hybrid modeling approaches in seasonal 

streamflow forecasting. Two hybrid modeling approaches, a forecast modification 

using a combination of transfer function-noise (TFN) model with artificial neural 

networks (ANN), and the combination of principal components analysis (PCA) with 

ANN, are investigated for the purpose of improving seasonal streamflow forecasts. 



 
 

38

To perform time series modeling of seasonal flow, different seasons are defined for 

the two basins used in the study. The forecast performances of two hybrid modeling 

approaches are compared to the different single modeling techniques such as 

ARIMA, TFN and ANN. Finally, some general discussions and conclusions are 

summarized at the end of the chapter. 

 Chapter 5 investigates the response of monthly streamflow processes to basin 

precipitation, snow water equivalent, El Niño Southern Oscillation (ENSO) using 

cross correlation analysis. Several statistical models including ARIMA, TFN, and 

ANN were built for monthly streamflows in the study sites. Then, one-month-ahead 

forecasts of those models for spring-summer season were modified using snow water 

equivalents and ENSO signals using ANN technique. The performances of different 

modeling approaches are compared with each other and some general discussion and 

conclusions are presented at the end of the chapter. 

 Chapter 6 summarizes the results of the previous chapters. The capabilities 

and limitations of different modeling methods are discussed in both monthly and 

seasonal time scales. Some suggestions and recommendations for future research 

work are also proposed. 

 Relevant figures and tables are included and are numbered sequentially within 

each chapter. The SAS codes used for PLSR model development including model 

calibration, jackknife cross validation, and one-step- ahead rolling forward 

forecasting are also included in the Appendices that are located at the end of the 

dissertation. 
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2 LITERATURE REVIEW 

 

2.1 General Classes of Forecasting Models 

 Streamflow forecasting is of great importance to water resources management 

and planning. Particularly, the long-range forecasting such as monthly, seasonal, or 

annual time scales is very useful in reservoir operations and irrigation management 

decisions such as scheduling releases, allocating water to downstream users, and 

managing river treaties or Compact compliances. Due to their importance, a large 

number of forecasting models have been developed and applied in the streamflow 

forecasting practices for the last several decades.  

 Streamflow forecasting models may fall into two categories in general: 

process-driven methods and data-driven methods (Wang, 2006). The process-driven 

modeling is a knowledge-driven modeling method that tries to explain the underlying 

physical processes of the watershed system. The low flow recession models, 

conceptual rainfall-runoff models, and snowmelt-runoff models are in this category. 

Data-driven models, on the contrary, are based on a limited knowledge of the internal 

physical mechanism of the watershed system and rely on the data describing input 

and output characteristics. They are essentially black-box models that characterize the 

relationships between inputs and outputs without detailed consideration of the details 

or explicit simulation of the underlying physical process. They may include 

regression models, time series models, artificial neural networks (ANN) models and 

non-parametric models such as K-nearest neighbor method. Recently, the application 
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of some hybrid models, which combine the features of different type models have 

been reported in literature (e.g., Abrahart and See, 2002; Jain and Kumar, 2007; 

Karamouz and Zahraie, 2004; Kişi, 2008; Srinivas and Sirinivasan, 2001; Wang et al., 

2005b). 

 Recently, data-driven modeling has become quite popular in streamflow 

forecasting due to the increase in data availability from metering stations and real-

time data retrieval.  Increasing computational power and sophistication of modeling 

theory and software have also fueled the popularity of data-driven modeling.  Data-

driven models have the added advantage of predicting the relationship between inputs 

and outputs without requiring detailed conceptualization of the extremely complex 

and often poorly understood physical processes which, in reality, cause the input-

output behavior (Wang, 2006).   

 Among the various data-driven models in streamflow forecasting, the time 

series models, including different types of autoregressive integrated moving average 

(ARIMA) models and transfer function-noise (TFN) models, have been widely used 

in the last few decades. Recently developed artificial neural networks (ANN) models 

and non-parametric models such as modified K-nearest neighbor and kernel density 

estimator, have been applied to streamflow forecasting due to their ability to extract 

nonlinear relationships without any prior assumptions (Wang, 2006). Multivariate 

regression has been used in the seasonal and annual streamflow forecasting because 

of its ability to deal with collinearity more effectively than multiple linear regression. 

Among various forms of multivariate regression methods, the principal components 
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regression (PCR) is the most frequently used method because of its simplicity and 

systematic way of developing the regression equation. Recently, the partial least 

squares regression (PLSR) has been introduced into hydrologic forecasting after it 

had been used in chemometrics for several decades (Tootle et al., 2007; Wold, 1966). 

  The application of various data-driven models in streamflow forecasting is 

largely dependent upon the time scale of the dependent variable. The regression 

methods are used mostly for the larger time scales; such as seasonal or annual, since 

the longer time scale hydrologic variables are usually characterized by linear 

relationship tendency between predictors and dependent variables. In addition, no 

significant autocorrelation may be detected in large time scales such as annual 

streamflows and spring-summer streamflows in consequent years.  The hydrologic 

variables with shorter time scales, such as monthly, daily and hourly usually show a 

strong nonlinear relationship between input and output. Therefore, they are usually 

modeled using ANN models, non-parametric models or time series models through 

appropriate transformations. In the next sections of this chapter, the streamflow 

forecast modeling in two time scales including seasonal and monthly will be 

discussed and analyzed. 

 

2.2 Seasonal Flow Forecasts 

2.2.1 Current Practices in Western United States 

 Forecasting seasonal volume of river flow is important for making decisions 

related to economic management, flood mitigation, and environmental consideration 
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of the water resources system. Seasonal volumetric streamflow represents an 

important hydrologic parameter for water supply purposes.  Hence, several agencies, 

namely the National Weather Service (NWS) River Forecast Centers (RFCs), the 

National Water and Climate Center (NWCC) of the United States Department of 

Agriculture (USDA), Natural Resources Conservation Service (NRCS), Bureau of 

Reclamation (BOR) and some local cooperating agencies, such as the Salt River 

Project (SRP) in Arizona, issue seasonal streamflow forecasts at various forecasting 

points for numerous rivers in the continental United States (Pagano et al., 2004).  

 In the Western United States, the Water Supply Outlooks (WSOs) are issued 

jointly by the NWS River Forecast Centers (RFCs) and Natural Resources 

Conservation Service (NRCS). These forecasts are available in print “Basin Outlook 

Report” publications or on the Internet at http://www.wcc.nrcs.usda.gov/wsf. The 

Water Supply Outlooks have been used by water managers for almost 70 years. They 

are critical components in effective water management and are utilized by a broad 

spectrum of users for a variety of purposes, ranging from irrigated agriculture, flood 

control, municipal water supply, endangered species protection, power generation and 

recreation (Pagano, 2005; Pagano et al., 2004). 

The primary operational method of seasonal streamflow forecasting in the 

western United States is the regression of seasonal streamflow volume on indicator 

variables, primarily point observations of snow-water equivalent (Wood and 

Lettenmaier, 2006). The multiple linear regression was used by NRCS for many years 

until the early 1990s, when Garen (1992) proposed and facilitated the use of principal 
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components regression in streamflow volume forecasting. Since then, the principal 

components regression has been the standard methodology used by NRCS. In 2006, 

NRCS employed an Excel® spreadsheet based water supply forecasting software 

called Visual Interactive Prediction and Estimation Routines (VIPER) with data 

retrieval, visualization, and forecast calibration and execution functions. The VIPER 

supports both principal components regression as well as another method, Z-score 

regression. Other statistical techniques can also be performed with VIPER, including 

searching for optimum combinations of independent variables, searching for optimum 

time periods covered by selected independent variables, and jackknife testing of 

models (NRCS, 2007).  

The NWS and NRCS are two U.S. Federal agencies with primary 

responsibility for seasonal streamflow forecasting in the western United States. 

While regression based seasonal streamflow forecasts still form the basis of the NWS 

and NRCS operational systems, a number of different methods have been developed 

and tested to improve the robustness of operational forecast methods (Wood and 

Lettenmaier, 2006). The National Weather Service (NWS) is developing  

Advanced Hydrologic Prediction System (AHPS) to provide long-lead predictions of 

peak flows and low flows. The AHPS Ensemble Prediction System (ESP) involves 

the calibration of a hydrologic simulation model, model initialization using current 

watershed states, and forcing based on a number of observed historical 

meteorological traces.  The NRCS’s NWCC is also actively developing a similar 
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capability, including an advanced spatially distributed hydrologic simulation models 

(Pagano and Garen, 2006; Pagano, 2005).  

 

2.2.2 Collinearity Issue in Seasonal Flow Forecasts 

 The predictor variables used in seasonal water supply forecasting are usually 

highly intercorrelated. For example, the snow water equivalent, precipitation data of 

different Snow Telemetry (SNOTEL) sites and different months are highly correlated 

with each other. If a multiple linear regression model were built using these variables 

in one equation, the model would fit data very well, but would produce worse 

predictions on the new data. A large number of intercorrelated predictor variables are 

often referred to as a multicollinearity issue, which causes irrational coefficients in 

the regression equation and does not provide reliable predictions over time. However, 

there are several solutions for the problem in seasonal flow forecasting. For instance, 

1) the elimination of predictor variables that are associated with irrational 

coefficients;  2) elimination of predictor variables using stepwise regression method; 

3) constructing composite indices that used as predictor variables; 4) using an 

orthogonal transformation of the correlation matrix to restructure a set of 

intercorrelated variables into an equal number of uncorrelated variables (Garen, 1992; 

McCuen, 1985).  

 The elimination of predictor variables might not provide a better solution 

because of the heavy reliance on information from very few sites, which may not 

represent spatially variable information of a basin. Although constructing composite 
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indices can remove the major source of intercorrelations of the predictor variables, 

these indices are usually determined without consideration of regression, and may not 

be statistically optimal for forecasting (Garen, 1992). The Z-score regression that is 

currently used by NRCS could be a better solution for this problem because the 

weightings used in the Z-score method are calculated based on correlations with the 

dependent variable. However, the weightings have no knowledge of the 

intercorrelations among the independent variables (NRCS, 2007; Pagano, personal 

communication, March 3, 2008).  

 Transforming the original variables into a number of uncorrelated 

(orthogonal) variables and then performing a regression on them may be a better 

solution due to its rigorous way of dealing with multicollinearity problems. Several 

methods such as principal components regression (PCR) and reduced rank regression 

(RR) were developed for this purpose and have been applied in various fields. The 

PCR extracts factors to explain as much predictor variation as possible, but may not 

be associated with the variations of response variable. In contrast, the RR extracts 

factors to explain as much response variable variation as possible, but predictions 

may not be accurate (Tobias, 1995). To balance the two objectives of explaining 

response variables variation and explaining predictor variation, the partial least 

squares regression (PLSR) was developed and used extensively in the chemometrics 

the last few decades and has provided a better solution for multicollinearity problems. 

Yeniay and Göktaş (2002) compared the performance of the three regression methods 

using economic data and found that PLSR performed better in terms of predictive 
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ability compare to the other two methods. However, compared to principal 

components regression, there are limited applications of PLSR and RR in seasonal 

streamflow volume forecasting. Only recently, has PLSR gained importance in the 

hydrologic community because of its attractive feature of dealing with highly 

intercorrelated variables that could result in improved forecast skills compared to 

other methods. 

 

2.2.3 Possible Improvement of Seasonal Flow Forecasts 

 As described in section 2.2.1, the principal components regression (PCR) is 

the main regression method used by the NRCS for seasonal flow forecasts at present. 

The PCR is typically utilized to account for collinearity issues and has been 

successfully applied to seasonal streamflow forecasting. Garen (1992) introduced 

principal components regression and methodology of searching for optimal and near 

optimal combination of variables to the NRCS forecasting practices. Since then, the 

principal components regression has become one of the main forecasting techniques 

at NRCS because substantial improvement in forecast accuracy has been achieved 

with PCR compared to a multiple linear regression. Eldaw et al. (2003) applied the 

PCR to the seasonal Nile River streamflow forecasting based on sea surface 

temperatures (SST) and the previous year of Guinea precipitation. In their study, the 

PCR streamflow forecast models showed significant improvement over the multiple-

regression models for several long lead times.  
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 Z-score regression, a comparatively new, effective method in dealing with 

collinearity and missing data issues, has been introduced and is being used currently 

by NRCS together with PCR. The weightings used in the Z-score method are based 

on correlations with the dependent variable, whereas principal component weightings 

have no knowledge of the dependent variable. The Z-score method is particularly 

useful when dealing with sets of independent variables that are not serially complete 

(i.e., have missing values) or have varying periods of record (NRCS, 2007; Pagano 

personal communication, March 4, 2008). 

 Improving the seasonal volume forecasts has always been an important issue 

for researchers and hydrologic forecasters. As mentioned previously, efforts are under 

way to develop high-quality spatially distributed hydrological modeling for improved 

streamflow forecasting using remote sensing (RS), geographic information system 

(GIS) technology, and data gathered in field experiments. However, the distributed 

models are not convenient and timely because of the satellite data availability in the 

operational forecasting environment (Pagano, 2005). Hence, researchers are looking 

at two main approaches to improve seasonal volume forecasts.  

 First, the forecasts could be improved if the model contains new input 

variables that represent antecedent and interannual flow and climate conditions. 

These variables could be the state of regional groundwater system, streamflows from 

previous 1 or 2 years, El Niño  Southern Oscillation (ENSO) and Pacific Decadal 

Oscillation (PDO). Many research papers look at the relationship between various 

climate variables and streamflow processes (e.g., Cayan et al. 1999; Hamlet and 
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Lettenmaier, 1999; Hsieh et al., 2003, Lee et al., 2004; Pagano and Garen, 2005; 

Pagano and Garen, 2006; Redmond and Koch, 1991; Tootle and Piechota, 2006).  

 The second possible alternative to improve forecast models is the application 

of more robust modeling techniques, such as using  principal components regression 

(PCR), partial least squares regression (PLSR), artificial neural networks (ANN), 

genetic algorithms, non-parametric methods and hybrid modeling approaches. Some 

of these methods, such as Z-score regression and PLSR, could improve model 

forecasts by dealing with multicollinearity issues, while other methods including 

ANN, genetic algorithm and nonparametric methods, could improve forecast 

accuracy by modeling nonlinear relationship between input and output variables 

efficiently without any normality and linearity assumption of the streamflow 

processes. 

 Many research results were reported in the literature regarding the issue of 

improved seasonal and annual streamflow forecasts using more robust approaches. 

Hsieh et al. (2003) applied multiple linear regressions (MLR) and feed-forward neural 

network models using principal components of large-scale climatic indices to predict 

the seasonal volume of Columbia River in British Columbia. Their results showed 

that the neural network and MLR predictions were essentially identical. This was 

because the detectable relationships in the small sample size might have been linear. 

Nonparametric methods, such as kernel density estimator and K-nearest neighbor 

method have been successfully applied to seasonal streamflow forecasting and 

simulation. Unlike parametric models, the nonparametric methods are assumption 
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free and no parameter estimation and data transformation are necessary. Piechota and 

Dracup (1999) applied a kernel density based non-parametric method for long-lead 

time forecasting of seasonal streamflow. Their results showed that 3- to 7- month lead 

time forecasts of spring-summer runoff using El Niño Southern Oscillation indicators 

had better forecast skills than climatology. Successful application of other 

nonparametric methods including K-nearest neighbor, modified K-nearest neighbor 

method and hybrid parametric/nonparametric models can be found in the literature 

(e.g., Grantz, 2003; Lall and Sharma, 1996; Piechota et al., 1998; Prairie et al., 2006; 

Rajagopalan and Lall, 1999; Shamseldin and O’Connor, 1996; Sharma et al., 1997; 

Souza and Lall, 2003; Srinivas and Srinivasan, 2001; Tootle and Piechota, 2004). 

 In addition to the above mentioned models, a partial least squares regression 

(PLSR) can be applied to streamflow forecasting. Although PLSR is relatively new to 

hydrologic applications, it has been used in chemometric studies since its 

development by Herman Wold in the 1960s for use in econometrics (Wold, 1966). 

The attractive feature of PLSR is that the regression is based on the principal 

components of both predictors and response variables. The application of PLSR in the 

seasonal streamflow forecasting is starting to draw the attention of hydrologists. 

Tootle et al. (2007) applied the PLSR in long lead-time seasonal streamflow 

forecasting for the first time using Pacific and Atlantic sea surface temperatures 

(SSTs). Their research suggested that the PLSR could provide strong forecast skill in 

long lead-time seasonal runoff volume forecasts.  



 
 

50

In PCR, the intercorrelations among the predictors are the basis, whereas 

weightings have no knowledge of the response variable. On the contrary, the Z-score 

regression is based on correlations with the response variable, whereas the Z-score 

weightings have no knowledge of the intercorrelations among the predictors. In 

contrast to PCR and Z-score regression, the PLSR balances the information in both 

predictors (i.e., precipitation and snow water equivalent) and response variables (i.e., 

seasonal streamflow volume) by focusing on the covariance between them, and 

reduces the impact of large, but irrelevant predictor variations. Partial least squares 

regression is similar to canonical correlation analysis (CCA). Canonical correlation 

analysis is also a well-known technique for feature extraction from two sets of 

multidimensional variables. However, unlike PLSR, the CCA is not a prediction 

technique, but rather a technique for describing the relationship between two sets of 

multivariate data. The fundamental difference between CCA and PLSR is that CCA 

maximizes the correlation while PLS maximizes the covariance (Sun et al., 2009). 

Both PLSR and CCA are the various multivariate extensions of the multiple linear 

regression models. However, the CCA extends multiple linear regression that imposes 

restrictions, such that factors underlying the response and predictor variables are 

extracted from predictor variation and response variation, respectively, and never 

from covariation involving both predictor and response variables. In PLSR, prediction 

functions are represented by factors extracted based on the covariance between 

predictor and response variables. This is probably the least restrictive multivariate 

technique. This flexibility allows it to be used in situations where the use of 
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traditional multivariate methods is limited, such as when there are fewer observations 

than predictor variables (StatSoft Inc., 2008). In the next sections of this chapter the 

methodologies of PCR and PLSR will be discussed in detail. 

 

2.2.4 Principal Components Regression (PCR) 

Principal components regression is a standard multivariate regression that 

deals with highly intercorrelated independent variables by using principal 

components as regressors in the regression. It is an alternative regression solution for 

the multiple linear regression when there are a large number of predictor variables 

that are correlated with each other (NRCS, 2007). When the predictor variables are 

not correlated, the multiple linear regression would be the first choice in regression. 

The matrix form of the multiple linear regression models is expressed as follows 

(Geladi and Kowalski, 1986): 

  Y=XB+E
*            (2.1)      

Where 

Y - the matrix of dependent variables, (n × p) 

X -the matrix of predictor variables, (n × m) 

E
* - the residual matrix, (n × p) 

B-the matrix of coefficients, (m × p) 

n- the number of observations in calibration set 

p- the number of dependent variables, (p=1 in this study, it is April-September runoff   

     volume at Rio Grande near Del Norte Gaging Station or March-July Elephant      
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    Butte net inflow volume, Rio Grande). 

m- the number of independent variables 

The least squares solution is: 

  B̂ = (X'X)
-1

 X'Y         (2.2) 

In principal components regression, the multicollinearity that existed in the 

predictor variables can be eliminated by extracting a group of orthogonal principal 

components from predictors through principal components analysis (PCA) on X, and 

then  performing multiple linear regressions on Y using principal components of X. 

Principal Components Analysis (PCA) of the matrix (X) decomposes (X) into a score 

matrix (T) times a loading matrix (P) and a residual (i.e., error) matrix (E) (Abdi, 

2003; Tootle et al., 2007). It is possible to let the score matrix, T, represent the 

predictor matrix, X:  

  X=TP'+E   and T=XP      (2.3) 

Where 

T – the matrix of X scores, (n × a) 

P' – the matrix of X loadings, (a × m) 

E – a residual matrix of X 

a – the number of factor used in the regression 

Then, the multiple linear regression formula can be written as following by replacing 

X with T: 
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  Y=TB+E*                (2.4) 

The solution is: 

  B̂ = (T'T)
-1

T'Y         (2.5) 

The graphical description is shown in Figure 2.1. 
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Figure 2.1 Graphical representation of principal components regression algorithm 

(adapted from Geladi and Kowalski, 1986) 
 

The determination of which and how many principal components should be 

retained is a key issue in the principal components regression. Garen (1992) provided 

a detailed description for the selection of principal components in seasonal 

streamflow forecasting. The description of detailed methodology of principal 

components analysis and principal components regression can also be found in Geladi 

and Kowalski (1986), McCuen (1985), McCuen and Snyder (1986), and NRCS 

(2007).  
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2.2.5 Partial Least Squares Regression (PLSR) 

 In the principal components regression, the principal components of X explain 

the variability in X rather than Y, hence a PCR may include components that are 

irrelevant to the prediction of Y (Abdi, 2003). In contrast, PLSR is developed based 

on both principal components of X and Y. Specifically, PLSR searches for a set of 

components (also called latent vectors) that explains as much of the covariance 

between X and Y as possible by performing simultaneous decomposition of both X 

and Y (Abdi, 2003). 

 Partial least squares regression (PLSR) is a combination of individual outer 

relations of X and Y, and an inner relation of linking both X and Y matrices (as 

shown in Figure 2.2).  
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Figure 2.2 Algorithm of PLSR showing an inner and outer relationship of X and Y 

matrices (Tootle et al., 2007) 
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The outer relation for the X matrix, which is similar decomposition as the principal 

components analysis, can be expressed as (Geladi and Kowalski, 1986): 

  X=TP'+E   = ∑thph'+ E              (2.6) 

The outer relation for the Y matrix can be expressed in the same way: 

  Y=UQ'+F*  =  ∑uhqh'+ F*          (2.7) 

Where, 

th - a column vector of scores for X block 

ph'- a row vector of loadings for X block 

U - the matrix of Y scores 

Q'- the matrix of Y loadings  

F
*– a residual matrix of Y 

uh – a column vector of scores for Y block , factor h 

qh'- a row vector of loadings for Y block, factor h 

 The inner relation of X and Y can be expressed by the regression of Y block 

score, u, against X block score, t , for every component. The simplest model for this 

relation is linear one (Geladi and Kowalski, 1986): 

  ûh = bhth                              (2.8) 

where bh = uh'th/th'th . The bh is equivalent to the regression coefficients. This simple 

model (Equation 2.8) is not the best one, because the principal components of X and 

Y are calculated separately so that they have a weak relation to each other. The inner 

relation can be improved by exchanging scores between the X and Y blocks in the 
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iterative process. Considering the outer and inner relation of X and Y blocks, the 

following mixed relation can be given to Y where the error, F , is minimized: 

  Y=TBQ' + F                        (2.9) 

There are several algorithms available for obtaining partial least squares estimators, 

such as nonlinear iterative partial least squares (NIPALS), singular value 

decomposition (SVD), and SIMPLS method of de Jong (1993). Geladi and Kowalski 

(1986) provided a detailed tutorial on the PLSR method. More detailed information 

about PLSR can be found in Abdi (2003), Tootle et al. (2007), Wold (1966) and Wold 

(1994).  

 

2.3 Monthly Flow Forecasts  

2.3.1 Modeling of Monthly Streamflow Processes 

 There is a considerable amount of literature on the modeling of monthly 

streamflow process due to its importance in water resources management and 

planning. Many research studies have covered application of different kinds of 

modeling approaches to monthly streamflow forecasting and simulation, including 

conceptual models to time series analysis, artificial neural networks, non-parametric 

modeling methods and, more recently, the hybrid modeling approaches. Monthly 

streamflow processes usually show strong seasonality and nonlinearity. The 

application of various data-driven models in streamflow forecasting is largely 

dependent on the time scale of the dependent variable.  
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 Time series analysis is one of the most popular forms of data-driven modeling 

for streamflow forecasting.  The technique has been widely used in recent decades 

because of its forecasting capability, simple and readily available data needs, and 

more systematic way of building models by three modeling stages (identification, 

estimation, and diagnostic check) which had been standardized by Box and Jenkins 

(1976). The application of time series modeling in streamflow forecasting includes 

univariate models which deal with only one time series and more complex 

multivariate models (dynamic regression models, also called transfer function-noise 

models). The univariate models are based on past streamflows and do not take into 

account the effects of other time series variables, such as precipitation, snowmelt and 

temperature. In contrast, the transfer function-noise (TFN) models can incorporate 

exogenous time series variables in addition to past streamflows. Because more 

information is used for making forecasts, usually transfer function-noise (TFN) 

models can make better forecasts than the univariate autoregressive integrated 

moving average (ARIMA) models (Wang, 2006; Wang et al., 2005b).   

 The univariate time series models including ARIMA and its derivatives such 

as seasonal ARIMA, periodic ARIMA, deseasonalized ARMA have long been 

applied in streamflow forecasting, particularly in the modeling of monthly streamflow 

(e.g., Abrahart and See, 2000; Bender and Simonovic, 1994; Hipel and McLeod, 

1994; McKerchar and Delleur, 1974; Noakes et al., 1985; Salas, 1992; Tesfaye et al., 

2005; Yürekli et al., 2005). The application of transfer function-noise (TFN) models 

with exogenous variables in streamflow forecasting can also be found in the 
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literature. Thompstone et al. (1985) compared deseasonalized autoregressive 

integrated moving average (ARIMA), periodic autoregressive (PAR), and TFN 

models with rainfall and snowmelt inputs, and a conceptual model. They found that 

the TFN model performed better than other models when forecasting quarter-monthly 

streamflow. Awadallah and Rousselle (2000) used El Niňo Southern Oscillation 

(ENSO) sea-surface temperature signals as exogenous input variables to develop a 

TFN model to forecast summer runoff of the Nile River. Their TFN model suggested 

that the ENSO input explained 63% of the variability of Nile summer runoff. Mondal 

and Wasimi ( 2005) proposed a periodic TFN model and applied it to monthly 

forecasts of the Ganges River flow using monthly rainfall data of northern India as 

the predictor. The results suggested that the methodology has the potential capability 

of capturing the seasonally varying dynamic relationship between monthly rainfall 

and streamflow processes. 

 The ARIMA and TFN models used in the streamflow forecasting process 

were generally linear models. They were built under the assumption that the process 

follows normal distribution. But most streamflow processes are commonly accepted 

as nonlinear (Wang, 2006). Moreover, the normal distribution assumption is 

frequently violated in streamflow processes. Hence, the recently developed machine 

learning techniques, artificial neural networks (ANN), have gained more and more 

popularity for hydrological forecasting because of their capability of identifying 

complex non-linear relationships between input and output data sets without the 
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necessity of understanding the nature of the phenomena and without making any 

underlying assumptions regarding linearity or normality.  

 Previous studies have concluded that ANNs are useful for forecasting 

streamflows. Markus et al. (1995) predicted monthly flow at Rio Grande near Del 

Norte in southern Colorado using neural network models and compared the results 

with the periodic transfer function model. The study showed that the ANN models 

provided slightly better results than periodic TFN models using standardized monthly 

flow data. Hsu et al. (1995) concluded that the ANN model is an effective alternative 

to ARMAX (autoregressive moving average with exogenous inputs). Huang et al. 

(2004) compared the ANN and ARIMA for daily, monthly, quarterly and yearly flow 

forecasting and concluded that the ANN provide better forecasting accuracy than 

ARIMA model. Many of the following studies have confirmed the superiority or 

comparableness of the ANN models over the traditional statistical and/or conceptual 

techniques in modeling the hydrological process (e.g., Abrahart et al., 2004; 

Birikundavyi et al., 2002; Coulibaly et al., 2000; Dibike and Solomatine, 2001; 

Govindaraju and Rao, 2000; Raman and Sunilkumar, 1995; Salas et al., 2000; 

Shamseldin, 1997; Tokar and Markus, 2000). 

 The identification and inclusion of exogenous variables is a critical step in 

building TFN and ANN models for monthly streamflow forecasting. There are many 

factors that may affect the streamflow process. These may include local factors such 

as discharges at the upstream gauging stations, precipitation and temperature, 

snowpack information in the watershed, and evaporation, as well as larger-scale 
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phenomena characterized by geophysical indices, such as El Niño Southern 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) (Mantua et al., 1997). In 

addition to local factors, the linkage between streamflow processes and geophysical 

indices have been intensively studied in the last few decades (e.g., Eltahia, 1996; 

Hamlet and Lettenmaier, 1999; Piechota et al., 1998; Piechota et al., 2001; Piechota 

and Dracup, 1999; Whitaker et al., 2001). Most of the previous studies were based on 

regression type models that established connections between climatic indices and 

streamflows. Longer time scales, such as seasonal and annual were reported in the 

previous studies when using geophysical indices as predictors of streamflow 

forecasting. On the other hand, the inclusion of ENSO and PDO signals in forecasting 

monthly streamflow processes have rarely been reported. This may be because the 

long-range streamflows are commonly related to some remote geophysical quantities, 

while real-time and short- to medium-range discharges are associated with local 

factors and initial conditions of the watershed. 

 In conclusion, the inclusion of various exogenous variables in building 

monthly TFN and ANN models is a very difficult task which requires understanding 

of hydrologic characteristics of the specific basin under study. Complete pre-

modeling analysis to identify the magnitude and patterns of relationships existing 

between modeled hydrologic variables and predictor variables on a monthly time 

scale should be examined. For example, the ENSO signals and snow budget 

information in a basin may have effects on the streamflow processes of some months, 

while streamflows in other months may not have any correlation with the ENSO 
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signals and snow budgets in the basin. This could result in difficulties including 

monthly snowpack information in the TFN modeling, since the snow only exists in 

winter and spring seasons in most of the basins. Hence, the pre-modeling analysis 

could provide modelers with an insight to choose appropriate forms of models to be 

used, and the approach that could be used to include this information in the modeling 

processes. 

 

2.3.2 Autoregressive Integrated Moving Average (ARIMA) model 

 Several types of ARIMA modeling methods and their derivatives could be 

used in the modeling  seasonal time series, such as monthly streamflow time series. 

They are seasonal ARIMA, periodic ARIMA and deseasonalized ARMA model. The 

deseasonalized ARMA type of modeling strategy was adopted in this study due to its 

simplicity and effectiveness of modeling.  The general form of ARIMA model is 

expressed as (Vandaele,1983) : 

  tt aByB )()( θϕ =       (2.10) 

Where, 

t

d

t YBy )1( −=  - stationary series after differencing 

p

pBBBB ϕϕϕϕ −−−−= ....1)( 2
21 - nonseasonal autoregressive polynomial 

q

qBBBB θθθθ −−−−= ....1)( 2
21  - nonseasonal moving average polynomial 

ta  = white noise process 

Yt = dependent variable 
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B is the backward shift operator defined as 1−= tt XBX  

 Examination of the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) provides a thorough basis for analyzing the system behavior under 

time dependence, and will suggest the appropriate parameters to include in the model. 

The Box and Jenkins (1976) three-stage standard modeling procedure (identification, 

estimation, and diagnostic check) can be used to develop ARIMA models. 

 

2.3.3 Transfer Function-Noise (TFN) Model 

 The transfer function-noise model is a time series model that incorporates 

more than one time series and introduces explicitly the dynamic characteristics of the 

system (Vandaele, 1983). It can be generally written as: 

  ttt NXBY += )(ν       (2.11) 

Where  

Xt = explanatory variable 

)(Bν ........2
210 BB ννν ++= - referred to as impulse response polynomial.  It 

can be approximated by a ratio of two finite polynomials. 

 Nt = a stochastic disturbance (noise) term that may or may not be correlated, 

but must be independent of input series. Assume that Nt  can be modeled by ARIMA 

models through proper differencing. 
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Then  Equation 2.11 can be written as : 
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If the disturbance term needs differencing to induce stationarity, the same 

differencing should be applied to the dependent and explanatory variables. In reality, 

stationary dependent and explanatory variables are used in building a TFN model. 

Therefore, there is no need to use same difference operator for each variable. 

Furthermore, it is then possible that after these stationarity transformations the noise 

term (Nt) is a simple ARIMA process, not involving any difference operator 

(Vandaele, 1983).  As a result, the transfer function can more generally be written as:  
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With              t

dds

t YBBy
'' )1()1( −−=  

                        t

dds

t XBBx )1()1( −−=  

Where 

l

l BBB ωωωω −−−= ....)( 10  - referred to as numerator polynomial 

r

r BBB δδδδ −−−= ....)( 10  - referred to as denominator  polynomial,   

 where 0δ =1 without loss of generality 

d
'= order of consecutive differencing of the dependent variable Yt until getting  

 stationary  series yt . 

  d = order of consecutive differencing of the input variable Xt until getting  

 stationary series xt  . 
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b = delay parameter or dead time, is defined as btt

b
xxB −= , indicates the number of  

 periods it takes before input variable starts influencing the dependent variable. 

 The single input TFN model as shown in Equation 2.13 can easily be extended 

to multiple-input TFN model which includes several input variables to the following 

form: 
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Where, m = number of input variables included in the model.  Box and Jenkins (1976) 

provided a comprehensive procedure for TFN modeling using prewhitened input 

series and filtered output series. The detailed algorithm is also described by Vandaele 

(1983). The Statistical Analysis Software ® (SAS) version 9.1 can be used for time 

series model development. 

 

2.3.4 Artificial Neural Networks (ANN)  

 Artificial neural networks are flexible mathematical structures that are capable 

of identifying complex non-linear relationships between input and output data sets. 

The motivation for the development of neural network technology stemmed from the 

desire to develop an artificial system that could perform "intelligent" tasks similar to 

those performed by the human brain.  

 The most commonly used type of ANN is a feed-forward network termed the 

multilayer perceptron (MLP). In this type of network, the artificial neurons, or 

processing units, are arranged in a layered configuration containing an input layer, 
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usually one hidden layer, and an output layer. Units in the hidden and output layers 

are connected to all of the units in the preceding layer. Each connection carries a 

weighting factor. The weighted sum of all inputs to a processing unit is calculated and 

compared to a threshold value. The activation signal then is passed through a 

mathematical transfer function to create an output signal that is sent to processing 

units in the next layer. Kim and Valdes (2003) described three-layered feed forward 

neural networks (FFNN) and provided a general framework for representing 

nonlinear functional mapping between a set of input and output variables.  

 Three-layered FFNNs are based on a linear combination of the input variables, 

which are transformed by a nonlinear activation function. The explicit expression for 

an output value of FFNN for one output neuron is given by: 
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Where  

w
ji 

is a weight in the hidden layer connecting the ith neuron in the input layer and the  

j
th neuron in the hidden layer 

w
jo 

is the bias for the jth hidden neuron 

f
h 

is the activation function of the hidden neuron 

w
j 
is a weight in the output layer connecting the jth neuron in the hidden layer 

w
o 

is the bias for the output 

xpi a value of the ith input for pattern p 
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f
0 

is the activation function for the output neuron 

The weights are different in the hidden and output layer, and their values can 

be changed during the process of network training. The relationship of the available 

input variables and output variables is generated by the training process. The process 

of training ANNs is accomplished by a backpropagation algorithm, which has been 

applied successfully to solve difficult and diverse problems. This algorithm is based 

on the error-correction learning rule. Basically, the error-propagation process consists 

of two passes through the different layers of the network as shown in Fig. 2.  In the 

forward pass, an input vector is applied to the neurons of the network, and its effect 

propagates through the network layer by layer. A set of output is produced as the 

actual response of the network. During the backward pass, on the other hand, the 

weights are all adjusted in accordance with the error-correction rule. The error signal 

is then propagated backward through the network. The weights are adjusted so as to 

make the actual response of the network closer to the desired response.  

 The objective of the backpropagation training process is to adjust the weights 

of the network to minimize the sum of squared errors of the network, which 

approximates the model outputs to the target values with a selected error goal:  
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Where  

n is the number of observations 

y
p
(n) is the desired target responses 
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ŷ
p
(n) is the actual response of the network at the nth iteration 

 The detailed description of the algorithm is provided in many studies (e.g., 

Tokar and Markus, 2000; Coulibaly et al., 2000; Dibike and Solomatine, 2001; Kim 

and Valdes, 2003). The NeuroSolutionsTM version 5.1 software, a neural network 

development environment (NeuroDimension Inc., 2009) was used in neural network 

modeling in this study.  

 

 

  
Figure 2.3 A typical three-layered feedforward neural network structure with one 

output neuron 
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2.4 Hybrid Modeling of Streamflow Processes 

2.4.1 Application of Hybrid Modeling in Streamflow Forecasts  

 Streamflow forecasting is a challenging task because of the complexity of the 

hydrologic system. There is no individual streamflow forecasting model that provides 

better forecast results under all circumstances with respect to alternative competing 

models (Shamsheldin, 2004). No single forecasting model is powerful and general 

enough to outperform the others for all types of catchments and under all 

circumstances or even one catchment with different behavioral phases. Every model 

has some degree of uncertainty, including structure and parameter uncertainty 

(Shamsheldin et al, 1997). Therefore, the reliance of a single model in streamflow 

forecasting may result in a considerable risk in water management if that model failed 

to provide reliable forecasts. A possible method to overcome this deficiency could be 

the application of a hybrid modeling approach which includes the combination of 

forecasts from different individual models and integration of different models that 

may provide better forecasting solutions than a single model. 

 Although relatively new to hydrological forecasting, the hybrid modeling 

approach has long been applied in diverse fields such as economics, business, and 

meteorology (Clemen, 1989; Shamsheldin, 2004). The early work of McLeod et al. 

(1987) that combined quarter-monthly river flow forecasts from different time series 

models laid a foundation for the application of hybrid modeling of streamflow 

forecasting. Since then, hybrid modeling has found wide application in the field of 

streamflow forecasting and many research studies have been reported in the literature 
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(e.g., Abrahart and See, 2002; Jain and Kumar, 2007; Kişi, 2008; See and Abrahart, 

2001; See and Openshaw, 1999; See and Openshaw, 2000; Shamsheldin et al, 1997; 

Shamsheldin et al., 2002; Srinivas and Sirinivasan, 2001; Wang et al., 2005b) 

 The recent work of Shamsheldin (2004) and Wang (2006) provide systematic 

analysis and summary on the application of hybrid modeling in streamflow 

forecasting and the underlying theory behind modeling procedures. According to their 

work, hybrid modeling as the integration of different models by definition may be 

divided into two approaches, namely a non-modular approach and a modular 

approach. The non-modular approach is essentially a forecast combination method 

that combines the individual forecast outputs from each different model. The modular 

approach, on the other hand, uses a divide-and-conquer principle to divide a complex 

forecasting problem into several simpler modeling subtasks, each of which is 

modeled by a different appropriate modeling method. Finally, the forecast results are 

integrated to yield a hybrid forecast. 

 Previous studies have shown the advantage of combining forecasts in 

streamflow forecasting. By combining the forecasts from several models, one can 

obtain a more reliable and accurate output than would be obtained by selecting a 

single model. The research results of Coulibaly et al. (2005) showed that using a 

weighted average method to combine three dynamically different models (artificial 

neural network, conceptual model and nearest neighbor model) could significantly 

improve the accuracy of the daily reservoir inflow forecast for up to four days ahead. 

Shamseldin et al. (1997) examined three different combination methods in the context 
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of flood forecasting; namely, the simple average method, the weighted-average 

method and the neural network method. See and Openshaw (2000) used four different 

approaches such as simple average, a Bayesian approach, and two fuzzy logic models, 

to combine the river level forecasts of three models (i.e., a hybrid neural network, an 

autoregressive moving average model, and a simple fuzzy rule-based model), and 

found that the addition of fuzzy logic to the crisp Bayesian approach yielded overall 

results that were superior to the other individual and integrated approaches. Wang 

(2006) employed four combination techniques, (i.e., simple average method, 

rollingly-updated weighted average method, semi-fixed weighted average method, 

and modular semi-fixed weighted average), and used them to combine the daily 

streamflow forecasts. The results showed that simple average method could improve 

the accuracy of forecasts with a four to five day lead time, and generally performed 

best among four competitive combination methods.  

 The modular approach of hybrid modeling can facilitate integration of 

conventional hydrological models such as time series analysis, conceptual models 

with those newly developed modeling techniques such as artificial neural networks, 

fuzzy logic and non-parametric modeling. Hence, it can exploit the strength of 

different modeling techniques to produce a better forecasting solution (Shamsheldin, 

2004). Recent research results reported in the literature justified the robustness of the 

methodology in streamflow forecasting. Wang et al. (2005b) presented the application 

of three forms of hybrid artificial neural networks (ANNs); namely, the threshold-

based ANN, the cluster-based ANN, and the periodic ANN in daily streamflow 



 
 

71

forecasting. For the purpose of comparing forecasting efficiency, the normal multi-

layer perceptron (MLP) form of ANN was selected as the baseline ANN model. 

Compared to the MLP which is fitted to the deseasonalized data, the periodic ANN, 

which is based on the soft seasonal partitioning, performed better for short lead times 

(3 days). Srinivas and Sirinivasan (2001) presented a hybrid model for stochastic 

simulation of multi-season streamflows which involves partial prewhitening of the 

streamflows using a parsimonious linear periodic parametric model, followed by 

resampling the resulting residuals using the moving block bootstrap method. See and 

Openshaw (1999) developed a modular neural network (MNN) river flow forecasting 

model for the River Ouse in the United Kingdom. In their study, they divided the 

hydrographs into four sections: rising flow limb, peak flow, falling limb and low 

flows. Different neural network models were developed for each section. The 

produced results for each section by individual neural network models was then 

integrated using a sophisticated fuzzy rule-based approach. The results showed that 

the proposed hybrid approach provided a well-performing and low-cost solution 

compared to the existing methods. 

 There are two main issues in the application of modular hybrid modeling in 

streamflow forecasting. The first step is to break down the complex forecasting 

problem into simpler components based on the conditions of the hydrologic 

processes. Secondly, integrate individual modeling results of each component and 

assess the forecast uncertainty with respect to hybrid modeling results. Various 

approaches were reported in the literature with regards to the problem. Zhang and 



 
 

72

Govindaraju (2000) divided the flow into low, medium and high flow events and 

modeled each flow category with different neural network models and finally used 

linear function to combine the results of individual inputs. Hsu et al. (2002) used Self-

Organizing Feature Map (as developed by Kohenon, 1984) to partition the input 

domain of neural networks into several regions such as base flow, increasing rainfall, 

and peaking hydrograph, then used a set of piecewise linear equations to combine the 

results of neural networks developed for each region. Parasuraman and Elshorbagy 

(2007) investigated the performance of a cluster-based neural network model trained 

using a genetic algorithm on two distinct case studies. The input data was clustered 

using K-means algorithm. Each cluster was then trained by an individual neural 

network module. The result of the study showed that the cluster-based neural network 

performed better than its counterparts in predicting the chaotic time series. Other 

methodologies such as fuzzy logic based partitioning of neural network model inputs 

(See and Openshaw, 1999), clustering inputs using self organizing map (Abrahart and 

See, 2000), range-dependent neural networks that partition input data as low, medium 

and high flow sets (Hu et al., 2001), and spiking modular neural networks 

(Parasuraman et al., 2006) have also been applied in the hybrid neural networks 

modeling of hydrologic forecasting.  

 Apart from modular and non-modular hybrid modeling approaches, another 

possible category of hybrid modeling techniques may be categorized as 

‘complementary’ modeling. It may be a combined application of physically-based 

models and data-driven models, or the combination of different modeling techniques  
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on the same forecasting problem. Solomatine and Price (2004) proposed the idea of 

complementary models in categorizing hybrid modeling methods. They pointed out 

that the complementary modeling methods can focus on the mismatch between 

physically-based models and observations. A data-driven model could be used as the 

secondary model to estimate the measured mismatch and to update the results of 

original models.  

 Complementary modeling is essentially a modeling of errors by combined 

application of several models. For example, a first model, such as time series model, 

may be used to generate the first forecasts. Then the second model, such as neural 

networks, would be used to model the forecast errors from the first model and 

combine them to generate final forecasts. Some application of such models in 

econometrics has been reported in the literature. Tseng et al. (2002) proposed a 

hybrid forecasting model that combined seasonal ARIMA and neural network 

backpropagation models for forecasting total production value for the Taiwan 

machinery industry and the soft drink time series. Zhang (2003) used a combination 

of ARIMA and neural networks in forecasting sun spot data, Canadian lynx data and 

the British pound/ US dollar exchange rate data. The results demonstrated the 

effectiveness of the hybrid methodology over any single modeling approach. The use 

of the hybrid modeling methodology and its role in improving forecasting accuracy 

was also reported in other literature (Aryal and Wang, 2004; Aslanargun et al., 2005; 

Joy and Jones, 2005).  
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 In addition to error modeling, the assimilation of data pre-processing and 

forecast modification into forecast modeling methods can also be conceived as the 

‘complementary’ modeling technique since they exploit advantages of both for 

improving streamflow forecasting accuracy. The idea behind such a modeling 

methodology is that it may be possible to improve the performance of neural network 

models in streamflow forecasting by removing the long-term trend and seasonal 

variations that exist in the raw data (Jain and Kumar, 2007). Recently, a number of 

studies on the combination of data pre-processing and neural networks have been 

reported in the literature. Kişi (2008) proposed a neuro-wavelet technique for 

modeling monthly streamflows. The combination of discrete wavelet transform and 

multi-layer perceptron were tested for one-month-ahead streamflow forecasting and 

the results revealed that the methodology improved the forecast accuracy compared to 

single neural network, multiple linear regression and autoregressive models. 

Mehdicani et al. (2006) presented an approach similar to that used in Kişi (2008). It 

was a conjunctive nonlinear model using wavelet transforms and artificial neural 

network. They applied the methodology in 15-day and monthly reservoir inflow and 

found that the forecasting performance of the methodology was better than 

conventional neural network prediction models. Jain and Kumar (2007) proposed a 

new hybrid time series neural network to exploit the strengths of both traditional time 

series and artificial neural networks. Two data pre-processing approaches were 

employed for the input data of neural networks: de-trended data, de-trended and 

deseasonalized data. The de-trending was performed by removing long term trends by 
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subtracting the annual average flow from the original time series. The 

deseasonalization was performed using Fourier mean approach. The results of the 

study suggested that the hybrid modeling method was a robust modeling technique 

that would be capable of capturing the non-linear nature of the complex streamflow 

time series.  

 Forecast modification can be another rigorous method applicable to 

streamflow forecasting. Karamouz and Zahraie (2004) presented a seasonal 

streamflow forecast modification approach using fuzzy rules based on the snow 

budget over a watershed and El Niño Southern Oscillation climate signals. The 

seasonal streamflow volume forecasted by ARIMA was modified by using proposed 

algorithm in their study. The results indicated that the proposed methodology has 

shown improvement in the statistical forecasts of Salt River Basin in Arizona.  The 

application of various methodologies in forecast modification, and innovative use of 

various techniques in streamflow forecasting, may contribute significantly to 

improving forecast accuracy. Therefore, further studies may be needed to substantiate 

practical application of the methodology in the hybrid modeling of streamflow 

processes. 

 The introduction of soft modeling techniques such as neural networks and 

fuzzy logic models facilitated the application of various hybrid modeling approaches 

in modeling complex streamflow processes. The number of publications on hybrid 

modeling of streamflow forecasting is increasing rapidly in recent years due to its 

ability to improve forecast accuracy. However, there is still a need for further 
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research that applies the hybrid models in streamflow forecasting; particularly when 

dealing with the issue of forecast uncertainty evaluation of hybrid modeling 

approaches. The literature review has presented the possible categorization and brief 

evaluation of hybrid modeling techniques in hydrologic modeling. It is hoped that 

future hydrological forecasting research efforts will also exploit the potential 

capabilities of hybrid modeling in achieving increased forecast accuracies in 

streamflow forecasting. 

 

2.4.2 Hybrid Modeling Approaches Used in the Study 

 Based on the literature review in the previous sections, the following two 

hybrid modeling approaches have been investigated for the purpose of improving 

seasonal and monthly streamflow forecasting performance in this study: 

1) Forecast modification using neural networks. 

2) The combination of principal components analysis (PCA) and artificial neural 

networks (ANN). 

 As discussed, the forecasting modification may fall into a ‘complementary’ 

hybrid modeling category which is the combination of two models; one used to 

generate the first forecasts, and then the other to modify the forecasts of the first 

model by modeling errors. In this study, instead of modeling errors, the forecasts of 

the first model were used as inputs for the second model. A detailed description of 

methodology is given in chapter 4.  



 
 

77

 The second approach, a combination of PCA and ANN, is essentially a 

combination of data pre-processing and neural networks models. It is also conceived 

as a ‘complementary’ hybrid modeling approach. The principal components analysis 

is a statistical technique that deals with highly intercorrelated predictor variables by 

extracting an equal number of uncorrelated variables. A brief discussion on the 

collinearity issue in streamflow processes was given in section 2.2.2. The highly 

intercorrelated variables may affect performance of neural networks by easily over 

training the network and giving very low performance in the new prediction data. 

Hence, the combination of PCA and ANN may facilitate the effective neural network 

modeling because the network may converge fast and easy due to the orthogonal 

features of principal components using fewer PCs than original variables as inputs. A 

more detailed description of the approach is given in chapter 4.  

 

2.5 Model Comparison and Forecast Evaluation Measures 

 Among many factors such as model structure, complexity, and computational 

requirements, forecast accuracy may be the most important factor used to compare 

various models and evaluate model performance. There are various forms of model 

comparison measures in the streamflow forecasting publications. To name a few, 

Thompstone et al. (1985) used standard error, mean absolute percentage errors 

(MAPE), mean absolute median errors, and significance test of differences in mean 

squared errors (MSE). The Pitman test and non-parametric Wilcoxon rank-sum test 

were applied in their study to compare the performance of the different models. Wang 



 
 

78

(2006) utilized the coefficient of efficiency, or model efficiency, which was proposed 

by Nash and Sutcliffe (1970). Additionally, they used seasonally-adjusted coefficient 

of efficiency, and root mean squared error in the model performance comparison. 

Abrahart and See (2000) applied a multicriteria assessment in performance 

comparison of different models which is the combination of five different global 

evaluation measures and two event-specific evaluation measures. The five global 

indices included mean absolute error (MAE), RMSE, mean higher order error 

function which emphasizes peak flow prediction, model efficiency, and percentage of 

predictions grouped according to degree of error. The two event-specific indices 

included average difference in peak prediction over all flood events and percentage of 

early, on-time, or late occurrence for prediction of individual peaks.  

The most commonly used performance evaluation indices in the literature are 

the mean squared error (MSE) or its variants, such as root mean squared error 

(RMSE), sum of squared error (SSE), and mean relative error (MRE) (Elshorobagy et 

al., 2000). Karunanithi et al. (1994) suggested that the two measures can provide 

different information about predictive ability of the model. For example, the MSE is a 

good measure for indicating goodness of fit at the high flows, while the MRE 

provides a more balanced perspective of the goodness of fit at moderate flows. 

Another derivative of RMSE, the normalized root mean squared error (NRMSE), is a 

unitless index that can be used to compare the forecasts of different models without 

considering the magnitude of the flow modeled. The NRMSE is also a measure of 

residual variance, and is indicative of the model’s predictive uncertainty. The low 
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value of NRMSE implies that the model is able to forecast the flows with reasonable 

accuracy (Jain et al., 2004). Additionally, the coefficient of determination and/or the 

correlation coefficients, may be another index used extensively for model comparison 

due to its unitless feature. There are many applications of correlation coefficients in 

model performance evaluation (Coulibaly et al., 2005; Jain et al., 2004; Jain and 

Kumar, 2007; Parasuraman and Elshorbagy, 2007; Shamseldin et al., 1997). Some 

other performance evaluation measures can also be seen in the literature. For 

example, the normalized mean bias error (Jain et al., 2004), pooled mean squared 

error - which is combination of MSE and MRE (Elshorobagy et al., 2000), threshold 

statistics (Jain and Kumar, 2007; Parasuraman and Elshorbagy, 2007), and relative 

bias (Coulibaly et al., 2005). 

 In order to compare the forecasting accuracy of the different models, a 

multicriterion performance evaluation procedure was used in this study. The 

following indices were used to evaluate the performance of the models: 

1. Coefficient of determination (R2): 
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3. Mean Absolute Percentage Error (MAPE): 
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4. Root Mean Squared Error (RMSE): 
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5. Normalized Root Mean Squared Error (NRMSE) 
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6. Model Efficiency (E): 
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Where 

Yi  = the observed flow; 

Fi = the forecasted flow; 

Y = the mean of observed flow; 

F = mean of forecasted flow; 

σ̂  = standard deviation of observed flow; 

 The model efficiency, E, is a model evaluation criterion proposed by Nash and 

Sutcliffe (1970). A model efficiency of 90% and above indicates very satisfactory 

performance. A value in the range of 80–90% indicates fairly good performance. A 

value below 80% indicates a questionable fit.  
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3 SEASONAL FLOW FORECASTING 

 

 The primary goal of this chapter is to develop partial least squares regression 

(PLSR) and principal components regression (PCR) models for seasonal streamflow 

volume forecasts using snow water equivalent, precipitation, temperature, and 

previous flow conditions as input variables. The selection of an optimal number of 

components using jackknife cross validation scheme and variable selection approach 

with PLSR have been discussed. The performance of PLSR and PCR models in 

seasonal streamflow forecasting were compared to each other and to NRCS official 

forecasts. Two subbasins in the Rio Grande and two hydrologic variables, river flow 

and reservoir net inflow, were used for seasonal flow forecasting model development. 

Statistical Analysis Software ® (SAS) version 9.1 was used in model development and 

forecasting. 

 

3.1 Model formulation 

 The two multivariate regression approaches, partial least squares regression 

(PLSR) and principal components regression (PCR), were utilized in seasonal volume 

forecast equation development. Model formulation of the methods is similar. 

However, variable selection procedure was performed by PLSR methodology and 

PCR used the same variables that were selected in the PLSR procedure for regression 

equation development. 
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3.1.1 Cross Validation 

 The selection of optimal numbers of extracted components (factors) is a key 

issue in developing PLSR and PCR, particularly when the models are used for 

prediction (Tootle et al., 2007). All regression methods, including PCR and PLSR, 

approach multiple linear regressions (MLR) as more components are extracted. 

However, when there are many predictors, MLR can over-fit the observed data; 

biased regression methods with fewer extracted components can provide better 

predictability of future observations (SAS Institute, 2008). 

 The number of extracted components must be chosen on the basis of how well 

the model fits observations not involved in the modeling procedure itself. One 

method of choosing the number of extracted components is to fit the model to only 

part of the available data and measure how well models with different numbers of 

extracted components fit the other part of the data. This is called test set validation. 

Because of data availability, the cross validation technique is usually used for the 

selection of significant components in PLSR and PCR. There are several different 

types of cross validation methods: 1) one-at-a-time cross validation, also known as 

“leave one out” or jackknifing, fits the model on n-1 observations and uses the one 

left out for validation; 2) block cross validation, which is to hold out successive 

blocks of observations as test sets; 3) split-sample cross validation, in which 

successive groups of widely separated observations are held out as the test set; 4) 

random sample cross validation, in which the test sets can be randomly selected from 

the observed data. Among them, the test set validation approach is preferred when 
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there is enough data to make a division into a sizable training set and test set that 

represent the predictive population well (SAS Institute, 2008). However, when the 

sample size is small, the jackknife cross validation method would be the appropriate 

solution. 

 Usually, the prediction residual sum of squares (PRESS) statistic is used to 

determine the minimum number of components required in PLSR (Geladi and 

Kowalski, 1986). For only one response variable, the PRESS statistic for each of the 

extracted factors i, can be calculated by the following expression: 
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Where  

  yj = actual values 

)(ˆ iy j  = predicted values for extracted factor i for jth observation 

n= number of samples 

The PRESS statistic is also expressed as the root mean prediction residual sum of 

squares (RMPRESS) and normalized root mean prediction residual sum of squares 

(NRMPRESS).  They can be given by the following expressions: 
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Where 

σ̂ = standard deviation of observed values 

The fitted models are tested using the cross validation data set, and the predicted 

values are compared with observed values using PRESS to assess the predictive 

ability of the model.  

 

3.1.2 Selection of Number of Components to Retain 

 There are several methods to determine the optimal number of components 

used in the PLSR and PCR using the PRESS statistic. The combination of two 

methods was employed for the selection of an optimal number of components in this 

study:  

1) The number of components based on the minimum PRESS statistic value; 

2) The number of components using van der Voet’s significance test (van der 

Voet, 1994).  

In the first method, the number of components chosen is generally the one that 

minimizes the PRESS.  However, often models with fewer components have PRESS 

statistics that are only slightly larger than the absolute minimum. To address this, van 

der Voet (1994) proposed a statistical test for comparing the predicted residuals from 

different models. When the van der Voet's test is applied, the number of components 

chosen is the fewest with residuals that are not significantly larger than the residuals 

of the model with minimum PRESS (SAS Institute, 2008).  
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 The van der Voet's test is configured as follows: Let Ri,j be the jth predicted 

residual for the model with i extracted components; the PRESS statistic then is 

∑ jij R ,
2 . Also let imin be the number of components for which PRESS is minimized. 

The critical value for van der Voet's test is based on the differences between squared 

predicted residuals  

 jijiji RRD ,
2

,
2

, min−=       (3.4) 

One alternative for the critical value is ∑= jiji DC , , which is just the difference 

between the PRESS statistics for i and imin components. Virtually, the significance 

level for van der Voet’s test is obtained by comparing Ci with the distribution of 

values that result from randomly exchanging jiR ,
2  and jiR ,

2
min . In practice, a Monte 

Carlo sample of such values is simulated and the significance level is approximated 

as the proportion of simulated critical values that are greater than Ci . Usually, the 

number of extracted components chosen is the smallest number with an approximate 

significance level that is greater than 0.10. 

 In addition to the above two methods, two other approaches, including t-test 

of significance and testing rationality of coefficients, were utilized to determine the 

number of components that should be retained in PLSR and PCR. The rationality of 

coefficients includes examination of both sign and magnitude of coefficients of the 

predictor variables in the final equation (McCuen et al., 1979). Garen (1992) provided 

a detailed discussion on the selection of principal components to retain for PCR 

equation development using a combination of t-test of significance of components 
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and sign test of coefficient of original variables. The t-test of significance is a 

standard t-test used in the stepwise variable selection to determine the significance of 

the regression coefficients for the variable (component) in multiple linear regressions.  

 Garen (1992) suggested that the t-test is adequate for the determination of the 

components to be kept in PCR. However, if all the significant components are used in 

the regression equation development based on the t-test results, it does not guarantee 

that the regression coefficients will have the same algebraic sign as the correlation 

coefficients of the predictor variables with the dependent variables. If a predictor 

variable that has positive correlation with the dependent variable has a negative 

regression coefficient in the final equation, it would suggest that there is 

intercorrelation among the independent variables; the negative sign would indicate 

that this variable is trying to compensate for the some of the effect of another 

independent variable with which it is highly correlated (Garen, 1992; McCuen, 1985; 

McCuen et al., 1979). As the main goal of principal components regression is to deal 

with the highly intercorrelated predictor variables, it would imply that the 

intercorrelations are reintroduced in the equation if the regression coefficient of any 

variable has an opposite sign with the correlation with dependent variable. Hence, the 

components of PLSR and PCR should be chosen such that the regression coefficients 

of all variables in the final equation have the same algebraic signs as the correlation 

coefficients with the dependent variables. 

 Together with the approach proposed by Garen (1992), the combination of 

minimum PRESS and van der Voet's test in determining the number of components to 
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retain in both PCR and PLSR was used in this study. The method is described as 

follows: Let N be the number of components that has minimum PRESS, M be the 

number of components with p>0.1 in van der Voet's test, P be the number 

components that passed sign test in sequence, and A be the final selected number of 

components, one may fall across four different scenarios:  

1) N=M=1 

2) N=M>1 

3) N>M=1 

4) N>M>1 

1) Scenario (1) is the most straightforward and frequently used in seasonal 

streamflow forecasting due to high intercorrelations among the predictor variables. 

In this case, the A=1 is the most appropriate selection; 

2) In scenario (2), check the sign test for A=M, if passed, then A=M. Otherwise, 

A=P, where 1≤ P< M;  

3) In scenario (3), perform sign test in sequence starting from M until P (M≤ P< N). 

Temporarily select A=P, then perform t-test of significance in PCR for P 

components. If it passes, keep all P components. If not, select the largest number 

of components that passed the t-test. This number should be smaller than P. For 

example, if the second component failed in a significance test, but the third 

component passes a significant test, still keep all three components as long as they 

pass the sign test.  
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4) In scenario (4), check the sign test for A=M, if it passes goes to scenario (3). 

Otherwise, check the sign test starting from 1 to P, select A=P, where 1≤ P< M. 

 

In the selection procedures, the components were kept in sequence even 

though some of them failed in the significance test for the stepwise variable selection 

using principal components as the regressors. The result of t-test significance in PCR 

was used as the reference for PLSR. In addition, the magnitude of the coefficients in 

the final equation was also checked for rationality by examining the magnitude 

coefficients in standardized form when the selected components were more than one. 

The combination of four methods seems complicated, but in most of the seasonal 

volume forecasting problems, usually the first and second components meet the 

criteria mentioned above. In this study, it was observed that the number of 

components that had both minimum PRESS and passed van der Voet's test usually 

passed the sign test, which made the selection procedure much easier.  
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3.2 Del Norte Natural Flow 

3.2.1 Data Description 

3.2.1.1 Seasonal Runoff Volume 

April-September natural seasonal streamflow volume at Del Norte Gaging 

Station, Rio Grande (Figure 1.1) was selected as the forecast target volume. The 

NRCS provides April-September runoff volume forecasts at the same Station on the 

first day of January, February, March, April, May and June. To be consistent with the 

NRCS forecast dates and volume, the April-September, May-September and June-

September volumes were used as the dependent variables in the modeling so that the 

results could be comparable to the NRCS median forecasts (the 50% percent 

exceedance probability) for the same period. 

 The data period from 1981 to 2007 was used in this study because of the 

natural flow and real time snow water equivalent, precipitation and temperature data 

availability in the Basin (The 2006 and 2007 data are provisional data).  To calibrate 

PLSR and PCR regression equations, the total data period was divided into two data 

sets: the calibration data set (1981-2002) and test data set (2003-2007).  Since the 

data set for the calibration phase was very short (only 22 years of data), the jackknife 

(leave-one-out) cross validation procedure was used to validate the equation. Finally, 

the five years of data was used to test the equations and compare with NRCS official 

forecasts for 2003-2007.  

 Two statistical features of the data, normality and autocorrelation, were 

examined to see if data were normally distributed and if autocorrelation existed in the 
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data. Three dependent variables, April-September, May-September and June-

September natural runoff volume data, and the data period of 1981-2007 were used to 

conduct these tests. The Shapiro-Wilk normality test and Ljung-Box white noise test 

up to six lags were performed to test the normality and autocorrelations. The test 

results are shown in Table 3.1. It is suggested that the normality distribution 

assumption of seasonal flows be accepted at 0.05 significance level. However, the 

white noise test is rejected at 0.05 significance level. The white noise test for such a 

short data time series (only 27 samples) may not be conclusive.  Hence, another white 

noise test was performed using data period of 1961-2007, and the results showed that 

the white noise process hypothesis is accepted at 0.1 significance level. Therefore, it 

can be concluded that the seasonal flows are essentially a white noise process and 

comply with the normality distribution assumption. The normality plot of the data 

(Figures 3.1-3.3) also indicated that no transformation was needed for the modeling. 

 

Table 3.1 Normality and autocorrelation tests for Del Norte seasonal flow data (1981-
2007) 

 

Flow 

Shapiro-Wilk test of 
normality 

 Ljung-Box white noise test 

W Statistic p-value  To Lag 
Chi-Square 

statistic 
p-value 

April-September 0.973 0.703  6 13.97 0.018 

May-September 0.965 0.481  6 14.55 0.015 

June-September 0.944 0.155  6 13.60 0.027 
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Figure 3.1 Normality plot of April-September natural flow at Del Norte Gaging 

Station (1981-2007) 
 

  
Figure 3.2 Normality plot of May-September natural flow at Del Norte Gaging 

Station (1981-2007) 
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Figure 3.3 Normality plot of May-September natural flow at Del Norte Gaging 

Station (1981-2007) 
 
 
 

3.2.1.2 Other Data  

 Five different categories of data were used in PLSR and PCR model 

development. They included SNOTEL snow water equivalent that was measured on 

the first day of each month from January to June, the monthly SNOTEL precipitation 

from October to May of a water year, monthly SNOTEL average temperature index 

from October to May of a water year, monthly flow from October to May of a water 

year, and previous year averaged October-December El Niño-Southern Oscillation 

Index (SOI). The data period covered from 1981 to 2007. The detailed data 

description was given in section 1.4.3. In addition, the NRCS official forecast data 
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was used for comparison with the PLSR and PCR equations developed in this study. 

The NRCS historical forecast data were obtained from NRCS (Pagano, personal 

communication, April 10, 2008). The April-September official seasonal volume 

forecasts for 2003-2007 at Del Norte Gaging Station issued by NRCS were shown in 

Table 3.2.  

 

Table 3.2 April-September flow NRCS official forecasts for 2003-2007 at Del Norte 
Gaging Station, Rio Grande, Colorado (Units: 1000acre-feet) 

 

Year JAN 1
st 

FEB 1
st 

MAR 1
st 

APR 1
st 

MAY 1
st 

JUN1
st 

Observed 

2003 372 290 315 285 230 255 235 

2004 600 570 495 460 460 445 417 

2005 640 770 770 770 785 795 666 

2006 395 315 280 355 355 350 391 

2007 555 555 490 415 385 450 580 

 

 

3.2.2 Model Development 

3.2.2.1 Input Variables Used in the Regression  

The input variables used for forecast equation development were selected on 

the basis of variables that were used in NRCS forecast equations at the same site and 

some previous research results. The equations can be generally expressed as:  

 CPRCPSWEF ijij

n

i

m

j

ii

n

i

SEPAPR ++= ∑∑∑
′

=

′

=

′

=

− θϕ
1 11

  (3.5) 
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Where 

FAPR-SEP = Forecasted April-September runoff volume 

SWEi = snow water equivalent at SNOTEL site i 

PRCPij = the monthly total precipitation for month j and SNOTEL site i 

n’= number of SNOTEL sites used in the forecast equation 

m’ = number of months from October to forecast date of a water year 

φi ,θij   - are coefficients 

C = constant parameter 

Table 3.3 shows the variables and coefficients of typical forecast equation 

being used currently by NRCS. This is a Jan 1st equation for the April-September 

flow at Rio Grande near Del Norte Gaging Station that has been developed by Z-

score regression method using 41 years of data. The variables include snow water 

equivalent and October to forecast date monthly precipitation from six SNOTEL sites 

in the Basin. To compare the developed equations with NRCS forecasting equations, 

the same SNOTEL sites were used for forecast equation development.  
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Table 3.3 The variables and coefficients of January 1st NRCS forecast equation for 
April-September runoff volume for Rio Grande near Del Norte Gaging Station 

 
Rio Grande nr Del Norte (2) 
ztp05r.713n41mx914                                                  PUB DATE = 01/01/2008 

ELEMENT MONTH SITE NAME COEFFIENTS 

SWE Jan 1
st
  Upper Rio Grande 0.02217 

SWE Jan 1
st
 Upper San Juan 0.00889 

SWE Jan 1
st
 Middle Creek 0.02098 

SWE Jan 1
st
 Wolf Creek Summit 0.00839 

SWE Jan 1
st
 Molas Lake 0.00873 

SWE Jan 1
st
 Lily Pond 0.01788 

PRCP OCT Upper Rio Grande 0.03479 
PRCP NOV Upper Rio Grande 0.03479 
PRCP DEC Upper Rio Grande 0.03479 
PRCP OCT Upper San Juan 0.01352 
PRCP NOV Upper San Juan 0.01352 
PRCP DEC Upper San Juan 0.01352 
PRCP OCT Middle Creek 0.01754 
PRCP NOV Middle Creek 0.01754 
PRCP DEC Middle Creek 0.01754 
PRCP OCT Wolf Creek Summit 0.01306 
PRCP NOV Wolf Creek Summit 0.01306 
PRCP DEC Wolf Creek Summit 0.01306 
PRCP OCT Molas Lake 0.02280 
PRCP NOV Molas Lake 0.02280 
PRCP DEC Molas Lake 0.02280 
PRCP OCT Lily Pond 0.01925 
PRCP NOV Lily Pond 0.01925 
PRCP DEC Lily Pond 0.01925 
C  INTERCEPT 6.04949 

 

 

Two variable combinations were used for the development of PLSR and PCR 

models: variable combination-I and variable combination-II. The combination-I 

included the forecast date SNOTEL snow water equivalents, October to forecast date 

monthly SNOTEL precipitation, October to forecast date monthly SNOTEL average 

temperature index (TEMP), October to forecast date previous monthly flow of a 

water year, and previous year averaged October-December El Niño-Southern 
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Oscillation Index (SOI). Each data type except for SOI was measured from the six 

SNOTEL sites located in the Basin (See Figure 1.1). The monthly average basin 

temperature index was used as a temperature variable instead of using the temperature 

of each SNOTEL site because of data availability. The variables used in the variable 

combination-I are shown in Table 3.4.  

 

Table 3.4 List of variables in variable combination-I 
 

Variables Notation Description 

Number of variables used for 
monthly equation 

   Jan Feb Mar Apr May Jun 

Snow water 
equivalent 

SWE 
Measured on the first day of 
a month 

6 6 6 6 6 6 

Precipitation Index PRCP  
October to forecast date 
precipitation for each 
SNOTEL site 

18 24 30 36 42 48 

Temperature Index 
TEMP 
INDEX 

October to forecast date 
monthly average 
temperature index 

3 4 5 6 7 8 

Previous flow FLOW 
October to forecast date 
monthly flow 

3 4 5 6 7 8 

Southern 
Oscillation Index 

SOI 
October to December 
average of previous year 

1 1 1 1 1 1 

Total number of variables used for variable selection in 
monthly equations 

31 39 47 55 63 71 

 
 
 

 The variable combination-II is essentially the same as variable combination-I 

except the measured monthly precipitation for each month from October to forecast 

date was not used. Instead, the October to forecast date composite precipitation index 

for each SNOTEL Station was used as inputs for precipitation information. The 
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composite PRCP index was calculated as a weighted average of monthly precipitation 

from October to the forecast date based on the correlation coefficients of the 

precipitation of a specific month with the April-September seasonal flow volume. The 

PRCP index for a SNOTEL site can be calculated by the following equation: 

∑

∑
′

=

′

=
=

m

j

ij

m

j

ijij

i

r

PRCPr

PRCPINDEX

1

1)(      (3.6)  

Where 

(PRCPINDEX)i = the composite precipitation index for SNOTEL site i; 

PRCPij = the monthly total precipitation for month j and SNOTEL site i; 

rij = the correlation coefficient of the precipitation of month j and SNOTEL site i 

with the seasonal flow volume; 

m’ = number of months from October to forecast date of a water year. 

The calculated correlation coefficients between monthly precipitation from 

October to July, month-specific weighted average October-July precipitation index, 

and equal-weighted average October-July precipitation index of the SNOTEL sites in 

the Basin and the April-September seasonal flow are presented in Table 3.5. The 

composite PRCP index for each SNOTEL site can be calculated using the correlation 

coefficients and Equation 3.5, and then used as the inputs for each forecast equation 

development. It was observed that the higher correlations occurred in fall (October, 

November) and spring (April, May) than in winter season. This may be because the 

fall precipitation is especially important for setting up soil moisture and the spring 
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precipitation may have a non-linear effect of having high runoff efficiency due to 

saturated soils from snowmelt (Pagano, personal communication, August 29, 2008). 

As can be seen, the correlation coefficient of month-specific weighted average 

precipitation with April-September flow were higher than the correlation coefficients 

of simple averaged precipitation with the flow for most of the SNOTEL sites. This 

indicates that a little more forecast skill could be obtained by developing a composite 

PRCP index and using it as the inputs in the regression (Pagano, personal 

communication, May 5, 2008). In addition, the number of input variables can be 

reduced dramatically when the information from more SNOTEL sites is included in 

the forecast equation development. The initial variables used in the variable 

combination-II are described in Table 3.6. 

 

Table 3.5  Correlation coefficients of monthly and October-July average precipitation 
of SNOTEL sites with April-September natural flow at Del Norte Gaging Station, Rio 

Grande (1981-2002) 
 

Snotel 
Site 

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 

OCT-JUL 

 
Weighted 
average 

Simple 
average 

Lily Pond 0.79 0.46 0.27 0.24 0.18 0.18 0.57 0.36 0.13 -0.2  0.91 0.88 

Middle 
Creek 

0.70 0.43 0.27 0.19 0.31 0.06 0.59 0.39 0.05 -0.1  0.91 0.91 

Molas 
Lake 

0.62 0.39 0.06 0.21 0.11 0.04 0.40 0.49 0.34 0.31  0.72 0.69 

Upper 
SanJuan 

0.71 0.45 0.34 0.20 0.11 0.13 0.58 0.45 0.27 0.42  0.77 0.79 

Upper Rio 
Grande 

0.70 0.50 0.18 0.21 0.27 0.00 0.43 0.19 0.06 0.02  0.89 0.87 

Wolf 
Creek 

0.73 0.35 0.06 0.23 0.05 0.16 0.40 0.65 0.27 0.41  0.82 0.70 

Average 0.71 0.43 0.20 0.21 0.17 0.10 0.49 0.42 0.19 0.16  0.84 0.81 
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Table 3.6 List of variables in variable combination-II 

 

Variables Notation Description 
Number of variables used for 

monthly equation 

   Jan Feb Mar Apr May Jun 

Snow water 
equivalent 

SWE 
Measured on the first day of 
a month 

6 6 6 6 6 6 

Precipitation Index 
PRCP 
INDEX 

October to forecast date 
precipitation index for each 
SNOTEL site 

6 6 6 6 6 6 

Temperature Index 
TEMP 
INDEX 

October to forecast date 
monthly average 
temperature index 

3 4 5 6 7 8 

Previous flow FLOW 
October to forecast date 
monthly flow 

3 4 5 6 7 8 

Southern 
Oscillation Index 

SOI 
October to December 
average of previous year 

1 1 1 1 1 1 

Total number of variables used for variable selection in 
monthly equations 

19 21 23 25 27 29 

 

 

 

3.2.2.2 Variable Selection Procedure in PLSR 

 After formulating the procedures to determine the components to retain in 

PLSR (section 3.1.2) and preparing the variables that were used for model 

development in the previous section, the initial PLSR equations can be developed 

using all the variables in combination-I and combination-II. However, not all the 

predictor variables are important in the regression equations. Some variables can be 

dropped from the equation because of their insignificant relationship with the 

dependent variable and/or high collinearity with other independent variables to ensure 

optimality or near optimality of the regression equations. The significance of 
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individual variables in PLSR could be examined by the magnitude of standardized 

coefficients. Wold (1994) proposed a technique in variable selection in PLSR using a 

variable influence on projection (VIP). The VIP is a weighted sum of squares of the 

partial least squares weights with the weights calculated from the amount of 

dependent variable variance of each partial least squares component. This statistic 

shows the contribution of each independent variable to the model and represents the 

value of each predictor in fitting the PLSR model for both predictors and responses. 

For a selected number of components and the initial variables, the VIP values of each 

predictor variable can be calculated and used to examine the strength of the 

relationship, irregularities, and the contribution of the independent variables in the 

model. Therefore, it can be used to select the most important variables.  

 The quality of the model can be evaluated by examining the residuals for both 

the response and the predictor variables for any possible outliers. To determine which 

predictor to be eliminated from the model, the regression coefficient and the variable 

importance for the projection (VIP) of each predictor should be analyzed. The 

regression coefficients represent the importance each predictor has in the prediction 

of the response. An independent variable may have a small coefficient value, but may 

have a large VIP, which implies that this independent variable is important and 

contributes significantly to the prediction and therefore, has to be kept in the model. 

Wold (1994) suggested that a VIP value of less than 0.8 is small. If a predictor has a 

relatively small coefficient (in absolute value) and a small value of VIP (less than 

0.8), then it is a prime candidate for deletion (Umetrics, Inc., 1995).   
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In this study, the variable selection was carried out by analyzing the VIP of 

each predictor and considering the forecast consistency of the regression equations 

from month to month. The forecast inconsistency, an unexpected variability from 

month to month, could be caused by the usage of different variables and coefficients 

in month to month regression models. Acceptable forecast change should occur due 

to hydrologic reasons, not statistical noise (Garen, 1992). To ensure the forecast 

consistency from month to month, highly similar predictor variables in the regression 

models for different months can be used without losing forecast accuracy. To achieve 

this goal, the following procedure was used in this study:  

1) Calculate VIP values of all the predictor variables for the PLSR regression 

equations from January 1st to June 1st; 

2) Select the variables with VIP values greater than 0.8 for all the forecast 

equations from January 1st to June 1st ; 

3) Calculate VIP values again for the selected variables for each regression 

equation starting from January 1st and finalize the variables for the January 1st 

equation. Once the variables for the January 1st equation are selected, they will 

be kept in the all regression equations through June 1st, even some of the 

variables have VIP values smaller than 0.8; 

4) Based on the VIP values of variables for the February 1st equation, new 

variables could be added. The added variables will be kept in the following 

month’s equation even though they have VIP values smaller than 0.8, and so 

on. For example, the January equation variables will be kept in the February 
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equation, and all the February equation variables will be kept in March 

equation, and so on. 

 

3.2.2.3 Variable Selection Procedure in PCR 

McCuen (1985) discussed the excess variable elimination procedure in 

principal components regression through examining the magnitudes of the 

eigenvector values for each variable. But the methodology requires subjective 

judgment and a considerable amount of work when there are many input variables. To 

overcome these drawbacks, Garen (1992) proposed a method of systematic searching 

for optimal variable combinations in PCR. This methodology has been used by NRCS 

since then to create seasonal streamflow forecasting equations using a semi-

automated approach from a pool of available input variables (Risley et al., 2005). The 

search algorithm can be performed with VIPER, an Excel-based program used by 

NRCS, including searching for optimum combinations of independent variables, 

searching for optimum time periods covered by selected independent variables, and 

jackknife testing of models (NRCS, 2007). In this study, the selected variables in 

PLSR were directly used in PCR. The final PLSR and PCR equations were developed 

using the same variables as to compare the performance of both methods in seasonal 

streamflow forecasting. 
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3.2.3 Model Testing and Comparison 

3.2.3.1 Comparison of Models for Two Variable Combinations 

Based on the procedures described in the previous sections, forecasting 

 equations were calibrated using data from 1981 to 2002 (22 years) with the jackknife 

cross validation scheme. For each variable combination, PLSR and PCR equations 

were developed. A variable selection was carried out by examining the VIP of each 

variable and considering forecast consistency from month to month in PLSR. No 

variable selection was performed in PCR during the calibration since the same 

variables selected for PLSR were used in PCR equation development.  

Model adequacy was tested by analyzing the residuals of calibration periods 

for all equations. The residuals can provide information about the prediction 

capability of models over the range of dependent variable. It also can be used to 

identify an improperly formulated model. The student’s t-test was used to test if the 

residuals had zero mean, the Shapiro-Wilk normality test was used to test if residuals 

were normally distributed and the Ljung-Box white noise test was applied to test any 

autocorrelations existing in the residuals or if the residuals were a white noise 

process. These statistical tests were used to examine the residuals of all forecast 

equations for two variable combinations. The results showed that residuals had zero 

mean, were normally distributed and were a white noise process statistically at 0.05 

significance level. This suggests that all the models were adequate with accepted 

predictive ability.  
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Consider the April 1st PLSR equation with variable combination-II as an 

example. The p-value of student’s t-test for zero mean was 0.996, the p-value of the 

Shapiro-Wilk normality test was 0.946, the p-value of the Ljung-Box white noise test 

up to lag 6 was 0.726. The normal probability plot of residuals for this model is 

shown in Figure 3.4.  All the statistical tests and normality plots suggested that no 

modelable information was left in the residuals. Similar results were obtained for all 

other forecast equations in the study. 

 

  
Figure 3.4 Normality plot of residuals of April 1st PLSR equation with variable 

combination-II (1981-2002) 
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The calibrated PLSR and PCR forecast equations for two variable 

combinations can be expressed in following general forms: 

For variable combination-I: 
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 For variable combination-II: 
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Where 

FLOWj = monthly flow at month j 

TEMPINDEXj  = monthly temperature index at month j 

 θi  ,ωi,ψi - are coefficients 

The coefficients of variables of developed forecast equations are shown in Table 3.7 -

Table 3.10. The final maximum number of variables of forecast equations with 

variable combination-I (June 1st forecast equation) was 24, and with variable 

combination-II (May 1st equation) was 18. It can be observed that there is no 

significant difference in the magnitude of variable coefficients of PLSR and PCR 

equations. The results indicated that the developed forecast equations could very 

likely improve forecast accuracy compared to NRCS current forecasting equations at 

the study site. As shown in Table 3.9, the calibration coefficient of determination (R2) 

of January 1st to April1st equations developed in this study (calibration period 22 

years) were higher than calibration of R2 of NRCS equations (calibration period 41 

years). For example, the calibration R2 of January 1st NRCS equation at Del Norte 
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Gaging Station is 0.51, while PLSR equation is 0.77. Similar results were obtained 

for other forecast equations developed by PCR.  

The application of effective precipitation index also facilitated the developing 

of more parsimonious regression model with fewer input variables as compared to 

NRCS current forecasting equations at the study site.  Compared to the same site 

NRCS equation (as shown in Table 3.3 and Eq. 3.5), the PLSR equation with variable 

combination-II (Table 3.9) has 14 variables including SWE, PRCP index, temperature 

index and previous flow, while NRCS equation consist of 24 variables such as SWE 

and monthly PRCP. This feature is more evident for the later forecast dates without 

losing forecast accuracy. For example, the current NRCS April 1st forecast equation at 

Del Norte Gaging Station had 42 predictor variables with the calibration R2 of 0.73. 

In comparison, the number of variables in the proposed April 1st PLSR forecast 

equation was 17 and calibration R2 was 0.84 (Table 3.9). 
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Table 3.7 Forecast equations from Jan 1st to June 1st for Del Norte Gaging Station 
developed by PLSR using variable combination-I 

 

VARIABLES CATEGORY 
Coefficients 

JAN 1
st 

FEB 1
st 

MAR 1
st 

APR 1
st 

MAY
 
1

st 
JUN 1

st 

Constant C 75.05 42.74 -74.70 -146.70 -149.47 -144.67 

Lily Pond SWE 4.57 4.12 2.72 2.28 3.02 * 

Middle Creek SWE 4.65 4.42 4.00 3.68 3.29 2.37 

Upper SanJuan SWE 2.39 2.08 1.69 1.57 2.00 1.67 

Wolf Creek SWE 2.89 2.67 2.22 1.85 1.94 1.44 

Upper Rio Grande SWE 8.45 6.45 5.54 4.67 13.16 * 

Molas Lake SWE 4.80 3.48 2.80 2.46 2.39 2.39 

Middle Creek-10 PRCP 5.91 6.02 6.35 6.13 1.54 1.99 

Upper Rio Grande-10 PRCP 9.26 9.43 9.94 9.60 4.47 3.91 

Wolf Creek-10 PRCP 6.02 6.14 6.47 6.24 2.46 3.15 

Upper SanJuan-10 PRCP 5.85 5.96 6.28 6.07 2.16 2.07 

Lily Pond-10 PRCP 11.00 11.21 11.82 11.41 7.34 5.53 

Molas Lake-10 PRCP 9.13 9.30 9.80 9.46 0.59 3.43 

Temperature-10 TEMP INDEX -10.80 -11.01 -11.60 -11.20 -5.51 -4.63 

Flow-11 FLOW 2.25 2.30 2.42 2.34 1.55 1.55 

Flow-12 FLOW 3.39 3.46 3.64 3.52 2.65 2.17 

Flow-2 FLOW   6.45 6.23 7.99 6.50 

Flow-3 FLOW    2.97 2.51 2.49 

Middle Creek-4 PRCP     3.80 3.38 

Upper SanJuan-4 PRCP     1.48 1.46 

Lily Pond-4 PRCP     2.84 3.55 

Flow-4 FLOW     0.76 0.20 

Middle Creek-5 PRCP      9.59 

Upper SanJuan-5 PRCP      8.02 

Lily Pond-5 PRCP      12.74 

Flow-5 FLOW      0.16 

Number of components used 1 1 1 1 2 2 

Calibration R
2 

 0.81 0.82 0.85 0.86 0.93 0.93 

Jackknife cross validation R
2 

0.76 0.77 0.81 0.82 0.86 0.87 

Cross validation RMSE (kaf) 106 104 94 91 77 61 

Cross validation NRMSE 0.48 0.47 0.43 0.42 0.36 0.36 

Number of years for calibration 22 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or variables are not included. 
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Table 3.8 Forecast equations from Jan 1st to June 1st for Del Norte Gaging Station 
developed by PCR using variable combination-I 

 

VARIABLES CATEGORY 
Coefficients 

JAN 1
st 

FEB 1
st 

MAR 1
st 

APR 1
st 

MAY
 
1

st 
JUN 1

st 

Constant C 73.74 51.52 -47.07 -128.19 -115.55 -114.59 

Lily Pond SWE 4.23 3.90 2.68 2.17 2.93 * 

Middle Creek SWE 4.49 4.20 3.75 3.45 2.47 2.16 

Upper SanJuan SWE 2.12 1.89 1.59 1.41 1.85 1.45 

Wolf Creek SWE 2.70 2.46 2.06 1.82 2.03 1.18 

Upper Rio Grande SWE 8.42 6.60 5.75 4.39 8.82 * 

Molas Lake SWE 4.73 3.10 2.54 2.09 2.59 2.42 

Middle Creek-10 PRCP 6.48 6.81 7.18 7.01 2.72 3.59 

Upper Rio Grande-10 PRCP 9.58 10.19 10.79 9.84 3.37 4.07 

Wolf Creek-10 PRCP 6.17 6.52 6.86 6.55 3.05 3.51 

Upper SanJuan-10 PRCP 6.14 6.28 6.53 6.34 2.38 3.54 

Lily Pond-10 PRCP 11.34 11.33 11.71 11.48 5.34 6.69 

Molas Lake-10 PRCP 9.94 10.71 11.12 10.18 4.22 4.10 

Temperature-10 TEMP INDEX -9.46 -9.00 -9.61 -10.31 -10.07 -7.37 

Flow-11 FLOW 2.22 2.02 2.16 2.39 1.91 1.77 

Flow-12 FLOW 3.54 3.28 3.55 3.71 1.98 2.51 

Flow-2 FLOW   4.71 5.20 6.14 4.90 

Flow-3 FLOW    2.96 2.88 2.04 

Middle Creek-4 PRCP     2.41 1.82 

Upper SanJuan-4 PRCP     2.83 1.31 

Lily Pond-4 PRCP     3.59 2.52 

Flow-4 FLOW     0.66 0.39 

Middle Creek-5 PRCP      8.71 

Upper SanJuan-5 PRCP      7.43 

Lily Pond-5 PRCP      11.47 

Flow-5 FLOW           0.09 

Number of components used 1 1 1 1 1 3 

Calibration R
2 

 0.80 0.80 0.84 0.85 0.92 0.92 

Jackknife cross validation R
2 

0.76 0.77 0.77 0.81 0.83 0.89 

Cross validation RMSE (kaf) 106 104 103 95 95 69 

Cross validation NRMSE 0.48 0.48 0.47 0.43 0.43 0.33 

Number of years for calibration 22 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or variables are not included. 
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Table 3.9 Forecast equations from Jan 1st to June 1st for Del Norte Gaging Station 
developed by PLSR using variable combination-II 

 

VARIABLES CATEGORY 
Coefficients 

JAN 1
st 

FEB 1
st 

MAR 1
st 

APR 1
st 

MAY
 
1

st 
JUN1

st 

Constant C 52.19 19.37 -122.9 -209.6 -169.9 -170.37 

Lily Pond SWE 3.99 0.79 2.32 1.97 2.08 n/a 

Middle Creek SWE 4.06 4.77 3.41 3.19 2.24 1.96 

Upper SanJuan SWE 2.08 0.87 1.44 1.36 1.27 1.15 

Wolf Creek SWE 2.52 2.21 1.90 1.60 1.43 1.09 

Upper Rio Grande SWE 7.37 1.78 4.73 4.05 7.32 n/a 

Molas Lake SWE 4.19 2.22 2.39 2.13 1.65 1.59 

Lily Pond PRCP INDEX 13.06 18.64 18.06 18.57 17.09 17.57 

Middle Creek PRCP INDEX 9.70 9.08 13.64 13.99 12.81 13.07 

Molas Lake PRCP INDEX 12.27 2.09 15.56 16.17 13.77 14.10 

Upper SanJuan PRCP INDEX 8.75 11.44 11.21 11.55 17.28 10.95 

Upper Rio Grande PRCP INDEX 15.30 16.01 19.61 19.24 8.14 16.93 

Wolf Creek PRCP INDEX 7.05 5.05 8.52 9.16 10.50 9.05 

Temperature-10 TEMP INDEX -9.42 -33.99 -9.90 -9.71 -8.64 -7.84 

Flow-11 FLOW 1.96 5.09 2.06 2.03 1.74 1.61 

Flow-12 FLOW 2.96 5.66 3.11 3.05 2.60 2.36 

Flow-2 FLOW   5.51 5.40 4.59 4.13 

Flow-3 FLOW    2.58 2.23 2.06 

Flow-4 FLOW     0.49 n/a 

Flow-5 FLOW      0.15 

Number of components used 1 2 1 1 1 1 

Number of components by min PRESS 1 2 2 1 1 1 

Calibration R
2 

 0.77 0.85 0.82 0.84 0.92 0.92 

NRCS Equation Calibration R
2  

(n=41)
 
 0.51 0.57 0.60 0.73 - - 

Jackknife cross validation R
2 

0.71 0.74 0.76 0.79 0.90 0.90 

Cross validation RMSE (kaf) 117 111 105 98 66 52 

Cross validation NRMSE 0.53 0.51 0.48 0.45 0.31 0.31 

Number of years for calibration 22 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or variables are not included. 
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Table 3.10 Forecast equations from Jan 1st to June 1st for Del Norte Gaging Station 
developed by PCR using variable combination-II 

 

VARIABLES CATEGORY 
Coefficients 

JAN 1
st 

FEB 1
st 

MAR 1
st 

APR 1
st 

MAY
 
1

st 
JUN1

st 

Constant C 48.89 -52.85 -222.52 -207.66 -170.53 -176.49 

Lily Pond SWE 4.28 1.85 1.06 2.29 2.04 n/a 

Middle Creek SWE 3.93 3.53 3.02 3.00 2.10 1.87 

Upper SanJuan SWE 2.14 0.63 0.74 1.47 1.26 1.06 

Wolf Creek SWE 2.61 1.86 1.41 1.72 1.43 1.03 

Upper Rio Grande SWE 7.39 5.10 4.24 4.21 6.29 n/a 

Molas Lake SWE 4.65 1.56 1.62 2.35 1.71 1.49 

Lily Pond PRCP INDEX 13.27 16.79 18.44 18.00 16.92 17.21 

Middle Creek PRCP INDEX 9.79 13.32 14.82 13.92 12.76 13.01 

Molas Lake PRCP INDEX 12.69 12.43 13.95 16.08 14.61 14.54 

Upper SanJuan PRCP INDEX 8.70 9.45 10.65 11.07 16.95 10.70 

Upper Rio Grande PRCP INDEX 14.61 20.14 21.28 17.90 8.69 17.26 

Wolf Creek PRCP INDEX 6.85 8.17 8.45 9.26 10.50 9.39 

Temperature-10 TEMP INDEX -7.01 -12.85 -10.76 -7.57 -8.76 -8.24 

Flow-11 FLOW 1.78 4.17 3.74 1.84 1.73 1.64 

Flow-12 FLOW 2.84 7.26 6.66 2.87 2.57 2.50 

Flow-2 FLOW   11.34 4.62 4.34 4.08 

Flow-3 FLOW    2.82 2.50 2.35 

Flow-4 FLOW     0.46 n/a 

Flow-5 FLOW           0.16 

Number of components used 1 2 2 1 1 1 

Number of components by min PRESS 1 5 4 1 1 1 

Calibration R
2
 0.76 0.81 0.84 0.83 0.92 0.92 

NRCS Equation Calibration R
2  

(n=41)
 
 0.51 0.57 0.60 0.73 - - 

Jackknife cross validation R
2 

0.71 0.73 0.78 0.79 0.90 0.90 

Cross validation RMSE (kaf) 117 112 101 97 65 51 

Cross validation NRMSE 0.53 0.51 0.46 0.44 0.31 0.30 

Number of years for calibration 22 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or variables are not included. 
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PLSR and PCR models were compared with each other using their 

performance in calibration phase and jackknife cross validation scheme for two 

variable combinations. Some performance statistics such as coefficient of 

determination for calibration and cross validation, RMSE, normalized RMSE were 

also tabulated in Tables 3.7 through 3.10. It is evident that, there was no significant 

difference in performance of the forecast equations using different variable 

combinations. The cross validation RMSE of forecast equations for January 1st, 

February 1st , March 1st and April 1st with variable combination-I were somewhat 

smaller than that of variable combination-II. On the other hand, the May 1st and June 

1st forecast equations with combination-I have larger cross validation RMSE than that 

of combination-II. However, the forecast equations calibrated using variable 

combination-II has, at least, fewer variables in the equations. This approach is 

preferred because of the parsimonious feature of models by reducing the input 

variables considerably using composite PRCP index without loss of accuracy. This is 

particularly important for the forecast equation development in larger basins where 

more information is available from numerous SNOTEL sites. The comparison of 

forecasting performance of PLSR and PCR using variable combination-II is further 

discussed by applying the models for new test data set in the following sections of the 

chapter. 

 In general, there is a reduction in model errors as the period in time between 

the forecast date and the actual forecast period is narrowed. As indicated in Tables 3.7 

through 3.10, both PLSR and PCR have the same general behavior for different 
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variable combinations. The cross validation RMSE decreased from highest errors in 

January 1st forecast equations to lowest errors in June 1st equations. For instance, the 

normalized RMSE of January 1st PLSR equation decreased from 0.53 to 0.31 for the 

June 1st PLSR equation for variable combination-II. Similar trends were observed in 

PCR forecasting equations. 

 

3.2.3.2 Comparison of PLSR and PCR Methods  

 The performances of PLSR and PCR using two variable combinations are 

shown in Tables 3.7 and 3.10. Based on the performance statistics both for calibration 

phase and jackknife cross validation, no significant difference in model performance 

could be observed between PLSR and PCR. For some months, the PCR performed 

slightly better than PLSR in terms of cross validation coefficient of determination and 

RMSE. However, it can be observed that there was a difference in the number of 

components used in PLSR and PCR. The explained variation (coefficient of 

determination for calibration) of the dependent variable by PLSR is higher than PCR 

for most cases. This was the result of the unique feature of PLSR that extracts 

components based on the covariance between predictor and dependent variables, 

which can explain more variations of dependent variables than PCR does.  

 The results also showed that the PLSR reaches its minimal prediction error 

with a smaller number of components than PCR. This is a unique feature of PLSR 

compared to PCR when developing the regression equation. Tables 3.9 and 3.10 

illustrate the difference of PLSR and PCR forecast equations in extracting optimal 
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components based on minimum prediction error using jackknife cross validation. 

There is a difference in the number of components that has minimal PRESS in PLSR 

and PCR. The PLSR can reach minimum prediction error using 2 components for 

February 1st and March 1st equations, whereas the PCR can reach minimum 

prediction errors with 5 and 4 components respectively. Figure 3.5 illustrates the 

difference of April 1st PLSR and PCR forecast equations in extracting optimal 

components based on minimum prediction error and van der Voet’s test using 

jackknife cross validation for variable combination-I. It can be seen that while the 

number of components suggested by van der Voet’s test for both methods is 1, the 

number of components that has minimal PRESS in PLSR and PCR are not same. The 

PLSR can reach minimum prediction error using 6 components, whereas the PCR can 

reach minimum prediction error with 13 components. This may be also because the 

PLSR can extract components based on the covariance between predictor and 

dependent variables, so PLSR to have a stronger power in extracting components 

compared to PCR. This feature was also reported in the literature (Yeniay and 

Göktaş, 2002; SAS Institute, 2008). In general, the PLSR method is more powerful 

than PCR in extracting components that deal with the collinearity issue.  
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Figure 3.5  Optimum number of components extracted by PLSR and PCR for April1st 

forecasting equation development for Del Norte Gaging Station 
 
 
 

3.2.3.3 Comparison of Models for Testing Data  

 The models were tested for new data from 2003 to 2007 to examine how well 

the forecasts of the PLSR and PCR models performed on new test data compared to 

NRCS official forecasts. Since the test data set was very short, conclusive results on 

the comparison of the models could not be obtained, but at least it gave an insight 

between the performance of PLSR and PCR, and effects of composite precipitation 

index inputs on forecasting accuracy. In order to compare the performance of models 

to NRCS official forecasts, the April-September flow volume forecast for all forecast 

dates was used. To compute the April-September forecast volume by May 1st and 
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June 1st equations, the observed April flow was added to May-September volume 

forecasts of May 1st equations; the observed April and May flows were added to the 

June-September forecasts of June 1st forecasting equations.   

 Model performances were tested by examining the model forecasts made at 

each forecast date from 2003 and 2007. Figure 3.6 shows how the forecasts evolved 

through forecast dates. For 2003, the NRCS forecasts were better for all forecast dates 

compared to both PLSR and PCR. For 2004 and 2007, the PLSR and PCR forecasts 

were better or equivalent compared to NRCS forecasts for all the forecast dates. The 

comparison results of the model forecasts with NRCS official forecasts was 

encouraging since the PLSR has showed some potential ability in both modeling 

procedure and improving forecast accuracy. 

 When comparing the PLSR and PCR methods, they were usually of similar 

performance and no significant difference was observed between PLSR and PCR 

forecasts. The forecasts of PLSR and PCR equations for all forecast dates were of 

similar performance, although the PLSR equations tended to do slightly better than 

PCR in some cases. As discussed earlier, no significant difference in model 

performance was observed between PLSR and PCR based on the jackknife cross 

validation performance statistics. This implies that although the PLSR method has 

higher calibration R2 than PCR and is more powerful than PCR in extracting 

components that deal with the collinearity issue, yet it may not necessarily guarantee 

that PLSR would be better than PCR in terms of forecasting accuracy in seasonal 

streamflow forecasting within the scope of this study. 
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Figure 3.6 Comparison of April-September PLSR, PCR model forecasts with NRCS 

official forecasts at Del Norte Gaging Station for 2003-2007  
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3.2.4 Final Model 

The discussions in the previous sections with respect to the comparison of 

different models and two variable combinations suggested that the performance of 

partial least squares regression is similar to principal components regression. 

However, it was also observed that PLSR reaches its minimum prediction error with a 

smaller number of components and can account for more variation of dependent 

variables with the same components compared to PCR. This is a unique feature of 

PLSR compared to PCR when developing regression equations. Based on the 

previous analysis and purpose of this dissertation study, it is believed that a final 

forecast model should be developed using the best-performing variable combination, 

methodology, and longest available calibration data period, so that the model could be 

used in practical applications. 

Considering all the factors that have been discussed in the previous sections, 

the following final model was developed with variable combination-II (composite 

precipitation index as inputs) using data from 1981 to 2007 (27 years) with the partial 

least squares regression modeling approach. The final forecast equation is shown in 

Table 3.11. The model performance was evaluated using the jackknife cross 

validation scheme and the results were also shown in Table 3.11. It is hoped that the 

proposed final model can be used for April-September seasonal natural flow 

forecasting at Del Norte Gaging Station, Rio Grande, Colorado.  
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Table 3.11 Final PLSR forecasting equation for Del Norte Gaging Station, Rio 
Grande, Colorado 

 

VARIABLES CATEGORY 
Coefficients 

JAN
  
1

st 
FEB  1

st 
MAR 1

st 
APR 1

st 
MAY

 
1

st 
JUN1

st 

Constant IC 29.2 -1.3 -114.5 -204.9 -177.2 -169.7 

Lily Pond SWE 4.21 3.59 2.41 2.09 1.98 * 

Middle Creek SWE 4.06 3.57 3.16 3.24 2.23 2.01 

Upper SanJuan SWE 2.03 1.54 1.18 1.21 1.19 1.09 

Wolf Creek SWE 2.57 2.09 1.66 1.58 1.44 1.06 

Upper Rio Grande SWE 7.80 5.43 5.02 4.07 7.58 * 

Molas Lake SWE 4.33 2.93 2.37 2.11 1.65 1.67 

Lily Pond PRCP INDEX 13.82 15.77 18.05 19.27 17.64 17.73 

Middle Creek PRCP INDEX 10.21 11.06 13.63 14.20 13.36 13.16 

Molas Lake PRCP INDEX 11.25 12.88 14.33 15.08 13.25 13.38 

Upper SanJuan PRCP INDEX 8.84 9.62 10.29 11.10 17.82 10.79 

Upper Rio Grande PRCP INDEX 15.99 16.95 19.84 19.65 7.94 16.70 

Wolf Creek PRCP INDEX 6.73 7.17 7.53 8.33 10.70 8.49 

Temperature-10 TEMP INDEX -7.68 -7.70 -7.84 -7.77 -7.03 -6.52 

Flow-11 FLOW 2.07 2.08 2.11 2.09 1.82 1.68 

Flow-12 FLOW 3.26 3.27 3.33 3.29 2.85 2.59 

Flow-2 FLOW   5.48 5.43 4.71 4.21 

Flow-3 FLOW    2.08 1.81 1.59 

Flow-4 FLOW     0.53 * 

Flow-5 FLOW      0.15 

Number of components used 1 1 1 1 1 1 

Calibration R
2
 0.76 0.76 0.79 0.84 0.92 0.91 

Jackknife cross validation R
2 

0.70 0.70 0.74 0.80 0.90 0.89 

Cross validation RMSE (kaf) 114 113 106 93 63 52 

Cross validation NRMSE 0.54 0.54 0.50 0.44 0.31 0.32 

Number of years for calibration 27 27 27 27 27 27 

* Snow water equivalent is zero at that site on the specific month, or variables are not included. 
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3.3 Elephant Butte Net Inflow 

3.3.1 Data Description 

3.3.1.1 Seasonal Net Inflow Volume 

March-July seasonal Elephant Butte Reservoir net inflow, Rio Grande, New 

Mexico was selected as the forecast target volume. The NRCS does not provide 

seasonal net inflow forecasting for Elephant Butte Reservoir, but NRCS does issue 

March-July natural seasonal volume forecasts at San Marcial Gaging Station, Rio 

Grande, which is located at the entrance of Elephant Butte Reservoir. The San 

Marcial seasonal volume forecasts are very important and may be comparable to the 

Elephant Butte Reservoir net inflow, since it is the main inflow to the reservoir. The 

correlation coefficient of San Marcial March-July natural flow and Elephant Butte 

Reservoir March-July measured net inflow is 0.98 (calculated for the period of 1961-

2000), which indicates the importance of NRCS forecasts at the site. To be consistent 

with the NRCS forecast dates and volume at San Marcial Gaging Station, the March-

July, April-July and May-July volumes were used as the dependent variables in the 

seasonal net inflow modeling. 

The data period from January, 1981 to September, 2007 was used in this 

study.  To calibrate the PLSR and PCR equations, the total period was divided into 

two data sets: the calibration data set (1981-2002) and test data set (2003-2007).  

Since the data set for the calibration phase was very short (only 22 years of data), the 

jackknife (leave-one-out) cross validation procedure was used to validate the 

equation. The test data was used for testing the forecast equations. Two statistical 
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features of the seasonal net inflow data, the normality and autocorrelation, were 

examined to see if data is normally distributed and if there is autocorrelation existing 

in the data. Three dependent variables, the March-July, April-July and May-July net 

inflow volume, and data period of 1981-2007 were used to conduct these tests. The 

normality test was performed using Shapiro-Wilk normality test, the autocorrelation 

test was conducted using the Ljung-Box white noise test up to six lags. The test 

results are shown in Table 3.12. It is suggested that the normality distribution of 

seasonal flows be accepted except for May-July flow and there were no significant 

autocorrelations existing in all the seasonal flows at 0.05 significance level. They 

were essentially a white noise process. The normality plot of the data (Figures 3.7-

3.9) also indicated that no data transformation would be needed for modeling. 

 

 
Table 3.12 Normality and autocorrelation tests for Elephant Butte Reservoir seasonal 

net inflow (1981-2007) 
 

Flow 

Shapiro-Wilk test of normality  Ljung-Box white noise test 

W Statistic p-value  To Lag Chi-Square statistic p-value 

March-July 0.937 0.102  6 9.090 0.169 

April-July 0.930 0.071  6 8.450 0.207 

May-July 0.905 0.018  6 8.710 0.190 
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Figure 3.7 Normality plot of March-July net inflow of Elephant Butte Reservoir, Rio 

Grande (1981-2007) 
 
 

  
Figure 3.8 Normality plot of April-July net inflow of Elephant Butte Reservoir, Rio 

Grande (1981-2007) 
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Figure 3.9 Normality plot of May-July net inflow of Elephant Butte Reservoir, Rio 

Grande (1981-2007) 
 
 

3.3.1.2 Other Data  

 Similar to the seasonal flow model at Del Norte Gaging Station, five 

categories of data were used in PLSR and PCR model development. They included 

SNOTEL snow water equivalent that was measured on the first day of each month 

from January to May, the monthly SNOTEL precipitation from October to April of a 

water year, monthly SNOTEL average temperature index from October to April of a 

water year, monthly flow from October to April of a water year, and previous year 

averaged October-December El Niño-Southern Oscillation Index (SOI). The data 

period covers from 1981 to 2007. The data description has been given in section 

1.4.3. Additionally, NRCS official forecast data for San Marcial Gaging Station, Rio 
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Grande were obtained from the NRCS (Pagano, personal communication, April 10, 

2008) and used for comparison with PLSR and PCR equations. The March-July 

official seasonal volume forecasts for 2003-2007 at San Marcial Gaging Station 

issued by NRCS are shown in Table 3.13.  

 

Table 3.13 March-July flow NRCS official forecasts at different forecast dates for 
2003-2007 at San Marcial Gaging Station, Rio Grande (Units: 1000acre-feet) 

 

Year JAN 1
st
 FEB 1

st
 MAR 1

st
 APR 1

st
 MAY

 
1

st
 

2003 370 260 305 305 245 

2004 455 470 420 385 400 

2005 400 675 760 930 950 

2006 255 145 57 100 65 

2007 520 570 440 265 255 

 

 

3.3.2 Model Development 

3.3.2.1 Input Variables Used in the Regression 

 Based on the variables used in current NRCS forecast equation at San Marcial 

Gaging Station, modeling results of Del Norte Gaging Station and the size of the 

Basin, the variable combination-II (using October to forecast date composite 

precipitation index as precipitation input variables) was adopted in modeling of 

Elephant Butte Reservoir net inflow. The October to forecast date composite 

precipitation index of the Basin was calculated as a weighted average of monthly 

precipitation from October to forecast date based on the correlation coefficients of the 
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precipitation of a specific month with the March-July seasonal net inflow volume. 

The calculated correlation coefficients between monthly precipitation from October 

to April, month-specific weighted average October-April precipitation index, and 

equal-weighted average October-April precipitation index of the SNOTEL sites with 

the March-July seasonal net inflow are shown in Table 3.14. The composite PRCP 

index for each SNOTEL site can be calculated by Equation 3.5, and then used as the 

inputs for each forecast equation development. Again, the results confirmed the 

potential forecast improvement by using month-specific weighted average 

precipitation index in the forecast equations. The variables used in the net inflow 

modeling are described in Table 3.15. 

 
Table 3.14 Correlation coefficients of monthly and October-April average 

precipitation of SNOTEL sites with March-July Elephant Butte Reservoir net inflow 
(1981-2002) 

 

Snotel Site OCT NOV DEC JAN FEB MAR APR 

OCT-APR 

Weighted 
average 

Simple 
average 

Bateman 0.32 0.54 0.49 0.28 0.46 0.29 0.26 0.88 0.84 

Chamita 0.52 0.52 0.51 0.16 0.45 0.40 0.25 0.90 0.88 

Culebra #2 0.25 0.55 0.29 0.09 0.36 0.27 0.34 0.84 0.79 

Cumbres Trestle 0.41 0.56 0.48 0.09 0.37 0.40 0.30 0.86 0.80 

Gallegos Peak 0.35 0.68 0.38 0.14 0.18 0.36 0.46 0.82 0.83 

Hopewell 0.48 0.60 0.40 0.15 0.33 0.37 0.29 0.87 0.83 

Lily Pond 0.42 0.53 0.48 0.10 0.09 0.36 0.26 0.78 0.76 

Middle Creek 0.32 0.51 0.44 0.01 0.19 0.15 0.25 0.74 0.67 

Quemazon 0.41 0.54 0.55 0.26 0.46 0.00 0.17 0.82 0.73 

Red River Pass #2 0.29 0.61 0.23 0.14 0.13 0.30 0.39 0.69 0.68 

Upper San Juan 0.37 0.52 0.51 0.11 0.17 0.33 0.24 0.81 0.76 

Wolf Creek Summit 0.43 0.47 0.26 0.11 0.10 0.28 0.11 0.62 0.51 

Average 0.38 0.55 0.42 0.14 0.27 0.29 0.28 0.80 0.76 
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Table 3.15 List of variables used in regression equation development for Elephant 
Butte Reservoir net inflow 

 

Variables Notation Description 
Number of variables used for 

monthly equation 

   Jan Feb Mar Apr May 

Snow Water 
Equivalent 

SWE 
Measured on the first day of a 
month 

12 12 12 12 12 

Precipitation 
Index 

PRCP 
INDEX 

October to forecast date 
precipitation index for each 
SNOTEL site 

12 12 12 12 12 

Temperature 
Index 

TEMP 
INDEX 

October to forecast date 
monthly average temperature 
index 

3 4 5 6 7 

Previous Flow FLOW 
October to forecast date 
monthly flow 

3 4 5 6 7 

Southern 
Oscillation Index 

SOI 
October to December 
average of previous year 

1 1 1 1 1 

Total number of variables used for variable selection in monthly 
equations 

31 33 35 37 39 

 
 
 
 

3.3.2.1 Variable Selection Procedure  

 The same variable selection procedure for the PLSR and PCR equation 

development that was described in section 3.2.2.2 was used in the variable selection 

in the seasonal net inflow forecast equation development. The variable selection was 

carried out using PLSR by analyzing predictor variables using variable importance 

for the projection (VIP) of each predictor and considering the forecast consistency of 

the regression equations from month to month. The same selected variables were used 

for principal components regression modeling.  
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3.3.3 Model Testing and Comparison 

3.3.3.1 Comparison of Models for Cross Validation Phase 

Based on the procedures described in the previous sections, the PLSR and 

PCR forecasting equations were calibrated using data from 1981to 2002 (22 years) 

with the jackknife cross validation scheme. The variable selection was performed in 

calibrating PLSR model by analyzing VIP and forecast consistency. Principal 

components regression was calibrated using the same variables used in PLSR, and no 

variable selection was performed for PCR during the calibration.  

Model adequacy was tested by analyzing the residuals of calibration period 

for all the equations. The residuals can provide information about the adequacy and  

prediction capability of models over the range of dependent variables. The student’s 

t-test was used to test if the residuals had zero mean, Shapiro-Wilk normality test was 

used to test if residuals were normally distributed and Ljung-Box white noise test was 

used to check whether any autocorrelations exist in the residuals or if the residuals 

were white noise process. The test results showed that all the model residuals were 

statistically of a zero mean, normally distributed and white noise process. This 

suggested that all the models were adequate with acceptable predictive ability. Taking 

the March 1st PLSR equation as an example, the p-value of student’s t-test for zero 

mean was 0.996, p-value of the Shapiro-Wilk normality test was 0.994, the p-value of 

Ljung-Box white noise test up to lag 6 was 0.774. The normal  probability plot of 

residuals for this model is plotted in Figure 3.10.  All the statistical tests and 

normality plots suggested that there was not any modelable information left in the 
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residuals. Similar results were obtained for all other forecasting equations for 

Elephant Butte seasonal net inflow. 

 

  
Figure 3.10 Normality plot of residuals of March 1st PLSR equation (1981-2002) 

 

 

 The coefficients of variables of the calibrated PLSR and PCR forecast 

equations are shown in Tables 3.16 and 3.17. The maximum number of variables of 

forecast equations (April 1st forecast equation) was 31. Similar to the results of Del 

Norte flow modeling, there was no significant difference in the magnitude of variable 

coefficients of PLSR and PCR equations. To compare the forecasting performance of 

these models, several performance statistics of PLSR and PCR models, such as 

coefficient of determination for calibration and cross validation, RMSE, normalized 

RMSE, are also described in Tables 3.16 and 3.17. In general, there is a reduction in 
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model error as the period in time between forecast date and the actual forecast period 

is narrowed. The same trend was also observed in Del Norte forecasting equations. 

The cross validation RMSE decreased from highest errors at January 1st forecast 

equations to lowest errors at May 1st equations. For instance, the normalized RMSE 

of January 1st PLSR equation decreased from 0.62 to 0.39 for the May 1st PLSR 

equation. Similar trends were also observed for PCR equations.  

As in the results of Del Norte modeling, the developed forecast equations for 

Elephant Butte Reservoir net inflow could very likely improve forecast accuracy 

compared to NRCS current forecasting equations at San Marcial Gaging Station. 

Table 3.16 suggests that the calibration coefficient of determination (R2) of January 

1st to April 1st PLSR forecasting equations (calibration period 22 years) were higher 

than calibration of R2 of NRCS equations (calibration period 25 years). For example, 

the calibration R2 of March 1st NRCS equation at San Marcial Gaging Station was 

0.57, while PLSR equation was 0.75. Similar results were obtained for other forecast 

equations developed by PCR. The application of effective precipitation index also 

facilitated the developing of more parsimonious regression model with fewer input 

variables as compared to NRCS current forecasting equations. This feature is more 

evident for the later forecast dates without losing forecast accuracy. For example, the 

current NRCS April 1st forecast equation at San Marcial Gaging Station had 43 

predictor variables from six SNOTEL sites with the calibration R2 of 0.70. In 

comparison, the number of variables in the proposed April 1st PLSR forecast equation 

was 33 from twelve SNOTEL sites and calibration R2 was 0.86 (Table 3.16). 
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Table 3.16 Forecast equations from Jan 1st to May 1st for Elephant Butte Reservoir 
net inflow developed using PLSR 

 

VARIABLES CATEGORY 
Coefficients 

JAN
 
1

st 
FEB 1

st 
MAR 1

st 
APR 1

st 
MAY

 
1

st 

Constant C -151.58 -288.20 -375.53 -461.53 -254.24 

Bateman SWE 3.42 3.45 3.50 2.62 2.97 

Chamita SWE 3.31 2.94 2.34 2.14 15.62 

Culebra #2 SWE 4.31 4.11 3.12 2.23 2.10 

Cumbres Trestle SWE 2.18 1.77 1.44 1.38 0.75 

Gallegos Peak SWE 3.97 4.54 4.03 2.65 2.72 

Hopewell SWE 3.13 2.41 2.28 2.08 1.52 

Lily Pond SWE 3.49 2.93 1.79 1.65 1.05 

Middle Creek SWE 2.35 2.05 1.79 1.62 0.39 

Quemazon SWE 4.47 3.82 3.28 1.89 * 

Red River Pass #2 SWE 6.87 7.78 3.87 2.51 9.55 

Upper San Juan SWE 1.71 1.36 1.06 1.13 0.49 

Wolf Creek Summit SWE 1.84 1.64 1.37 1.13 0.39 

Bateman PRCP INDEX 12.17 14.78 19.31 20.24 18.82 

Chamita PRCP INDEX 12.98 14.92 17.17 17.54 17.53 

Culebra #2 PRCP INDEX 15.06 17.01 18.22 18.13 18.89 

Cumbres Trestle PRCP INDEX 8.22 9.08 10.02 9.87 6.26 

Gallegos Peak PRCP INDEX 13.16 16.00 17.58 15.62 13.87 

Hopewell PRCP INDEX 10.05 11.69 13.51 13.52 13.31 

Lily Pond PRCP INDEX 8.82 9.82 10.34 10.52 5.53 

Middle Creek PRCP INDEX 7.26 7.59 8.80 8.95 2.24 

Quemazon PRCP INDEX 14.53 15.59 17.21 15.50 15.94 

Red River Pass #2 PRCP INDEX 16.12 19.50 20.47 20.77 8.27 

Upper San Juan PRCP INDEX 5.86 6.48 7.20 7.68 3.46 

Wolf Creek Summit PRCP INDEX 4.89 5.17 5.43 6.25 4.10 

Temperature-10 TEMP INDEX -6.85 -7.09 -6.95 -6.26 -4.07 

Temperature-11 TEMP INDEX -3.50 -3.62 -3.55 -3.13 * 

Flow-12 FLOW 0.28 0.29 0.29 0.26 0.95 

Southern Oscillation Index SOI -7.69 -7.96 -7.80 -7.10 -19.22 

Flow-1 FLOW  0.33 0.33 0.24 * 

Flow-2 FLOW   0.19 0.14 * 

Flow-3 FLOW    0.27 0.32 

Flow-4 FLOW     0.07 

Number of components 
used 

 1 1 1 1 2 

Number of components by min PRESS 2 2 2 1 2 

Calibration R
2 

 0.68 0.71 0.75 0.86 0.91 

San Marcial NRCS Eq. Calib. R
2   

(n=25) 0.69 0.60 0.57 0.70 - 

Jackknife cross validation R
2
 0.61 0.65 0.69 0.83 0.85 

Cross validation RMSE (kaf) 184 174 162 110 89 

Cross validation NRMSE  0.62 0.58 0.54 0.41 0.39 

Number of years for calibration 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or the variable is not included  
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Table 3.17 Forecast equations from Jan 1st to May 1st for Elephant Butte Reservoir 
net inflow developed using PCR 

 

VARIABLES CATEGORY 
Coefficients 

JAN
 
1

st 
FEB 1

st 
MAR 1

st 
APR 1

st 
MAY

 
1

st 

Constant C -167.77 -259.27 -344.07 -455.66 -235.77 

Bateman SWE 5.28 3.47 3.23 2.59 2.39 

Chamita SWE 4.58 3.54 2.80 2.29 12.20 

Culebra #2 SWE 6.46 4.00 3.30 2.38 2.66 

Cumbres Trestle SWE 1.87 1.95 1.60 1.44 0.95 

Gallegos Peak SWE 6.23 4.32 3.58 2.59 4.15 

Hopewell SWE 3.23 2.68 2.35 2.09 1.41 

Lily Pond SWE 1.26 3.00 2.20 1.82 1.02 

Middle Creek SWE -0.02 2.19 1.93 1.72 0.44 

Quemazon SWE 8.81 3.48 2.96 2.02 * 

Red River Pass #2 SWE 11.06 7.09 4.40 2.71 7.36 

Upper San Juan SWE 0.90 1.47 1.21 1.16 0.70 

Wolf Creek Summit SWE 0.44 1.58 1.43 1.20 0.55 

Bateman PRCP INDEX 17.19 14.79 17.41 19.28 16.43 

Chamita PRCP INDEX 14.47 14.18 15.60 17.24 13.10 

Culebra #2 PRCP INDEX 18.39 15.73 17.68 18.52 20.00 

Cumbres Trestle PRCP INDEX 7.02 8.75 9.49 10.03 7.97 

Gallegos Peak PRCP INDEX 15.87 14.85 15.47 15.02 14.53 

Hopewell PRCP INDEX 6.99 11.16 12.30 12.91 11.21 

Lily Pond PRCP INDEX 1.00 9.57 9.82 10.57 5.10 

Middle Creek PRCP INDEX 0.98 7.50 8.60 9.11 2.84 

Quemazon PRCP INDEX 19.25 14.11 15.41 15.11 10.22 

Red River Pass #2 PRCP INDEX 23.08 18.43 18.92 19.94 21.06 

Upper San Juan PRCP INDEX 1.76 6.37 6.87 7.59 4.74 

Wolf Creek Summit PRCP INDEX 3.60 5.96 6.21 6.18 4.16 

Temperature-10 TEMP INDEX -7.78 -3.68 -3.39 -4.86 -5.61 

Temperature-11 TEMP INDEX -6.56 -3.11 -3.51 -2.88 * 

Flow-12 FLOW 1.00 0.07 0.06 0.17 0.40 

Southern Oscillation Index SOI -25.75 -3.19 -3.02 -5.85 -15.93 

Flow-1 FLOW  0.14 0.20 0.17 * 

Flow-2 FLOW   0.10 0.10 * 

Flow-3 FLOW    0.23 0.12 

Flow-4 FLOW         0.08 

Number of components 
used 

 2 1 1 1 2 

Number of components by min PRESS 3 4 6 3 2 

Calibration R
2 

 0.70 0.68 0.70 0.85 0.89 

San Marcial NRCS Eq. Calib. R
2   

(n=25) 0.69 0.60 0.57 0.70 - 

Jackknife cross validation R
2
 0.61 0.62 0.62 0.66 0.83 

Cross validation RMSE (kaf) 184 181 180 171 111 

Cross validation NRMSE  0.61 0.60 0.57 0.41 0.37 

Number of years for calibration 22 22 22 22 22 

* Snow water equivalent is zero at that site on the specific month, or the variable is not included  
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  Based on the performance statistics both for the calibration phase and 

jackknife cross validation, no significance difference could be found between the 

performance of PLSR and PCR. Similar results were also obtained in Del Norte 

seasonal natural flow modeling. However, there was a difference in the number of 

components used in PLSR and PCR. It can be observed from Tables 3.16 and 3.17 

that the optimum number of components extracted by minimum PRESS statistic in 

PLSR was lower than that of PCR for all forecast date equations. Partial least squares 

regression reaches its minimal prediction error with a smaller number of components 

than PCR. Moreover, the explained variation (coefficient of determination for 

calibration) of dependent variable by PLSR is always higher than PCR for the same 

number of components extracted.  

 Figure 3.11 also illustrates the difference of PLSR and PCR in extracting 

optimal components based on minimum prediction error and van der Voet’s test using 

jackknife cross validation for March 1st forecast equation. It can be seen that the 

number of components that were suggested by minimum PRESS and van der Voet’s 

test was 2 for PLSR, whereas, they were 6 and 3 for PCR respectively. The PLSR can 

reach minimum prediction error using 2 components, and the PCR can reach 

minimum prediction error with 6 components. In general, the PLSR method is more 

powerful than PCR in extracting components that deal with collinearity issue; but this 

does not guarantee that PLSR regression will be better than PCR at seasonal 

streamflow forecasting accuracy. Similar results were obtained in Del Norte Gaging 

Station PLSR and PCR equation development.  
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Figure 3.11 Optimum number of components extracted by PLSR and PCR for March 

1st forecasting equation 
 
 
 
 

3.3.3.2 Comparison of Models for Testing Data 

 The models were tested for new data from 2003 to 2007 to examine the 

forecast performance of PLSR and PCR models. Although NRCS does not provide 

seasonal net inflow forecasting for Elephant Butte Reservoir, the NRCS does issue 

March-July natural seasonal volume forecasts for San Marcial Gaging Station, Rio 

Grande, which is located in the entrance of Elephant Butte Reservoir. To compare the 

model forecasts with NRCS forecasts, a routing forecast equation was developed 

using the March-July natural flow of San Marcial Gaging Station and Elephant Butte 
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net inflow. The routing equation for Elephant Butter Reservoir net inflow is as 

follows: 

  56.36728.0 += NRCSMJ FF  (R2=0.96, n=40)  (3.9) 

Where  

FMJ  = Elephant Butte March-July net inflow forecasts (kaf); 

FNRCS = NRCS forecasts for March-July natural flow at San Marcial Gaging Station 

(kaf); 

 In order to compare the performance of models for the data period from 2003 

to 2007, the forecasts for all forecast dates were used. The NRCS official forecasts on 

forecast dates of January 1st to May 1st (as shown in Table 3.13) were used for 

calculation of routed forecasts of Elephant Butte March-July net inflow using 

Equation 3.6. To compare the March-July forecast volume by PLSR and PCR 

equations, the observed March flow was added to April-July volume forecasts of 

April 1st equations; the observed March and April flows were added to May-July 

forecasts of May 1st forecasting equations. The comparison of forecasts from 2003 to 

2007 are shown in Figure 3.12. 

 The Figure 3.12 suggests that the forecasts of PLSR and PCR for the all years 

and forecast dates are similar, although PLSR performed somewhat better than PCR 

for most of the years except 2006. In general, no significant difference was observed 

between PLSR and PCR. When comparing the PLSR and PCR forecasts with 

converted NRCS official forecasts for Elephant Butte Reservoir net inflow, the NRCS 

forecasts for 2003, 2006 and 2007 were better than PLSR and PCR in general except 
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for some forecast dates. In contrast, PLSR and PCR equations provided better 

forecasts than NRCS official forecasts for 2004 and 2005. Overall, the single PLSR 

equation developed in this study showed potential capability in net inflow forecasting 

of Elephant Butte Reservoir when compared with the NRCS official forecasts that are 

the result of coordinated work from different agencies using a number of forecasting 

equations.  

 
 

 
 
 



 
 

135

0

200

400

600

800

Jan 1st Feb 1st Mar 1st Apr 1st May 1st 

N
et

 in
flo

w
 (

k
af

)  
 

Forecast date

(2004)

0

200

400

600

800

Jan 1st Feb 1st Mar 1st Apr 1st May 1st 

N
et

 in
fl
ow

 (
ka

f)
  

Forecast date

(2005)

0

200

400

600

800

Jan 1st Feb 1st Mar 1st Apr 1st May 1st 

N
e
t i

n
flo

w
 (

ka
f)

   

Forecast date

(2003)

0

200

400

600

800

Jan 1st Feb 1st Mar 1st Apr 1st May 1st 

N
e
t i

n
flo

w
 (

ka
f)

  

Forecast date

(2006)

0

200

400

600

800

Jan 1st Feb 1st Mar 1st Apr 1st May 1st 

N
e
t i

n
flo

w
 (

ka
f)

  

Forecast date

NRCS PLSR PCR OBSERVED

(2007)

  
Figure 3.12 Comparison of March-July PLSR, PCR model forecasts with converted 

NRCS official forecasts for Elephant Butte Reservoir net inflow for 2003-2007 
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3.3.4 Final Model 

The discussions in the previous sections suggested that the performance of 

partial least squares regression is similar to principal components regression. 

However, it was also observed that PLSR reaches its minimal prediction error with a 

smaller number of components and can account for more variation of the dependent 

variable with the same components, as compared to PCR. This is a unique feature of 

PLSR compared to PCR when developing regression equations. Considering all those 

factors, the following final model was developed using data from 1981 to 2007 

(27years) and the PLSR modeling approach. The final forecast equation and the 

model performance results that were evaluated using the jackknife cross validation 

scheme are shown in Table 3.18. The proposed final model could be used for March-

July seasonal net inflow forecasting of Elephant Butte Reservoir, Rio Grande, New 

Mexico. 
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Table 3.18 Final PLSR forecasting equation for Elephant Butte Reservoir net inflow, 
Rio Grande, New Mexico 

 

VARIABLES CATEGORY 
Coefficients 

JAN
 
1

st 
FEB 1

st 
MAR 1

st 
APR 1

st 
MAY

 
1

st 

Constant INTERCEPT -177.89 -319.18 -383.67 -478.13 -254.09 

Bateman SWE 3.42 3.69 3.42 2.65 3.62 

Chamita SWE 3.46 3.36 2.54 2.05 16.98 

Culebra #2 SWE 4.60 4.04 2.93 2.19 1.61 

Cumbres Trestle SWE 2.26 1.89 1.44 1.42 0.70 

Gallegos Peak SWE 4.11 4.68 3.71 2.39 2.65 

Hopewell SWE 3.20 2.65 2.32 2.13 1.49 

Lily Pond SWE 3.67 2.94 1.91 1.78 1.38 

Middle Creek SWE 2.51 2.07 1.78 1.75 0.51 

Quemazon SWE 4.54 3.86 3.13 1.94 * 

Red River Pass #2 SWE 5.58 5.74 3.51 2.42 11.44 

Upper San Juan SWE 1.74 1.23 0.93 1.05 0.57 

Wolf Creek Summit SWE 1.94 1.53 1.25 1.14 0.51 

Bateman PRCP INDEX 11.37 14.97 18.01 19.07 13.25 

Chamita PRCP INDEX 12.71 15.22 17.68 17.53 23.40 

Culebra #2 PRCP INDEX 15.86 17.78 18.89 17.89 14.98 

Cumbres Trestle PRCP INDEX 8.72 9.75 10.10 10.26 6.16 

Gallegos Peak PRCP INDEX 13.65 16.54 17.33 14.74 12.41 

Hopewell PRCP INDEX 10.07 12.00 13.17 13.25 13.95 

Lily Pond PRCP INDEX 8.83 9.71 10.01 10.84 5.64 

Middle Creek PRCP INDEX 7.36 7.65 8.61 9.13 0.62 

Quemazon PRCP INDEX 14.76 15.83 16.59 15.00 12.47 

Red River Pass #2 PRCP INDEX 16.06 19.48 19.84 21.51 1.01 

Upper San Juan PRCP INDEX 6.09 6.66 6.98 8.07 3.18 

Wolf Creek Summit PRCP INDEX 4.73 4.94 5.00 6.14 2.97 

Temperature-10 TEMP INDEX -6.27 -6.46 -6.17 -5.55 -4.04 

Temperature-11 TEMP INDEX -3.32 -3.42 -3.27 -2.90 * 

Flow-12 FLOW 0.33 0.34 0.32 0.29 1.22 

Southern Oscillation Index SOI -7.79 -8.03 -7.68 -7.01 -18.61 

Flow-1 FLOW  0.43 0.41 0.32 * 

Flow-2 FLOW   0.22 0.18 * 

Flow-3 FLOW    0.28 0.42 

Flow-4 FLOW         0.09 

Number of components used 1 1 1 1 2 

Calibration R
2
 0.64 0.71 0.72 0.85 0.91 

Jackknife cross validation R
2
 0.58 0.65 0.67 0.82 0.85 

Cross validation RMSE (kaf) 188 171 167 112 95 

Cross validation NRMSE 0.64 0.58 0.57 0.42 0.42 

Number of years for calibration 27 27 27 27 27 

* Snow water equivalent is zero at that site on the specific month, or the variable is not included  
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3.4 Conclusions and Remarks 

 In this chapter, the application of partial least squares regression (PLSR) and 

principal components regression (PCR) approaches in seasonal streamflow 

forecasting has been presented. Some issues related to regression equation 

development such as the selection of an optimal number of components using 

jackknife cross validation scheme and the variable selection procedure in PLSR have 

been discussed. Seasonal streamflow forecasting performance of PLSR and PCR 

models was compared with each other as well as with NRCS official forecasts. Two 

subbasins of the Rio Grande, the Rio Grande Headwaters above Del Norte Gaging 

Station and Rio Grande Basin above Elephant Butte Reservoir, and two hydrologic 

variables, river flow and reservoir net inflow, were used for seasonal flow forecasting 

model development.  

 The effective precipitation index was first introduced in this study to capture 

complex precipitation data in a concise parameter and to examine if better forecast 

skills could be obtained. Effective precipitation indices were found to be an efficient 

method of both improving forecast accuracy and developing more parsimonious 

regression models with fewer input variables. This is particularly important for larger 

basins where more information is available from numerous SNOTEL sites for the 

forecast equation development. The algorithm used in this study was limited to using 

the weighted average of monthly precipitation based on the correlation coefficients 

with corresponding spring-summer forecast target volume. 
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 The comparison of the performance of PLSR and PCR suggested that there 

are no significant differences in the forecasting performance of the two 

methodologies; similar forecast accuracies were obtained for both methods. However, 

PLSR can reach its minimal prediction error with a smaller number of components 

than PCR. Moreover, the explained variation of the dependent variable by PLSR is 

always higher than PCR for the same number of components extracted. In general, 

the PLSR method is more powerful than PCR in extracting components that deal with 

collinearity issue, yet it may not necessarily guarantee that PLSR would be better than 

PCR in terms of forecasting accuracy in seasonal streamflow forecasting. 

 The proposed forecasting equations in the study using PLSR and PCR were 

calibrated using only 22 years of data. This calibration period in this study is shorter 

than that of the NRCS forecasting equations because the data used in the calibration 

are continuous high quality data that are measured from NRCS automatic SNOTEL 

sites. Except for several years of SNOTEL precipitation data that were extended back 

to the 1980s using weather station precipitation data, neither an estimation of missing 

data was performed, nor was the Snow Course data used in the calibration of the 

regression equations. The standoff between using a shorter calibration period and 

using real-time good quality data is often encountered in seasonal streamflow 

forecasting equation development. However, with the accumulation of real-time 

measured SNOTEL data through time, the regression equations can be recalibrated 

every year when the new data become available. 
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 The PLSR and PCR regression equations developed in this study are used to 

compute the median value of the seasonal water volume forecast distribution. If 

needed, the ensembles/probabilistic forecasts can be added by analyzing the statistical 

properties of the model error series (i.e., residuals) that occur in reproducing observed 

historical streamflow data using jackknife procedure.  The results from statistical tests 

of residuals of all PLSR models developed study showed that they are normally 

distributed at 0.05 significance level. Based on the normally- distributed errors, the 

exceedance probability forecasts of PLSR equation can be provided. The width of the 

probabilistic forecast error bound is proportional to the root mean squared error 

between these jackknife hindcasts and their respective observations.  

 In general, the application of PLSR in seasonal streamflow forecasting is 

promising. Together with PCR and Z-score regression, the PLSR approach can be 

combined into NRCS’s operational forecasting platform to facilitate its application in 

operational forecasting environment.  The selection of numbers of components with 

PLSR and variable selection procedures in seasonal streamflow forecasting equation 

development were attempted in this study. However, the variable selection in PLSR is 

always a challenging task due to the complexity of the hydrologic process. Similar to 

Garen’s (1992) method of variable selection for PCR, the investigation and 

application of more robust variable selection approaches, such as systematic 

searching of optimal or near optimal variable combination in PLSR would be 

desirable in future seasonal streamflow forecasting research studies.  
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4 HYBRID MODELING OF SEASONAL FLOW 

 

 In this chapter, the application of hybrid modeling approaches in seasonal 

streamflow forecasting is proposed. Two hybrid modeling approaches, a forecast 

modification using a combination of transfer function - noise (TFN) model with 

artificial neural networks (ANN), and the combination of principal components 

analysis (PCA) with ANN, have been investigated for the purpose of improving 

seasonal streamflow forecasts. To perform time series modeling of seasonal flow, 

different seasons were defined for two basins used in the study. Several statistical 

models, including autoregressive integrated moving average (ARIMA), TFN, and 

ANN, were built for seasonal natural flow at Del Norte Gaging Station, Rio Grande, 

Colorado and seasonal net inflow of Elephant Butte Reservoir, Rio Grande, New 

Mexico. The forecast performance of two hybrid modeling approaches was compared 

to the different single modeling techniques such as ARIMA, TFN and ANN. Finally, 

some general discussions and conclusions are summarized at the end of the chapter. 

 

4.1 Hybrid Model Formulation  

 As described in section 2.4.2, two hybrid modeling approaches have been 

presented for the purpose of improving seasonal and monthly streamflow forecasting 

performance in this study. The general model formulation of the approaches are 

described in the following sections. 
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4.1.1 Forecast Modification Using ANN 

 Forecast modification is essentially a complementary hybrid modeling 

approach, which is the combination of two or more models. In this study, the TFN 

model with precipitation input was used to produce one-step-ahead streamflow 

forecasts; the forecasts were then modified using the artificial neural networks 

technique with the inclusion of new information such as snow water equivalent 

(SWE) and El Niño  Southern Oscillation Index (SOI). The configuration of the ANN 

model for forecast modification is as follows: 

  Yt, modified = f (SWEt', SWEt'-1, SOI, Yt, forecasted)   (4.1) 

Where  

Yt, modified  =  seasonal flow forecasts after the forecast modification at season t ;  

Yt, forecasted =  seasonal flow forecasts using TFN model with PRCP input at season t; 

SWEt', SWEt'-1 =  snow water equivalents on the first day of month t', t'-1 (t' is the first 

month of season t); 

SOI = the October-December averaged El Niño  Southern Oscillation Index of a 

previous year. 

The number of SWE inputs and lag relationships in the ANN models may 

vary slightly depending on the particular season. But the maximum number of SWE 

inputs was limited to 2, since they are highly intercorrelated between the consecutive 

months. In addition, limiting the number of SWE inputs can keep a network size 

smaller so that it has a better generalization capability. The detailed procedures, 

including the selection of seasons to be modified and number of SWE inputs, are 
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discussed in the following sections according to the hydrologic characteristics of the 

specific basin to be modeled.  

 

4.1.2 Combination of PCA and ANN   

 A combination of PCA and ANN is a complementary hybrid modeling 

technique that combines the advantages of principal components analysis and neural 

networks. As discussed in section 2.2.2, the predictor variables used in seasonal water 

supply forecasting are usually highly intercorrelated. For example, the snow water 

equivalent, precipitation data of different SNOTEL sites and different months are 

highly correlated with each other. A large number of intercorrelated predictor 

variables are often referred to as a multi-collinearity issue, which may affect 

performance of neural networks by easily overtraining the network and giving very 

low performance on the prediction of new data. 

 The principal components analysis is a statistical technique that deals with 

highly intercorrelated predictor variables by extracting an equal number of 

uncorrelated variables. Hence, the combination of PCA and ANN may facilitate the 

effective neural network modeling because the network may converge faster due to 

the orthogonal features of principal components, and using fewer principal 

components as inputs than original variables. The graphical representation of the 

algorithm is described in Figure 4.1. The network consists of four layers including 

input layer for PCA, PCA outputs (also used as input layer for neural networks), a 

hidden layer and the output. Basically, in this approach, a new set of input predictor 
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variables for an ANN model were created by transforming the original variables into 

a fewer number of orthogonal variables using PCA analysis. 

 

 

Input layer Input Layer
(PCA output)

Hidden layer Output

PCA ANN  

 

 

Figure 4.1 Graphical representation of combination of PCA and ANN hybrid 
modeling approach 

 

 

 The following procedure was applied to select the number of principal 

components that used as the inputs for ANN model building in this study: 

1) Extract the first five principal components (PC) of the input variables; only 

the first five PCs were used, mainly because of the desirability of keeping 

smaller inputs and network sizes for better generalization. In addition, most of 
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the information usually can be explained by the first few PCs of predictor 

variables in streamflow forecasting (See chapter 3). 

2) Perform stepwise variable selection at 0.05 significance level  

3) Select the number of principal components until getting the second significant 

principal component; For example, if the second significant principal 

component was the fourth PC, then the first, second, third and fourth PCs 

would be selected as the inputs for the ANN, even if the second and third 

components were not significant predictors according to the t-test of 

significance in stepwise variable selection.  

The selection of the number of PCs in sequence for the hybrid modeling was adopted 

from the approach suggested by Garen (1992) for the selection of the number of PCs 

retained in the principal components regression modeling. The selection of PCs in 

sequence may prevent an unexpected jumps and drops in model prediction. It was 

also assumed that there may be some nonlinear relationships existing between PCs 

and the dependent variable even if the relationships are not linearly significant; and 

ANN has the capability of mapping the nonlinear relationship patterns between 

predictors and the dependent variable.  
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4.2 Del Norte Natural Flow 

4.2.1 Definition of Seasons 

 To develop seasonal flow time series models, different seasons in a year 

should be defined for the basin. To define the seasons in the Rio Grande Headwaters 

Basin above Del Norte Gaging Station, following factors were considered: 

1) Statistical similarities such as mean, standard deviation, of monthly 

streamflow; 

2) The magnitude of correlation between monthly streamflow and snow water 

equivalent; 

3) NRCS forecasting periods; 

4) Generation of an equally spaced continuous seasonal streamflow volume time 

series. 

 The Figure 1.3 showed the monthly average flow and standard deviation of 

Del Norte natural flow for the calculation period of 1961-2007.   It can be seen that 

the May and June flows account for more than half of the annual runoff, while the 

April-September runoff accounts for almost 90% of the annual total runoff. This 

suggested that the Basin is snow-dominated, since a large portion of the annual runoff 

is contributed by the snowmelt. The snowmelt season lasts from April to September, 

and most of the snowmelt runoff is concentrated in the months of April, May and 

June. The NRCS forecasting period is also April-September of a calendar year. In 

order to get equally spaced continuous time series for the modeling of seasonal flow, 
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the entire snowmelt season should be divided into two seasons: April-June and July-

September. 

To determine the pattern and magnitude of relationship between the monthly 

flow at Del Norte Gaging Station and monthly SWE, a correlation analysis between 

the monthly SWE index, which is measured in the first days of January to June, and 

monthly flow at Del Norte Gaging Station was performed. The results (Table 4.1) 

indicated that the basin average SWE index is significantly correlated with the March 

to September monthly flow at 0.01 significant level. Although the correlations 

between March flow with March 1st and February 1st SWEs are statistically 

significant at 0.05 significance level, the correlation coefficients are not as high as in 

other months. The September flow has a significant correlation coefficient with the 

May 1st SWE only. The monthly streamflow from April to August is significantly 

correlated with each month’s SWE from January 1st to June 1st , since the p-values of 

Pearson correlation coefficients significance test  are all smaller than 0.0001. 

 Considering those factors discussed above, the following seasons have been 

defined for the Rio Grande Headwaters Basin above Del Norte Gaging Station. 

Season 1: January, February and March 

Season 2: April, May and June 

Season 3: July, August and September 

Season 4: October, November and December 

Based on the correlation analysis with snow water equivalent and monthly 

distribution of Del Norte flow, only the second season and third season were of 
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interest in this study. Moreover, the NRCS provides April-September seasonal 

forecasts at Del Norte Gaging Station, Rio Grande, so they can be compared with the 

forecasts of second and third seasons that have been produced by the modeling 

approaches in this study. 

 

Table 4.1 Correlation coefficient significance test between SWE index of the Basin 
and monthly streamflow at Del Norte Gaging Station (1961-1999) 

 

Month 
 SWE 

 Jan 1
st 

Feb 1
st 

March 1
st 

April 1
st 

May 1
st 

June 1
st 

Jan  0.41      

Feb  0.36 0.23     

Mar  0.42 0.32 0.35    

Apr  0.42 0.39 0.44 0.43   

May  0.59 0.59 0.62 0.65 0.69  

Jun  0.60 0.72 0.74 0.83 0.92 0.81 

Jul  0.59 0.68 0.66 0.78 0.86 0.82 

Aug  0.46 0.45 0.40 0.38 0.54 0.37 

Sep  0.28 0.23 0.17 0.21 0.37 0.17 

Oct  0.32 0.26 0.21 0.18 0.29 0.09 

Nov  0.33 0.19 0.15 0.18 0.33 0.07 

Dec  0.40 0.28 0.22 0.22 0.38 0.20 

Note: The bold numbers indicate the correlations are significant at 0.01 significance 

level.  

 

 

4.2.2 Data Description 

4.2.2.1 Seasonal Flow Time Series 

After defining the seasons, the seasonal time series data were calculated by 

summing up corresponding monthly flows into seasonal volume. To obtain a better 

approximation of normal distribution for time series modeling, the seasonal flow time 
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series was deseasonalized using seasonal average and standard deviation to remove 

the seasonal variation of the data. The deseasonalized series is the series after 

removing the seasonal variation by standardization using following expression: 

 
t

tt
t

YY
y

σ̂

−
=        (4.2) 

Where       yt = deseasonalized series for season t 

  Yt = original series for season t 

tY = sample average of the original series for season t 

tσ̂ = sample standard deviation of the original series for season t 

 Figures 4.2 and 4.3 show the normal probability plots of original seasonal 

flow series and deseasonalized seasonal flow series. It can be seen that the 

deseasonalized transformation improved the normality approximation of the data 

significantly compared to the original series. The Shapiro-Wilk normality tests that 

performed to both series showed that normality assumption was not accepted at 0.05 

significance level. The p-value corresponded to the original series was much smaller 

than 0.001, while the p-value for deseasonalized series was 0.035. However, it was 

assumed that the normal distribution approximation of deaseasonalized series was 

sufficient for time series model building. 
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Figure 4.2 Normality plot of the original seasonal flow at Del Norte Gaging Station 

(1961-1999) 

  
Figure 4.3 Normality plot of deseasonalized seasonal flow series at Del Norte Gaging 

Station (1961-1999) 
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4.2.2.2 Other Data  

 The average seasonal precipitation data from 1961 to 2005 was used in the 

seasonal time series modeling (the 2006 and 2007 data was not used because it is 

provisional data). The average seasonal precipitation of the Basin was calculated as 

the average of the monthly average SNOTEL precipitation index (shown in 

Figure1.5) for the defined seasons. SWE data used in this chapter was the monthly 

basin average SWE index data as shown in Figure 1.4 that also covered the period of 

1961-2005. The previous year October-December SOI data was also used in the 

modeling (See Figure 1.12). 

 

4.2.3 Development of Single Models 

4.2.3.1 ARIMA 

 The deseasonalized seasonal flow series was used to fit ARIMA model. The 

entire data set was divided into a calibration set and a test set, which covered the 

periods of 1961-1999 and 2000-2005 respectively. The autocorrelation functions 

(ACF) and partial autocorrelation functions (PACF) suggested a AR(9) model with 

only lag 1 and lag 9 were significant.  The following ARIMA model was developed 

for the series and it passed all the diagnostic checks: 

  ttttt ayyyy +−+= −−− 1091 104.0188.0553.0    (4.3)  

Where 

yt , yt-1 , yt-9 , yt-10   = deseasonalized seasonal flow series at season t, t-1, t-9, t-10 

respectively.  
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The model explains 75% of variability of the Del Norte seasonal flow. One-season-

ahead rolling forward forecasts were made for six years (2000-2005) to evaluate the 

performance of the model in the next sections. The one-season-ahead rolling forward 

forecast means the model parameters will be modified for every season forecasts 

when the new observation data become available.  

 

4.2.3.2 TFN 

 To build a TFN model, the relationship of seasonal average precipitation and 

seasonal streamflow time series was investigated using cross correlation analysis. 

Based on the sample cross correlation functions between the input series and output 

series, and the impulse response function, an appropriate form of TFN model was 

suggested. The sample cross correlation between the Del Norte seasonal flow and 

seasonal precipitation time series was performed by prewhitening the input series and 

filtering the output series using ARIMA models. The precipitation series was 

deseasonalized by subtracting means and dividing by seasonal standard deviations, 

and the autocorrelation function (ACF) showed the resulting series to be white noise. 

The sample cross correlation function(CCF) between two series is shown in Figure 

4.4. 
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Figure 4.4 Cross correlation function between deseasonalized seasonal precipitation 
and filtered deseasonalized seasonal flow at Del Norte Gaging Station (1961-1999) 

 
 
 
 The following TFN model was built for deseasonalized seasonal flow series 

with the deseasonalized precipitation series as an input according to CCF using 

calibration set data. The model parameters were estimated using the conditional least 

squares method and the model passed all the diagnostic check according to the Box 

and Jenkins (1976) modeling procedure: 

  
ttt a

B
PRCP

B
y

)389.01(

1

)645.01(

440.0
1

−
+

−
= −

                (4.4) 

Equation 4.4 can be written in more straightforward form as follows: 

21211 171.044.0251.0ˆ645.0389.0ˆ
−−−−− −+−+= tttttt PRCPPRCPyyyy   (4.5) 
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Where 

 PRCPt-1  = Basin average seasonal SNOTEL precipitation at season t-1; 

tŷ , 1ˆ
−ty = forecasted deseasonalized monthly flow at month t, t-1. 

The built TFN model can explain 83% percent variability of Del Norte seasonal flow, 

indicating that the TFN model performed better than the ARIMA model.  

 The better performance of the TFN model compared to ARIMA can also be 

explained by the model variance and Akaike Information Criterion (AIC) (Akaike, 

1974) of both models. AIC is a popular statistical measure for model discrimination, 

and is a mathematical formulation of maximum likelihood estimation with the 

parsimony principle of model building, which is defined as:  

  kLkAIC 2ln2)( +−=                            (4.6)  

where L is maximum likelihood and k is the number of independently adjusted 

parameters within the model. The best model is given by the model with the lowest 

AIC value. The model performance of the deseasonalized seasonal flow series for 

calibration phase showed that the model variance and AIC of TFN model decreased 

from 0.673 to 0.598, and 383 to 361 respectively compared to the ARIMA model.  

 

4.2.3.3 ANN 

In the previous sections, the time series models were developed for continuous 

seasonal flow data for all seasons. As discussed earlier, the snow water equivalent 

(SWE) is only related to the April to September flow of the Basin. Hence, the ANN 
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models were developed only for two seasons in this study: April-June and July-

September. 

To examine the pattern and magnitude of the relationship between seasonal 

flow and monthly SWE and Southern Oscillation Index (SOI), a correlation analysis 

between the monthly SWE index, SOI and seasonal flow at Del Norte Gaging Station 

was performed. The results (See Table 4.2) indicated that the basin average SWE 

indices, which were measured in the first days of January to June, were significantly 

correlated with the April-June and July-September seasonal flows, while January-

March and October-December flows showed systematic relationships with SWE in 

the Basin. The January-March and October-December seasons are significantly 

related to SWE for some months, but their relationships were very weak (correlation 

coefficients were less than 0.5).  

Previous studies (Redmond and Koch, 1991) suggested that there is a negative 

correlation between the averaged June-November SOI and average monthly October–

March streamflow and precipitation for the southwest United States. NRCS (1997) 

completed an analysis of the correlation of the Southern Oscillation Index (SOI) with 

spring and summer volume runoff in the western U.S. and found that the Rio Hondo 

and Lower Rio Grande March-July flow have the highest correlations coefficients 

with October-December SOI index. Based on the previous research results in the Rio 

Grande Basin, the correlation analysis has been performed between the averaged 

June-November SOI, averaged October-December SOI and Del Norte seasonal flow. 

The results (Table 4.2) suggested that the SOI did not show any significant 
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relationship with Del Norte seasonal flow. Similar results were reported by NRCS 

(1997).  

 

Table 4.2 The correlation coefficients significance test between SWEs, SOI and 
seasonal flow at Del Norte Gaging Station (1961-1999) 

 

Season 

Snow Water Equivalent (SWE)  
Southern Oscillation 

Index 

Jan1
st 

Feb1
st 

Mar1
st 

Apr1
st 

May1
st 

June1
st 

 
JUN-NOV 
Average 

OCT-DEC 
Average 

JAN-MAR 0.490 0.308 0.324     0.020 0.101 

p-value 0.001 0.042 0.032     0.895 0.513 

APR-JUN 0.663 0.740 0.770 0.836 0.893 0.657  0.059 -0.072 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  0.702 0.642 

JUL-SEP 0.588 0.624 0.579 0.657 0.804 0.668  0.029 -0.116 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  0.850 0.453 

OCT-DEC 0.354 0.262 0.206 0.194 0.331 0.105  0.094 0.028 

p-value 0.019 0.086 0.179 0.208 0.028 0.496  0.545 0.855 

Notes: the bold numbers indicate the correlations are significant at 0.05 significance level 

 
 
 
 

The identification of proper input variables for ANN models is a challenging 

task. To build ANN models for season 2 and season 3, the following procedure was 

employed in this study to select input variables for ANN models: 

Step 1: Identify the different lag relationships between precipitation and previous 

flow with the modeled flow based on the structure of developed TFN model and 

sample cross correlation function between precipitation series and filtered flow 

series; 
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Step 2: Identify the lag relationship between SWE, SOI and modeled flow using 

cross correlation analysis; 

Step 3: Select the final inputs based on the magnitude of correlation coefficients 

of variables proposed by previous steps with modeled flow; Drop out the 

variables that correlation coefficients smaller than 0.4. 

Step 4: Set the maximum numbers of input variables to five in order to keep 

smaller network size for each model to avoid network overfitting.  

 The following two ANN models were proposed based on the input variable 

selection analysis using the procedure described above. The structures of models for 

second and third seasons were formulated as follow: 

For season 2 (April-June):  

  Yt = f (Yt-1, PRCPt-1, PRCPt-2, SWEapr1st)    (4.7) 

For season 3 (July-September):  

  Yt = f (Yt-1, PRCPt-1, PRCPt-3, SWEjun1st)    (4.8) 

Where  

PRCPt-1, PRCPt-2, and PRCPt-3  =  average seasonal precipitation indices at 

  seasons t-1, t-2,and t-3; 

SWEapr1st , SWEjun1st  = Snow water equivalent indices measured on April 1st  

  and June 1st ; 

 To build ANN models, the total data period (1961-2005) was divided into a 

calibration set (1961-1999) and a testing set (2000-2005); then the calibration set was 

randomized and divided further into a training set and a cross validation set. Cross 
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validation was used for early stopping of the training so as to protect the network 

from overtraining, since relatively short data set (39 years) and more predictors 

(maximum 5 input variables) were used for model training. The cross validation data 

set accounted for approximately 10 percent of the training data (5 observations), 

which could be practically acceptable when the data series is stationary (Wang, 2006). 

 In order to prevent the networks from overtraining and to enhance the 

generalization capability of networks that trained for such a short period, the 

following procedure was followed in the ANN model building process: 

1) Keep the number of inputs less than 5; 

2) Select maximum of two processing elements in the hidden layers so as to keep 

the number of network weights less than 10; 

3) Use cross validation stopping criteria to stop the network if there is no 

improvement after 100 epochs in cross validation data set; 

4) Train the networks multiple times (6-10) and select best network that has the 

lowest cross validation testing error. 

 

 Based on the identified input variables and maximum number of processing 

elements in the hidden layer, the ANN (4-2-1) model structure was used for both 

seasons. The training process utilized the hyperbolic tangent function as the activation 

function in the hidden layer, linear function in output layer, and the momentum 

learning rule. The training termination criteria employed cross validation techniques 

that would stop the training when the cross validation error begins to increase. The 
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number of maximum training epochs was set for 1000 and the training was 

terminated when there is no further improvement in cross validation after 100 epochs. 

The best weights of the network would be automatically saved at the point when cross 

validation error reached its lowest point.  

 

4.2.4 Development of Hybrid Models 

4.2.4.1 Combination of TFN and ANN 

 Based on the model formulation in section 4.1.1, two networks were 

developed for modification of TFN model forecasts using snow water equivalent for 

seasons 2 and 3. No significant correlation was observed between El Niño  Southern 

Oscillation Index (SOI) and Del Norte Gaging Station flow for all defined seasons (as 

shown in Table 4.2). Hence, the SOI was not included in the forecast modification for 

both seasons 2 and 3. It was also observed that the latest SWE information was 

sufficient for forecast modification. The adding of more SWE information from 

previous months did not contribute to the modification accuracy. Hence, both ANN 

models for seasons 2 and 3 have only two inputs, as shown in following expressions: 

Season 2 (April-June): 

  Yt, modified = f (SWEapr1st, Yt, forecasted)     (4.9) 

Season 3(July-September): 

  Yt, modified = f (SWEjun1st, Yt, forecasted)     (4.10) 

The same data period (1961-2005), calibration set (1961-1999), testing set (2000-

2005), cross validation stopping criteria, procedures that applied to enhance the 
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generalization capability of networks that were used in the previous section, were also 

used in the ANN model development for forecast modification. To keep a smaller 

network size, the maximum processing elements in the hidden layers were selected as 

3. The ANN (2-3-1) model structure was used for both seasons. The training process 

utilized the hyperbolic tangent function as the activation function in the hidden layer, 

linear function in output layer, and the momentum learning rule.  

 

4.2.4.2 Combination of PCA and ANN 

 Following the Step 1 and Step 2 of the input variable selection procedure that 

was discussed in section 4.2.3.3, the initial input variables for the hybrid ANN model 

were selected based on the TFN model structure, sample cross correlation function 

between precipitation and seasonal flow, and cross correlation analysis of SWE, SOI 

and seasonal flow. Seven initial variables were used in building the hybrid ANN 

models for both season 2 and season 3. They were: average seasonal precipitation of 

three previous seasons, snow water equivalents of three previous months, and 

previous seasonal flow.  

 Based on the procedures described in section 4.1.2, the first 4 principal 

components for season 2 and the first 2 principal components for season 3 were 

selected as the inputs for ANN models. The structures of models for second and third 

seasons are described as follows: 

For season 2 (April-June):  

  Yt = f (Z1, Z2, Z3, Z4 )      (4.11) 
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For season 3 (July-September):  

  Yt = f (Z1, Z2 )       (4.12) 

Where  

Zi =  the i th principal components of the initial input variables. 

 The same data period (1961-2005), calibration set (1961-1999), testing set 

(2000-2005), model training algorithm, cross validation stopping criteria, procedures 

that applied to enhance the generalization capability of networks that were used in the 

previous sections were also used in the ANN model development for the hybrid 

approach. To keep a smaller network size, the maximum processing elements in the 

hidden layers were selected as 2 for second season, and 3 for third season. Hence, the 

model structures of ANN (4-2-1) and ANN (2-3-1) were applied to second season and 

third season respectively.  

 

4.2.5 Model Diagnostics and Comparison 

4.2.5.1 Comparison of Models for Test Data  

 The performance of models was compared by performing one-season-ahead 

forecasting of all models for the testing data set which covered from 2000 to 2005. 

The ARIMA and TFN models were developed using continuous time series data, 

hence one-season-ahead forecasts for the second (April-June) and third season (July-

September) were made with developed ARIMA and TFN models. The ANN models 

were only developed for these two seasons. The two hybrid approaches, the 

modification of TFN model forecasts with ANN and combination of PCA and ANN, 
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were also applied to these two seasons. Table 4.3 shows some performance statistics 

of the models for the testing data from 2000 to 2005.  

 It was observed from the study that the TFN model forecasts could be 

improved by ANN method using latest snow water equivalent information for only 

for the April-June season. The TFN forecasts for July-September season were not 

improved by modification using ANN with latest snow water equivalent. This may be 

because the precipitation information from April to July is adequate to reflect the 

basin snow water equivalent information in the modeling. In this season, the 

temperature in the basin is rising, the main form of precipitation is rainfall, and the 

rainfall also contributes to the melting of snowpack. The combination of PCA and 

ANN also did not improve the forecasts of July-September season. Only the ANN 

model provided slightly better forecasts than did other models. In general, there was 

no improvement in the forecasts of July-September season by using hybrid models, 

since their performance was essentially the same as the ARIMA model. 

 

Table 4.3 Performance comparison of models for second and third seasons for test 
data set at Del Norte Gaging Station (2000-2005) 

 

Models 
APRIL-JUNE 

 
JULY-SEPTEMBER 

R
2
 RMSE(kaf) NRMSE   R

2
 RMSE NRMSE 

ARIMA 0.40 145 0.93 
 

0.13 67 0.93 

TFN 0.64 111 0.71 
 

0.04 67 0.93 

ANN 0.77 87 0.56 
 

0.23 61 0.85 

TFN+ANN 0.84 72 0.47 
 

* * * 

PCA+ANN 0.85 67 0.43   0.12 64 0.89 

* No improvement  
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As indicated in the Table 4.3 and Figure 4.5, the model performance improved 

significantly when hybrid models were applied to April-June season flow forecasts. 

The best performing model would be the combination of PCA and ANN, and TFN 

with forecasts modification coming second, indicating that there is a potential 

capability of hybrid approaches to improve forecast accuracy as compared to the 

single models. For example, the RMSE of forecasted and observed flow for April-

June decreased from 145 acre-ft to 67 acre-ft from the ARIMA model to the 

combination of PCA and ANN approach. The normalized RMSEs of different model 

forecasts for July-September (as shown in Figure 4.5) were almost same. Although a 

slightly smaller NRMSE was reported for the ANN model and the combination of 

PCA and ANN, there was no significant improvement using any of these models. 

One-season-ahead forecasts of the TFN model for the first season (January-March) 

and fourth season (October-December) were better than the ARIMA model with 

smaller NRMSEs. The ANN and hybrid models were not developed for these 

seasons, since there was no meaningful relationship existing between SWE and the 

flow of these seasons (Table 4.1). The TFN with precipitation input was considered to 

be sufficient for the modeling of the flow of these seasons.  
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Figure 4.5 Comparison of normalized RMSEs of different model forecasts for all 

seasons for the test period (2000-2005) at Del Norte Gaging Station 
 
 
 

The comparison of forecasted and observed seasonal flow time series from 

2000 through 2005 is shown in Figure 4.6. As can be seen, the distinct improvement 

of forecasts can be observed for season 2 (April-June) using hybrid approaches. The 

April-June flow forecasts made by TFN model were significantly smoothed out by 

using hybrid modeling for all years except 2001 and 2005. There was a significant 

improvement in forecast accuracy on 2000, 2002 and 2004 using hybrid modeling 

approaches, again showing the effectiveness of the hybrid modeling approach in 

improving forecast accuracy of seasonal flow compared to single models. Figure 4.6 

also suggested the importance of improving the forecast accuracy of the April-June 
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flow since a considerable amount of the annual total flow occurs during this season, 

as compared to the other three seasons. 
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Figure 4.6 Comparison of observed and forecasted seasonal flow using TFN and 

second and third seasons modified by hybrid models for the testing data at Del Norte 
Gaging Station (2000-2005) 
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4.2.5.2 Comparison to NRCS Official Forecasts 

To compare the performance of hybrid modeling approaches with NRCS 

official forecasts at the site for April-September seasonal runoff volume, the 

following models were developed and forecasts were made for the years from 2000 to 

2005.  

1) The forecast date was selected as April 1st ; 

2) One-season ahead and two-season ahead forecasts were made using the 

developed TFN model, and then summed up the one-season-ahead forecasts 

for April-June and two-season-ahead forecasts for July-September to get the 

April-September flow forecasts on April 1st; 

3) An ANN model using April-September flow as the dependent variable and 

using the same inputs as in Equation 4.6 was developed; 

4) A TFN+ANN model using April-September flow as the dependent variable 

and using the same inputs as in Equation 4.8 was developed; 

5) A PCA+ANN model using April-September flow as the dependent variable 

and same inputs as in Equation 4.10 was developed; 

Several performance statistics of April-September seasonal volume runoff 

forecasts of all models are reported in Table 4.4. As can be seen, the model 

performance increased from TFN model to the hybrid models. However, the forecasts 

from the TFN model were not acceptable because of high forecasting errors. This was 

due to high forecast errors of two-season-ahead forecasting of July-September flow, 

which accumulated the error of one-season-ahead forecasts for April-June flow. The 
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combination of PCA and ANN performed better compared to all other models and its 

forecasting performance was comparable to NRCS official forecasts. Considering the 

fact that the NRCS official forecasts are not the output of single model, instead are 

the coordinated approach among the several agencies, both hybrid modeling 

approaches, particularly the combined PCA and ANN approach performed very well 

for April-September runoff volume forecasting at Del Norte Gaging Station for the 

testing period of 2000-2005. 

 

 

Table 4.4 Comparison of April 1st forecasts of different models with NRCS official       
forecasts for April-September volume of Del Norte Gaging Station for the period of 

2000-2005 (n=6) 
 

Models R2 MAE (kaf) MAPE(%) RMSE (kaf) NRMSE E 

TFN 0.63 119 62 147 0.68 0.49 

ANN 0.84 79 39 90 0.42 0.81 

TFN + ANN 0.88 64 29 77 0.36 0.86 

PCA + ANN 0.94 64 24 68 0.32 0.89 

NRCS 0.97 59 25 65 0.30 0.90 
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4.3 Elephant Butte Net Inflow 

4.3.1 Definition of Seasons 

To develop seasonal time series models for Elephant Butte Reservoir net 

inflow, different seasons needed to be defined for the Rio Grande Basin. The same 

principles that were used in the definition of seasons in Rio Grande Headwaters Basin 

above Del Norte Gaging Station were applied in defining seasons for the Rio Grande 

Basin above Elephant Butte Reservoir. 

To determine the pattern and magnitude of relationships between monthly net 

inflow and monthly SWE, a correlation analysis between the monthly SWE index and 

Elephant Butte Reservoir monthly net inflow was performed. The results (Table 4.5) 

indicated that the basin average SWE index which are measured in the first days of 

January to June are significantly correlated with the March to July Elephant Butte 

monthly net inflow at a 0.01 significant level. Although the correlations between 

March net inflow with February and January SWEs are statistically significant at the 

0.01 significance level, they are not as high as other months. In general, the net 

inflow of March to July is largely contributed by the snowpack in the upper Rio 

Grande Basin including southern Colorado and northern New Mexico. 

The NRCS provides March-July natural seasonal volume forecasts for the San 

Marcial Gaging Station, Rio Grande, which is located at the entrance of Elephant 

Butte Reservoir. The San Marcial natural seasonal volume forecasts are very 

important and comparable to the Elephant Butte Reservoir net inflow, since it is the 

main inflow to the Reservoir. The correlation coefficient of San Marcial March-July 
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natural flow and Elephant Butte March-July measured net inflow (that has been 

calculated for the period 1961-2000) is 0.98, which indicates the importance of the 

NRCS forecasts at the site. In addition, Figure 1.9 also indicates that most of the 

Reservoir net inflow is concentrated in the month of March to July each year. Hence, 

the spring-summer net inflow forecasting is very important in Elephant Butte 

Reservoir operation and water management for the region.  

 

 

Table 4.5 Correlation coefficient significance test between SWE index of the Basin 
and monthly Elephant Butte Reservoir net inflow (1961-1999) 

 

Month 
SWE 

Jan1
st 

Feb 1
st 

Mar 1
st 

Apr 1
st 

May 1
st 

Jun 1
st 

Jan 0.11      

Feb 0.15 0.17     

Mar 0.35 0.37 0.42    

Apr 0.41 0.56 0.63 0.64   

May 0.43 0.68 0.73 0.85 0.79  

Jun 0.41 0.69 0.71 0.79 0.76 0.44 

Jul 0.32 0.44 0.42 0.53 0.56 0.49 

Aug 0.14 0.05 -0.05 -0.09 0.04 0.05 

Sep 0.09 0.13 0.13 0.09 0.11 0.09 

Oct 0.18 0.13 0.06 -0.02 0.02 -0.11 

Nov 0.34 0.32 0.25 0.29 0.44 0.37 

Dec 0.39 0.41 0.40 0.48 0.57 0.43 

Note. The bold numbers indicate the correlations are significant at 0.01significance level. 

 

 

Considering all the factors mentioned above and the need for generating 

equally or approximately equally spaced seasonal volume flow for time series 
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modeling, the following seasons have been defined for Rio Grande Basin above 

Elephant Butte Reservoir:  

Season 1: January, February, March 

Season 2: April, May, June, July 

Season 3: August, September, October 

Season 4: November, December 

According to the correlation analysis between snow water equivalent and Elephant 

Butte Reservoir net inflow, and the NRCS forecasting period, season 2 was 

considered in the modeling for this study. Moreover, the modeling results could be 

compared to NRCS forecasts at San Marcial Gaging Station as a reference for 

evaluating the capability of hybrid approaches used in this study in improving 

forecast accuracy of seasonal reservoir net inflow forecasting.  

 

4.3.2 Data Description 

4.3.2.1 Seasonal Net Inflow Time Series 

 After defining the seasons, the seasonal net inflow time series was calculated 

by summing the corresponding monthly net inflow into the seasonal net inflow 

volume. To obtain better approximation of normal distribution for time series 

modeling, the seasonal net inflow series was deseasonalized using seasonal average 

and standard deviation of the data period 1961-2007 as expressed in Equation 4.2. 

Figures 4.4 and 4.5 show the normal probability plots of the original seasonal net 

inflow series and deseasonalized seasonal net inflow series. They suggest that the 
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normality approximation of the deseasonalized series improved greatly compared to 

the original series. But in both cases, the normality assumptions were rejected with 

small p-values (p-value < 0.001) when using Shapiro-Wilk normality test. The results 

were similar to natural seasonal flow at Del Norte Gaging Station, but the Del Norte 

flow approximated a normal distribution better than did the Elephant Butte Reservoir 

net inflow after deseasonalization transformation of the original data.  

 

 

  
Figure 4.7 Normality plot of original seasonal net inflow series of Elephant Butte 

Reservoir, Rio Grande (1961-1999) 
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Figure 4.8 Normality plot of deseasonalized seasonal net inflow series of Elephant 

Butte Reservoir, Rio Grande (1961-1999) 
 
 
 
 

4.3.2.2 Other Data  

 The average seasonal precipitation data from 1961 to 2007 was used in the 

seasonal time series modeling. The average seasonal precipitation of the Basin is 

calculated as the average of monthly average SNOTEL precipitation index (as shown 

in Figure 1.11) for a defined season. The SWE data used in this chapter were the 

monthly basin average SWE index data as shown in Figure 1.10 that also covered the 

period 1961-2007. The previous year October-December SOI data was also used in 

the modeling (Figure 1.12). 
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4.3.3 Development of Single Models 

4.3.3.1 ARIMA 

 The deseasonalized seasonal net inflow series was used to fit the ARIMA 

model. The entire data set was divided into a calibration set and a test set, which 

covered the periods 1961-1999 and 2000-2007, respectively. The autocorrelation 

functions (ACF) and partial autocorrelation functions (PACF) suggested the use of 

AR(2) model. The following ARIMA model was developed for the deseasonalized 

series and it passed all the diagnostic checks: 

  tttt ayyy ++= −− 21 25.0272.0     (4.13)  

Where 

yt , yt-1 , yt-2  = deseasonalized seasonal net inflow series at season t, t-1, t-2 

respectively.  

The model explained only 45% of the variability of the Elephant Butte Reservoir net 

inflow. To evaluate the performance of the models, the one-season-ahead rolling 

forward forecasts were made for 2000-2007 and are discussed further in the following 

sections.  

 

4.3.3.2 TFN 

 The sample cross correlation between the Elephant Butte Reservoir net inflow  

and basin average seasonal precipitation time series was performed by prewhitening 

the input series and filtering the output series using ARIMA models. The 

precipitation series was deseasonalized by subtracting means and dividing by 
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seasonal standard deviations, and the autocorrelation function (ACF) showed the 

resulting series which suggested that the AR (6) (only lag 6 is significant) model was 

sufficient to prewhiten the precipitation  series. The sample cross correlation function 

between two series is shown in Figure 4.9. 
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Figure 4.9 Cross correlation function between prewhitened deseasonalized seasonal 
precipitation and filtered deseasonalized seasonal Elephant Butte net inflow (1961-

1999) 
 

 
 The CCF suggests that the following TFN model can be built for a 

deseasonalized seasonal flow series with the deseasonalized precipitation series as an 

input. The model parameters are estimated using conditional least squares method and 
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the model has passed all the diagnostic check according to Box and Jenkins (1976) 

modeling procedure: 

  
ttt a

BB
PRCP

B
y

)218.0213.01(

1

)701.01(

494.0
721

−−
+

−
= −

            (4.14) 

Or can be written as: 

  
tttt

tttttt

aPRCPPRCPPRCP

yyyyyy

+−−+

−+−+=

−−−

−−−−−

831

87321

108.0105.0494.0

153.0218.0149.0213.0ˆ701.0ˆ
  ( 4.15) 

 The built TFN model can explain 74% of the variability of the Elephant Butte 

Reservoir net inflow, indicating that the TFN model performed much better than the 

ARIMA model. The model performance of the deseasonalized seasonal flow series 

for calibration phase showed that the model variance and AIC of TFN model 

decreased from 0.868 to 0.600, and 423 to 362 respectively compared to the ARIMA 

model. Again, the TFN model showed significant improvement compared to ARIMA 

model.  

 

4.3.3.3 ANN 

In contrast to the time series models that were developed for continuous 

seasonal net inflow for all seasons, the ANN model was built for only season 2 

(April-July) since the snow water equivalent (SWE) is significantly correlated with 

the April-July reservoir net inflow. Table 4.6 shows the correlation coefficient and its 

significance at the 0.05 level between the monthly SWE index, SOI and seasonal net 

inflow of Elephant Butte Reservoir. The results indicated that the basin average SWE 

indices, which are measured in the first days of January to June, are significantly 
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correlated with the April-July seasonal net inflow, while the net inflow of the other 

seasons of a year showed systematic relationships with SWE in the Basin. The 

November-December season is also significantly related to SWE for some months, 

but relationships are weak and not meaningful. 

According to previous research results in the Rio Grande Basin, the 

correlation analysis has been performed between the averaged June-November SOI, 

averaged October-December SOI  and Elephant Butte Reservoir seasonal net inflow. 

The results (Table 4.6) suggested that the October-December SOI has a significant 

negative relationship with April-July net inflow of Elephant Butte Reservoir. The 

correlation coefficient is -0.40, which indicates that there tends to be a higher than 

average net inflow during El Niño years (when the SOI is negative), and lower than 

average net inflow during a La Niña (when the SOI is positive). This is consistent 

with the results reported by NRCS (1997).  

The input variables were identified for the building of the ANN model for 

April-July season using the same procedure described in the ANN model building for 

Del Norte seasonal flow (section 4.2.3). The following ANN model was proposed 

based on the input variable selection analysis. The structure of model was formulated 

as follows: 

 Yt = f (Yt-1, PRCPt-1, PRCPt-2, SOI,  SWEapr1st  )   (4.16) 

 To train the ANN model, the total data period (1961-2007) was divided into a 

calibration set (1961-1999) and a testing set (2000-2007); then the calibration set was 

randomized and divided further into a training set and a cross validation set.  The 



 
 

177

same cross validation stopping criteria, procedures that applied to enhance the 

generalization capability of networks that were used in Del Norte seasonal flow 

modeling were used in the ANN model development for April-July seasonal net 

inflow modeling. To keep a smaller network size, the maximum processing elements 

in the hidden layers was selected as 2 and a model structure of ANN (5-2-1) was used 

for training and testing. The training process utilized the hyperbolic tangent function 

as the activation function in the hidden layer, linear function in output layer, and the 

momentum learning rule. 

 
 
 

Table 4.6 The correlation coefficients significance test between SWEs, SOI and 
Elephant Butte Reservoir seasonal net inflow (1961-2007) 

 

Season 

Snow Water Equivalent (SWE)  Southern Oscillation Index 

Jan1
st 

Feb1
st 

Mar1
st 

Apr1
st 

May1
st 

Jun1
st 

 
JUN-NOV 
Average 

OCT-DEC 
Average 

JAN-MAR 0.245 0.271 0.324     -0.211 -0.206 

p-value 0.097 0.065 0.027     0.155 0.165 

APR-JUL 0.466 0.711 0.749 0.852 0.786 0.432  -0.279 -0.401 

p-value 0.001 <.0001 <.0001 <.0001 <.0001 0.002  0.057 0.005 

AUG-OCT 0.179 0.126 0.036 -0.031 0.067 0.017  0.216 0.127 

p-value 0.230 0.400 0.808 0.836 0.656 0.912  0.145 0.395 

NOV-DEC 0.392 0.392 0.348 0.409 0.543 0.433  0.082 -0.027 

p-value 0.007 0.006 0.017 0.004 <.0001 0.002  0.582 0.858 

Note: the bold numbers indicate the correlations are significant at 0.05 significance level 
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4.3.4 Development of Hybrid Models 

4.3.4.1 Combination of TFN and ANN 

 Based on the model formulation explained in section 4.1.1, an ANN model 

was developed for modification of TFN model forecasts using latest snow water 

equivalent information and October-December averaged El Niño  Southern 

Oscillation Index of a previous calendar year. It was also observed that the latest 

SWE information is adequate for forecast modification. Therefore, the adding of 

more SWE information from previous months does not contribute to the modification 

accuracy. Hence, the final ANN model for April-July net inflow has only three inputs. 

The structure of the network was shown as follows:  

  Yt, modified = f (SWEapr1st, SOI, Yt, forecasted)    (4.17) 

 The same data period (1961-2007), calibration set (1861-1999), testing set 

(2000-2007), cross validation stopping criteria, procedures that applied to enhance the 

generalization capability of networks that were used in the previous section were 

utilized in the ANN model development. To keep a smaller network size, the 

maximum processing elements in the hidden layers was selected as 2. The        

ANN(3-2-1) model structure was used for training. The training process utilized the 

hyperbolic tangent function as the activation function in the hidden layer, linear 

function in output layer, and the momentum learning rule. 
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4.3.4.2 Combination of PCA and ANN 

 The initial input variables for the hybrid ANN model were selected based on 

the TFN model structure, sample cross correlation function between precipitation and 

seasonal flow, cross correlation analysis of SWE, and seasonal net inflow based on 

the Step 1 and Step 2 of variable selection procedure discussed in the section 4.2.3. In 

addition, the October-December averaged El Niño  Southern Oscillation Index of a 

previous calendar year was also included in the inputs for the network.  Together, 

nine initial variables were used for April-July net inflow hybrid ANN model building. 

They are average seasonal precipitation of three previous seasons, snow water 

equivalents of three previous months, SOI and two previous seasonal net inflows.  

 Based on the procedures described in section 4.1.2, the first 3 principal 

components were selected as the inputs for ANN model. The structure of model was 

described as follows: 

  Yt = f (Z1, Z2, Z3 )       (4.18) 

Where  

Zi =  the i th principal components of the input variables. 

The same data period (1961-2007), calibration set (1961-1999), testing set (2000-

2007), model training algorithm, cross validation stopping criteria, procedures that 

applied to enhance the generalization capability of networks that were used in the 

previous sections were used in the ANN model development. To keep a smaller 

network size, the maximum processing elements in the hidden layers were selected as 

2. Hence, the model structure of ANN (3-2-1) was applied for training.   
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4.3.5 Model Diagnostics and Comparison 

4.3.5.1 Comparison of Models for Test Data  

 The performance of models was compared by performing one-season-ahead 

forecasts of all models for the testing data set which was from 2000 to 2007. The 

ARIMA and TFN models were developed using continuous time series data, hence 

one-season-ahead forecasts for April-July season were made with developed ARIMA 

and TFN models. The ANN model and the two hybrid approaches, the modification 

of TFN models with ANN and combination of PCA and ANN, were applied only to 

the April-July net inflow.  

 Table 4.7 shows some performance statistics of one-season-ahead forecasts of 

the models for testing period. The two hybrid approaches performed well compared 

to single models. Particularly, the modification of TFN forecasts with ANN improved 

forecast accuracy significantly compared to TFN models. The RMSE of the observed 

and forecasted net inflow by the TFN+ANN hybrid approach was only a half of the 

RMSE of TFN model forecasts. In contrast to the performance in Del Norte seasonal 

flow modeling, the PCA+ANN hybrid approach did not perform significantly better 

than single ANN model in the Elephant Butte Reservoir net inflow modeling. This 

may be because the number of principal components included in the ANN model was 

three, since several other significant principal components such as the 8th and 9th 

components were not included in the model in order to keep the network size smaller. 

However, the network size of PCA+ANN was much smaller than the single ANN 
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model, meaning that it may have a better generalization ability as compared to the 

single ANN model.  

 

Table 4.7 Performance comparison of models for Elephant Butte Reservoir          
April-July net inflow for test data set (2000-2007) 

 

Models R
2
 RMSE (kaf) NRMSE 

ARIMA 0.34 171 0.62 

TFN 0.85 100 0.36 

ANN 0.90 66 0.24 

TFN+ANN 0.97 52 0.19 

PCA+ANN 0.93 63 0.23 

 
 

 

In general, the forecast accuracy was improved significantly when hybrid 

models were applied to April-July net inflow forecasts. The best-performing model 

was the TFN with forecast combination, and the combination of PCA and ANN came 

in second, again, indicating the potential capability of hybrid approaches in 

improving forecast accuracy as compared to the single models. For example, the 

normalized RMSE of forecasted and observed net inflow for April-July decreased 

from 0.36 to 0.19 from the TFN model to the TFN with forecast modification. The 

ANN and hybrid models were not developed for other seasons in a year, since no 

meaningful relationship exists between SWE and the flow of these seasons (Table 

4.6).  
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Figure 4.10 describes the performance of the models for all seasons in a year 

by plotting the normalized RMSEs between observed and forecasted net inflow for 

the testing period. As mentioned earlier, only the April-July seasonal net inflow was 

modeled by those different models including ANN and hybrid approaches, while 

other seasons were modeled by ARIMA and TFN with precipitation input only. 

According to the definition of NRMSE, if NRMSE is greater than 1, it implies that 

the forecasts are not better than average. It can be seen that the April-July net inflow 

can be modeled by hybrid models with high forecast accuracy (the minimum RMSE 

was 0.2 only). While for the August-October net inflow, the historical average may be 

the best estimation because of high forecasting errors of ARIMA and TFN. This may 

be due to the fact that the August-October net inflow is highly affected by the 

monsoon season precipitation in the basin, for which both ARIMA and TFN models 

developed in this study are not accounted. As mentioned in the previous sections, the 

precipitation input for TFN model is a basin average SNOTEL precipitation index 

that represents the higher elevation regions of a basin. 

As far as January-March and November-December net inflows are considered, 

the TFN model with precipitation input provided better forecasts than ARIMA with 

smaller NRMSE. Since the net inflows of both seasons are not related to basin SWE 

and SOI, it is difficult to find other readily available input variables for improving the 

model performance. In both seasons, the NRMSEs for TFN model forecasts were 

smaller than 0.5, particularly the NRMSE for November-December season as 0.36, 
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indicating that the TFN model could be used for net inflow forecasting of these 

seasons. 
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Figure 4.10 Comparison of normalized RMSEs of different model forecasts for all 
seasons for the test period (2000-2007) for Elephant Butte seasonal net inflow 

 
 
 
 

To visualize the performance of different models for all seasons for the testing 

period, the comparison of forecasted and observed seasonal flow time series from 

2000 through 2007 is plotted in Figure 4.11. As can be seen, the April-September 

flow forecasts made by TFN model were significantly smoothed out using hybrid 
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modeling for all years except 2005. These significant improvements achieved by 

using hybrid modeling approaches showed the effectiveness of the hybrid modeling 

in improving forecast accuracy of seasonal flow compared to single models. It also 

suggested that the most of the unacceptable forecasts occurred in season 3 (August-

October), especially during 2002 and 2006. This may be due to the exceptionally high 

rainfall that occurred in August 2006 in the lower part in the Basin, which made the 

Elephant Butte Reservoir net inflow as high as three times more than the historical 

averages. The possible reason for low forecasts of August-October net inflow of 2002 

may be attributed to the very low observed precipitation in April-July season of this 

year (only one fourth of the historical average), which made one-season-ahead 

forecast of August-October flow worse. In general, the forecasting of August-October 

net inflow is associated with very high uncertainties mainly because of the 

randomness of monsoon precipitation of this season and omission of this information 

in the TFN models constructed in this study. Hence, none of the models used in this 

study was recommended for the forecasting of Elephant Butte Reservoir net inflow 

for August-October season. 

 



 
 

185

-100

0

100

200

300

400

500

600

700

800

2000-1 2001-1 2002-1 2003-1 2004-1 2005-1 2006-1 2007-1

S
e
a
s
o
n
a
l n

e
t 
in

fl
o
w

 (
k
a
f)

Time in seasons

Observed flow

TFN

TFN+ANN

  
Figure 4.11 Comparison of observed and forecasted net inflow using TFN and April-

July modified forecasts by ANN for the test data (2000-2007) 
 
 
 
 

4.3.5.2 Comparison to NRCS official forecasts 

 To further examine the performance of the models, a comparison was made to 

NRCS official forecasts at San Marcial Gaging Station as a reference. The NRCS  

March-July volume official forecasts on April 1st from 2000 to 2007 were obtained 

from NRCS and converted into Elephant Butte March-July net inflow forecasts using 

the developed routing equation (Equation 3.6) proposed in section 3.3.3. To compare 

the April-July net inflow forecasts with converted NRCS March-July official 

forecasts, the observed March net inflow was added to all April-July net inflow 
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forecasts of the different models to produce April 1st forecasts of March-July net 

inflow volume. Although it was not a direct comparison, the NRCS converted 

forecasts for Elephant Butte net inflow by using routing equation may provide some 

insights to examine the performance of hybrid models developed in this study. 

The comparison of different models to the NRCS converted forecasts is 

shown in Table 4.8 using several performance statistics that calculated for the March-

July net inflow forecasts of testing period from 2000-2007. Among all models the 

TFN with forecast combination performed best in terms of NRMSE and coefficient of 

determination. The model efficiency (Nash and Sutcliffe, 1970) of the approach is 

0.92, which indicates that the hybrid approach showed very satisfactory performance. 

The combination of PCA and ANN approach performed slightly better compared to 

the single ANN model. But its performance was not as good as TFN with forecast 

modification. The converted NRCS forecasts for March-July net inflow were not as 

good as any model forecasts. For example, the NRMSE of converted forecasts is 

almost twice of the NRMSE of TFN with forecast modification. This indicates that 

the routed forecast solution using NRCS official forecasts may not be applicable for 

April 1st forecasts of March-July Elephant Butte Reservoir seasonal net inflow.  
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Table 4.8 Comparison of April 1st forecasts of different models with converted NRCS 
official forecasts for Elephant Butter Reservoir March-July net inflow for the period 

of 2000-2007 
 

Models R
2
 MAE (kaf) MAPE(%) RMSE (kaf) NRMSE E 

TFN 0.86 86 55 100 0.34 0.71 

ANN 0.91 55 36 66 0.22 0.87 

TFN+ANN 0.97 44 25 52 0.18 0.92 

PCA+ANN 0.94 55 40 63 0.21 0.88 

NRCS Converted 0.77 85 61 105 0.36 0.68 

 
 
 
 
 
4.4 Final Models and Summary 

The application of two hybrid modeling approaches including a forecast 

modification using a combination of transfer function - noise (TFN) with artificial 

neural networks (ANN), and the combination of principal components analysis (PCA) 

with ANN has been analyzed and discussed in the previous sections. Two hydrologic 

variables, the seasonal streamflow volume at Del Norte Gaging Station, and seasonal 

net inflow at Elephant Butte Reservoir, Rio Grande, were used for modeling through 

a detailed analysis of the relationships among the different variables at a seasonal 

time scale. Based on the modeling results and discussions, the following models were 

suggested for use in the operational forecasting of the streamflow in the study basins. 

For the modeling of seasonal natural streamflow at Del Norte Gaging Station, 

the combination of PCA and ANN (Equation 4.10) performed better for April-June 

and April-September streamflow volume forecasting. The performance of the 
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approach is comparable to the NRCS official forecasts. Hence, the approach could be 

used for April 1st forecasting of two seasonal volumes in the Basin. The TFN with 

forecast combination (Equation 4.8) could also be used as an alternative model to 

forecast April-June and April-September streamflow volume due to its similar 

performance compared to PCA+ANN approach and NRCS official forecasts. 

However, none of the models performed with reasonable accuracy for the forecasting 

of July-September streamflow since all the normalized RMSEs of the forecasted and 

observed streamflow were greater than 0.85 and close to 1.0 (Figure 4.5), which 

indicated that there was no significant difference, compared to using the historical 

average as the forecasts. Therefore, it is not recommended to use any of the models 

developed in the study to forecast July-September streamflow because of high 

forecast errors. 

The January-March and October-December seasonal streamflows at Del Norte 

Gaging Station have been forecasted reasonably well using TFN model with 

precipitation input. Although the streamflow volumes for these seasons seemed not as 

important as spring-summer volume for water management in the basin due to their 

smaller contribution to the annual runoff, forecasting of streamflows for these seasons 

may provide an indication of magnitude of spring-summer runoff volume early and 

they can be forecasted using time series models with reasonably accuracy because of 

the smaller interannual variation (Figure 1.3). In this study, the TFN model with 

SNOTEL precipitation input provided reasonable forecasts for both seasons with the 
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NRMSEs smaller than 0.7 (Figure 4.5). Hence, the TFN model could be used for the 

forecasting of streamflow volume for these seasons in the basin. 

For the modeling of Elephant Butte Reservoir seasonal net inflow, the best-

performing model for April-July seasonal net inflow was the forecast modification of 

TFN with ANN approach. The performance of the single ANN model and 

combination of PCA and ANN approach were also comparable to the TFN with 

forecast modification approach. However, the latter is recommended for use in April-

July net inflow volume forecasting due to its simpler structure and higher forecast 

accuracy. The converted forecasts made by the routing equation using NRCS official 

forecasts at San Marcial Gaging Station is not preferred due to the higher forecast 

errors compared to other modeling approaches. This may be because the relationship 

between the input variables and the Elephant Butte Reservoir seasonal net inflow is 

not linear due to human intervention and complex features of the net inflow that is 

affected by many factors, such as reservoir evaporation, seepage and the contribution 

of low-altitude rainfall to the net inflow. Most of the operational forecasts issued by 

NRCS are based on the linear regression equations. 

The August-October seasonal net inflow of the Elephant Butte Reservoir is of 

highly variability from year to year, therefore it is difficult to forecast with reasonable 

accuracy using the models presented in this study. It was observed in this study that 

the August-October flow was not significantly related to any of the SNOTEL 

information, including SWE and SNOTEL precipitation. As indicated in Figure 4.10 

the one-season-ahead forecasts of the ARIMA and TFN models were not better than 
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the historical average. The normalized RMSEs of the forecasted and observed 

August-October net inflow were close to 1.0 or even higher, which indicates that the 

forecasts are not acceptable. Therefore, it is recommended not to use any of the 

models proposed in this study for forecasting of August-October Elephant Butte net 

inflow because of high forecast errors. 

Again, similar to winter streamflow at the Del Norte Gaging Station, the 

January-March and November-December seasonal net inflow of Elephant Butte 

Reservoir can be forecasted using time series models with reasonable forecast 

accuracy. As shown in Figure 4.10, the normalized RMSEs of forecasted and 

observed seasonal net inflow for both seasons were smaller than 0.5; particularly the 

NRMSE for November-October net inflow forecasts by TFN model is 0.36. This 

suggests that the TFN model with SNOTEL precipitation as input is sufficient for 

forecasting seasonal net inflow volume for these seasons. This may be due to the 

smaller interannual variation of the net inflow in the winter seasons (as shown in 

Figure 1.9). 

 In conclusion, both hybrid modeling approaches used in the study showed a 

potential capability of improving forecast accuracy in seasonal streamflow modeling 

compared to single models. The results were consistent with the previous research 

reported in literature ( e.g., Abrahart and See, 2002; Kişi, 2008;  Jain and Kumar, 

2007; See and Abrahart, 2001; See and Openshaw, 1999; See and Openshaw, 2000; 

Shamsheldin et al., 1997; Shamsheldin et al., 2002; Srinivas and Sirinivasan, 2001; 

Wang et al., 2005b). However, due to the limitation of this dissertation study, the 
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forecast uncertainty evaluation of these hybrid modeling approaches is not presented 

in this chapter. It is hoped that the future hydrological forecasting research efforts will 

also exploit the potential capabilities of hybrid modeling in achieving increased 

forecast accuracy in streamflow forecasting. 
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5 MONTHLY FLOW FORECASTING 

 

 Monthly streamflow forecasting is crucial for water resources allocation and 

management. Particularly, the monthly reservoir net inflow forecasting is of great 

importance to reservoir management as it is an indication of water availability from a 

reservoir; it can provide a basis for decisions concerning reservoir operation, and 

water management, and legal and institutional compliance purposes. In this chapter, 

the response of monthly streamflow processes to basin precipitation, snow water 

equivalent, El Niño  Southern Oscillation (ENSO) was investigated using cross 

correlation analysis. Several statistical models including ARIMA, TFN, and ANN 

were built for monthly natural flow at Del Norte Gaging Station, Rio Grande, 

Colorado and reservoir net inflow at Elephant Butte Reservoir, Rio Grande, New 

Mexico. Then, one-month-ahead forecasts of those models for spring-summer season 

were modified used snow water equivalents and ENSO signals using ANN technique. 

The performance of different modeling approaches was compared with each other. 

Finally some general discussions and conclusions are presented at the end of the 

chapter. 

 

5.1 Del Norte Natural Flow 

5.1.1 Data Description 

 The monthly natural flow time series from 1961 to 2007 at the Del Norte 

Gaging Station was shown in Figure 1.2 (the 2006 and 2007 data were not used in the 
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monthly modeling because they are not final data). To develop time series models for 

the monthly flow, a deseasonalization transformation was performed to original data 

using monthly average and standard deviation to produce deseasonalized time series. 

The Equation 4.2 was used for the deseasonalization of monthly flow by replacing the 

seasonal time scale with monthly time scale. The normality plots of original monthly 

time series and deseasonalized monthly time series are shown in Figures 5.1 and 5.2. 

The normality plots show that the normality approximation of deseasonalized series 

improved significantly compared to the original series. Although the normality 

assumption for both series was rejected at the 0.05 significance level using the 

Shapiro-Wilk normality test, the deseasonalized series was used for time series 

modeling due to its better approximation of the normal distribution. Some research 

results also indicated that deseasonalization is an effective data pre-processing 

procedure for model development (Jain and Kumar, 2007; Wang et al., 2005a). 

Another reason for using deseasonalized time series models in this study is that it 

requires less model parameters as compared to seasonal autoregressive integrated 

moving average (SARIMA) models. Particularly in the building of TFN model, not 

only does it use fewer parameters, but also it is much easier to identify a model 

structure and calibrate models.  
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Figure 5.1 Normality plot of the original monthly flow at Del Norte Gaging Station 

(1961-1999) 
 

  
Figure 5.2 Normality plot of the deseasonalized monthly flow at Del Norte Gaging 

Station (1961-1999) 
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 In addition to monthly flow data, the monthly average SNOTEL precipitation 

index of the Basin from 1961 to 2005 was used in monthly time series modeling. The 

calculation of monthly SNOTEL precipitation index was given in detail in section 

1.4.1 and the data were shown in Figure 1.5. The SWE data used in this chapter were 

the monthly basin average SWE index data as shown in Figure 1.4 that also covers 

the period of 1961-2005. The same period SOI data (Figure 1.12) was also used in the 

correlation analysis. 

 

5.1.2 Model Formulation and Development 

5.1.2.1 Correlation Analysis between SOI, SWE and Monthly Streamflow  

 Based on the previous research results in the Rio Grande Basin (Redmond and 

Koch, 1991; NRCS, 1997), correlation analysis has been performed between the 

averaged June-November SOI, averaged October-December SOI and Del Norte 

monthly flow to determine if SOI could be a predictor for any specific month. The 

results (Table 5.1) suggested that both the averaged October-December SOI and the 

averaged  June-November SOI do not have significant correlations with Del Norte 

monthly flow (the p-values for Pearson correlations significance test were greater 

than 0.08 for all the months). The results were somewhat similar to the results of 

NRCS (1997) in that there is no significant relationship between the SOI and 

streamflows in the Upper Rio Grande Basin. Hence, the SOI was not considered as a 

predictor in monthly streamflow modeling of Del Norte Gaging Station, Rio Grande.  
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Table 5.1 The correlation coefficients significance test between June-November 
average SOI, October-November average SOI and Del Norte monthly flow         

(1961-1999) 
 

Monthly 
flow  

   Jun-Nov average SOI    Oct-Dec average SOI  

  
Correlation 
coefficients 

p-value   
Correlation 
coefficients  

p-value 

Jan 
 

-0.20 0.19 
 

-0.16 0.29 

Feb 
 

0.05 0.76 
 

0.09 0.58 

Mar 
 

0.15 0.33 
 

0.25 0.10 

Apr 
 

0.26 0.09 
 

0.27 0.08 

May 
 

0.10 0.53 
 

0.04 0.78 

Jun 
 

-0.01 0.93 
 

-0.19 0.22 

Jul 
 

0.00 0.99 
 

-0.16 0.31 

Aug 
 

0.09 0.54 
 

-0.03 0.83 

Sep 
 

0.00 0.99 
 

-0.04 0.81 

Oct 
 

0.17 0.28 
 

0.08 0.59 

Nov 
 

0.05 0.75 
 

0.01 0.95 

Dec   -0.14 0.37   -0.16 0.29 

 
 
 
 

 To determine the pattern and magnitude of the relationship between monthly 

flow at Del Norte Gaging Station and monthly SWE, a correlation analysis between 

the monthly SWE index and monthly flow at Del Norte Gaging Station was 

performed in section 4.2.1. The results (Table 4.1) indicated that the basin average 

SWE index which is measured on the first days of January to June is significantly 

correlated with the March to September monthly flow at 0.05 significant level. The 

correlations of March flow with March 1st SWE and September flow with May 1st 

SWE were 0.35 and 0.37 respectively, indicating that the correlations are very weak 

though they are statistically significant at the 0.05 significance level. The correlation 

coefficients between monthly streamflow from April to August and monthly SWE are 
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significantly high, with the highest correlation coefficients of 0.92. Therefore, the 

basin SWE information is particularly useful in forecasting monthly streamflow from 

April to August of a year in the Rio Grande Headwaters Basin above Del Norte 

Gaging Station. 

 

5.1.2.2 ARIMA  

 To fit an ARIMA model, the monthly deseasonalized flow series was divided 

into calibration set and test set, which covered the periods of 1961-1999 and 2000-

2005 respectively. The calibration set data was used for the calibration and 

diagnostics of the model, and the test set data was used to test the model forecasting 

performance for new data. The autocorrelation functions (ACF) and partial 

autocorrelation functions (PACF) suggest AR (1) model could be fitted to 

deseasonalized series. The following ARIMA model was developed for the 

deseasonalized series and it passed all the diagnostic checks. 

  ttt ayy += −1643.0       (5.1) 

Where 

yt, yt-1  = deseasonalized flow series at month t and t-1 respectively. 

 The model explains 82% of variability of the Del Norte monthly flow. One-

month-ahead rolling forward forecasts were made for 6 years (2000-2005) to evaluate 

the performance of the model. The one-month-ahead rolling forward forecast means 

the model parameters will be modified for every month forecasts when the new 

observations are available. For example, the January 2000 forecast is made by the 
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model that was calibrated using the data from January 1961 to December 1999; the 

February, 2000 forecast is made by the model that was calibrated for the period of 

January 1961-January 2000; and so on. The ARIMA forecasts for April to September 

months were used for analysis in this Basin. 

 

5.1.2.3 TFN 

 The cross correlation between monthly precipitation time series and Del Norte 

monthly flow was performed by prewhitening the input series and filtering the output 

series using ARIMA models. The precipitation series was deseasonalized by 

subtracting means and dividing by seasonal standard deviations, and the AR (1) 

model was fitted to the deseasonalized precipitation series based on the ACF and 

PACF of the series. The monthly PRCP series was prewhitened and the monthly flow 

series was filtered by using the model. The sample cross correlation function between 

two series is shown in Figure 5.3.  
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Figure 5.3 Cross correlation function (CCF) between prewhitened deseasonalized 
SNOTEL precipitation and filtered deseasonalized  monthly flow at Del Norte 

Gaging Station (1961-1999) 
 
 
 
 Based on the structure of CCF in Figure 5.3, the following TFN model was 

built for deseasonalized monthly flow series with the deseasonalized monthly 

precipitation series as an input using calibration set data. The model parameters were 

estimated using the conditional least squares method and the model passed all the 

diagnostic checks according to the Box and Jenkins (1976) modeling procedure: 

  
ttt a
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Equation 5.2 can also be written as:    
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Where 

 PRCPt-1, PRCPt-2, and PRCPt-3 = Basin average SNOTEL precipitation at month t-1, 

t-2 and t-3; 

tŷ , 1ˆ
−ty = forecasted deseasonalized monthly flow at month t, t-1. 

 The proposed TFN model explained 87% percent variability of Del Norte 

monthly flow and indicated the better performance of the TFN model compared to 

ARIMA model. The model performance of the deseasonalized monthly flow series 

for calibration phase showed that the model variance and AIC of TFN model 

decreased from 0.590 to 0.546, and 1082 to 1044 respectively compared to the 

ARIMA model. The one-month-ahead rolling forward forecasts were made for all 

months of 2000-2005 using the TFN model. Again, only the TFN forecasts for April 

to September were compared and analyzed. 

 

5.1.2.4 ANN 

 The correlation analysis between SWE index and monthly flow (as shown in 

Table 4.1) indicated that the correlations between SWE index and monthly flow are 

significant only for certain months of a year. Therefore, the ANN models were built 

for only the months that the flow has significant relationships with SWE, which are 

the months of April to September each year in this study. Figure 1.3 suggested that 

the large portion of the annual runoff occurs in the months of April to September for 

the Del Norte Gaging Station. The NRCS also provides April-September seasonal 

volume runoff forecasts on the first days of January to June of a year. 
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 To build monthly ANN models, the input variables should be identified for 

each monthly model at the first step. The input variable selection procedure that was 

used for seasonal ANN model development in section 4.2.3 was utilized in the 

selection of input variables for the monthly ANN models in this study. The sample 

cross correlation function between prewhitened precipitation series and filtered flow 

series (Figure 5.3) suggested that the flow is significantly correlated with the Basin 

SNOTEL precipitation index back to four months prior. The TFN structure also 

indicated that the current month flow is strongly related to the flows of the previous 

two months. The results of the cross correlation analysis between SWE index and 

monthly flow suggested that up to three previous months of SWEs could be potential 

input variables for ANN, but the lag relationship could be different from month to 

month. Southern Oscillation Index (SOI) was not used as input variable because no 

significant correlation existed between SOI and Del Norte monthly flow. 

 According to input variable selection procedures and analysis of the 

relationships between predictors and dependent variables, a number of ANN models 

were separately developed for the months of April to September using SWE, PRCP 

and flow of the previous months as inputs to the models. The general structure of the 

monthly ANN models was formulated as follows: 

Yt = f (Yt-1, Yt-2, PRCPt-1, PRCPt-2, PRCPt-3, PRCPt-4, SWEt, SWEt-1, SWEt-2) (5.4) 

Where  

Yt ,Yt-1 ,Yt-2  =  streamflow at month t, t-1, t-2;  

SWEt, SWEt-1 ,SWEt-2  =  snow water equivalents on the first day of month t, t-1, t-2. 
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 After initial variables were selected (as in Equation 5.4), a simple correlation 

analysis was carried out for these potential variables to keep important variables for 

each month’s ANN model. Variables that had correlation coefficients smaller than 0.4 

were dropped from the input variable list. The remaining variables after the screening 

were used as the inputs for each ANN model. However, the maximum number of 

input variables was set to five in order to keep smaller network sizes for each model 

to avoid network overfitting. Depending on the correlations between monthly flows 

and candidate input variables, the number of previous SWE, PRCP, and flow inputs 

and lags were not completely same for ANN models for different months. The final 

monthly ANN models developed for April to September using SWE, PRCP and 

previous flow as inputs are tabulated in Table 5.2.  

 

 

Table 5.2 The ANN models developed for monthly flows at Del Norte Gaging 
Station, Rio Grande 

 

Months Model structure Model configuration 

April ANN (4-2-1) Yapr = f (Ymar, PRCPfeb , SWEapr1st, SWEmar1st) 

May ANN (5-2-1) Ymay = f (Yapr, PRCPapr , PRCPfeb ,SWEmay1st, SWEapr1st) 

June ANN (5-2-1) Yjun = f (Ymay, PRCPmay , PRCPapr ,SWEjun1st, SWEmay1st) 

July ANN (5-2-1) Yjul = f (Yjun, PRCPmay , PRCPapr ,SWEjun1st, SWEmay1st) 

August ANN (5-2-1) Yaug = f (Yjul, PRCPmay , PRCPapr ,SWEjun1st, SWEmay1st) 

September ANN (3-2-1) Ysep = f (Yaug, PRCPaug , SWEmay1st) 
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 To build ANN models, the total data period (1961-2005) was divided into a 

calibration set (1961-1999) and a testing set (2000-2005); then the calibration set was 

randomized and divided further into a training set and a cross validation set. Cross 

validation was used for early stopping of the training to protect the network from 

overtraining. One hidden layer was used in all ANN network types in this study. 

Previous research results (Coulibaly et al., 2000; Zhang et al., 1998) indicated that 

one hidden layer may be enough for most forecasting problems. The nodes in the 

hidden layer were decided based on the number of inputs for each month’s ANN 

model. The maximum number of the nodes was selected as 3, so as to keep the 

number of network weights less than 10. The detailed procedure that was used to 

prevent the networks from overtraining was described in section 4.2.3 for seasonal 

ANN model building. The same ANN model building procedures that were used in 

chapter 4, such as model structure, training algorithm, transfer function selection, 

number of epochs for training and cross validation, were used in the building of 

monthly ANN models. 

 

5.1.2.5 TFN with Forecast Modification  

 The correlation analysis between the monthly flow and basin SWE index (as 

shown in Table 4.1) showed that the April to August monthly flow are highly 

correlated with basin SWE index. It is apparent that the SWE should be included in 

the monthly flow forecasts from April to August each year in the Basin. However, it 

is difficult to build monthly streamflow forecasting TFN models with snowpack 
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information as an input. A limited number of studies have been reported in the 

inclusion of snowpack information in TFN model for monthly flow forecasting. 

Thompstone et al. (1985) built a TFN model using calculated snowmelt series as an 

input for quarter monthly flow and obtained better results compared to univariate 

ARIMA models.  

 The direct inclusion of snow water equivalent information in the monthly 

TFN models is challenging. This may be because of following reasons. First, the 

SWE information is only available in winter and spring seasons. There is no SWE 

information in the summer months of a year, and it could be zero or near zero from 

July to November in the Upper Rio Grande Basin. This makes it difficult to get 

equally spaced, continuous SWE time series that could be included in the TFN time 

series modeling. Secondly, because of the seasonality of SWE information, it is less 

likely to get systematic cross correlation relationship between monthly SWE and 

monthly streamflow for entire year in the building of TFN model for continuous 

monthly time series. For example, all monthly flows from May to September at Del 

Norte Gaging Station are highly correlated with May 1st SWE only, indicating that 

there is no systematic lag relationship existed between the monthly flow time series 

and the monthly SWE index in the Basin. Even if TFN models with SWE index as 

input were assumed to have been built, the calibrated model parameters would not be 

sound and /or the best estimates for some months of the year. 

 The inclusion of SWE information in the forecasting of April to September 

monthly flow is of vital importance since the April-September monthly streamflows 
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are mainly related to the SWE in the Basin. To address this, a hybrid modeling 

procedure proposed in chapter 4, the forecast modification of TFN model with PRCP 

input using SWE information, was performed using the artificial neural networks 

(ANN) method for the months of April to September in the Basin. The general 

formulation of TFN with modification approach was described using Equation 4.1 in 

section 4.1.1. The only difference was the monthly time scale was used here instead 

of seasons. 

 Based on the results of cross correlation analysis and SWE data availability in 

the Basin, a number of monthly ANN models were developed for modification of 

TFN model forecasts for each month.  The final monthly ANN models developed for 

April to September using previous SWE and TFN forecasts as inputs are shown in 

Table 5.3. 

 

Table 5.3 The monthly ANN models developed for forecast modification at Del Norte 
Gaging Station, Rio Grande 

 

Months Model structure Model configuration 

April ANN (3-2-1) Yapr, modified = f (SWEmar1st, SWEapr1st, Yapr, forecasted) 

May ANN (3-2-1) Ymay, modified = f (SWEapr1st, SWEmay1st, Ymay, forecasted) 

June ANN (3-2-1) Yjun, modified = f (SWEmay1st, SWEjun1st, Yjun, forecasted) 

July ANN (3-2-1) Yjul, modified = f (SWEmay1st, SWEjun1st, Yjul, forecasted) 

August ANN (3-2-1) Yaug, modified = f (SWEmay1st, SWEjun1st, Yaug, forecasted) 

September ANN (2-3-1) Ysep, modified = f (SWEmay1st, Ysep, forecasted) 

  Notes:  Yt, modified  =  monthly flow forecasts after the forecast modification in month t  

   Yt, forecasted =  monthly flow forecasts of TFN model with PRCP input in month t  
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 The same data partitioning, training and cross validation procedure, and cross 

validation stopping criteria that were used in section 5.1.2.4 were utilized in ANN 

model building in this section. The significant difference is that the maximum number 

of inputs for ANN models in this procedure was limited to three, so as to keep a much 

smaller network size compared to previous section and enhance the generalization 

ability of the ANN with smaller sample size. 

 

5.1.3 Model Diagnostics and Comparison 

 Using the ARIMA and TFN models developed in section 5.1.2, the one-

month-ahead forecasts were performed for January 2000 to September 2005. Then, 

April to September flows from 2000 to 2005 were forecasted using ANN models, and 

the forecast modification for the TFN forecasts for the same period was made by 

using the hybrid modeling approach described in chapter 4. Table 5.4 summarized the 

one-month-ahead forecasting performance of the TFN model for monthly flow for 

both the calibration and the testing period. The R2, RMSE and NRMSE were 

tabulated for each month, April to September, and the whole year. It can be seen that 

the testing phase coefficient of determination for the whole year was 0.85, which 

suggests fairly good performance of the model. However, the coefficient of 

determination of some months were very low, such as those for March, April, and 

September, which indicates that model forecasts for these months may not be 

acceptable even though the forecasting performance indices for the whole year was 

good. These results suggested that the forecasting performance of the model should 



 
 

207

be evaluated for each individual month when developing a monthly streamflow 

model. 

 

Table 5.4 One-month-ahead forecasting performance of TFN model for Del Norte 
monthly flow 

 

  
Month 

Calibration period (1961-1999)   Forecasting period (2000-2005) 

R
2
 RMSE (kaf) NRMSE 

 
R

2
 RMSE (kaf) NRMSE 

JAN 0.30 3.0 0.87   0.67 1.5 0.43 

FEB 0.46 1.7 0.73 
 

0.85 0.9 0.38 

MAR 0.35 4.2 0.81 
 

0.20 4.6 0.90 

APR 0.25 16.3 0.88 
 

0.48 11.8 0.63 

MAY 0.41 42.2 0.70 
 

0.79 55.9 0.92 

JUN 0.65 60.5 0.61 
 

0.89 51.7 0.52 

JUL 0.83 21.4 0.48 
 

0.97 5.5 0.12 

AUG 0.29 19.4 0.85 
 

0.85 4.9 0.21 

SEP 0.33 16.5 0.85 
 

0.00 11.9 0.61 

OCT 0.34 11.5 0.84 
 

0.63 3.5 0.26 

NOV 0.79 3.4 0.51 
 

0.50 2.3 0.35 

DEC 0.68 2.1 0.59 
 

0.90 1.1 0.30 

APR-SEP 0.82 33.7 0.43 
 

0.82 31.9 0.40 

YEAR 0.87 24.1 0.37   0.85 23.2 0.35 

 
 

 
 
 As mentioned earlier, the spring-summer snowmelt runoff of the Rio Grande 

Headwaters Basin above Del Norte occurs from April to September. Hence, the 

monthly ANN models and forecast modification models were developed for April-

September months and their performance were analyzed and compared with one 

another. Table 5.5 illustrated the performance of the different models for one-month-

ahead forecasting of monthly flow from April through September for the period of 
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2000-2005. The results showed that forecast performance improved significantly 

from simple ARIMA model to TFN model with precipitation input, to ANN models 

that were calibrated for each month using previous SWE, PRCP, flow as the inputs, 

and to the TFN with forecast modification using SWE information. It can be seen that 

the TFN model with forecast modification performed better than any other modeling 

method. There was a significant improvement in forecast performance compared to 

the simple ARIMA model and the TFN model with precipitation input. The overall 

forecast performance of ANN models that were calibrated for each month was not as 

good as the TFN with forecast modification. Similar results were obtained for the 

seasonal flow forecasting in chapter 4.  

 

 

Table 5.5 Forecast performance of different models for the April to September of 
2000-2005 at Del Norte Gaging Station 

 

Models R2 MAE (kaf) MAPE(%) RMSE (kaf) NRMSE E 

ARIMA 0.75 27.8 62 41.5 0.52 0.67 

TFN  0.82 19.5 38 31.9 0.40 0.80 

ANN 0.87 15.3 36 25.5 0.32 0.87 

TFN with modification 0.92 12.5 25 21.1 0.27 0.91 

 
 

 

 Figure 5.4 shows the improvement of forecast accuracy using TFN with 

forecast modification method compared to ARIMA, TFN and ANN models by 
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plotting forecasted and observed April to September monthly flows for the period of 

2000-2005. As can be seen, the low to medium-high flow forecasts which deviated 

from the observed flow using ARIMA and TFN models were successfully smoothed 

using TFN with forecast modification. The correlation coefficients between 

forecasted and observed monthly flow for the April to September of the testing period 

was increased from 0.86 to 0.96 from simple ARIMA model to TFN with forecast 

modification. Although the TFN with forecast modification was not very effective in 

modification of high flows, it performed well in forecasting low to medium-high 

flows. 
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Figure 5.4 Scatter plots of observed and forecasted monthly Del Norte flow using 

ARIMA, TFN, ANN and TFN with modification for the April to September months 
of 2000-2005 

 

 

 As shown in Table 5.5, the TFN with forecast combination had a coefficient 

of determination 0.92, a model efficiency of 0.91, and a normalized root mean 

squared error of 0.27 for the whole spring-summer season of April to September at 

Del Norte Gaging Station, which indicated a very good one-month-ahead forecast 

performance and a satisfactory model. However, the results vary for model 
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performance for each month from April to September. Table 5.6 and Figure 5.5 

illustrate the forecast performance of different models for individual months from 

April to September. It can be inferred that no forecast improvement was found for 

September after using TFN forecast combination and ANN modeling technique using 

SWE information as the inputs. Rather, the ARIMA model was the best-performing 

model with the lowest normalized root mean squared error of 0.45 for September 

flow .   

 There was substantial improvement in forecasting performance by using ANN 

or TFN with forecast modification for the months of April to August. When 

comparing the forecast accuracy of different months, the May, June, July and August 

flows were forecasted with high accuracy, while the April flow forecasts were fairly 

acceptable. For example, the forecast RMSEs of TFN with modification for June and 

July were 20120 and 4520 acre-ft, and were less than one third of the highest 

forecasting RMSEs (75890 and 13650 acre-ft) by using the simple ARIMA model. 

Overall, the forecast modification with SWE information using ANN method showed 

potential capability of improving monthly streamflow forecasting accuracy in Del 

Norte Gaging Station, Rio Grande. 
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Table 5.6 Forecast performance of modeling methods for different months from April 
September at Del Norte Gaging Station (2000-2005) 

 

Models ARIMA 
 

TFN 
 

ANN 
 

TFN with modification 

Month R
2
 NRMSE  R

2
 NRMSE  R

2
 NRMSE  R

2
 NRMSE 

April 0.17 0.79  0.48 0.63  0.47 0.62  0.52 0.61 

May 0.65 1.05  0.79 0.92  0.94 0.89  0.96 0.73 

June 0.89 0.76  0.89 0.52  0.97 0.27  0.99 0.20 

July 0.98 0.31  0.97 0.12  0.96 0.12  0.97 0.10 

August 0.72 0.38  0.85 0.21  0.97 0.29  0.88 0.27 

September 0.01 0.45  0.00 0.61  0.01 0.46  0.00 0.61 
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Figure 5.5 Comparison of April to September forecast RMSEs of different modeling 

methods for Del Norte monthly flow (2000-2005) 
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5.1.4 Final Models  

 Based on the comparison and performance analysis of different models in the 

previous sections, the forecasting models that can be used for one-month-ahead flow 

forecasting at Del Norte Gaging Station can be summarized according to the 

performance of models for each month of a year. The TFN with forecast modification 

can be used for one-month-ahead flow forecasting of April, May, June, July and 

August of a year. For the other months of a year, except September, the TFN model 

with precipitation input may be used to provide reasonable monthly forecasts. The 

final TFN model that could be used for one-month-ahead flow forecasting at Del 

Norte Gaging Station has been calibrated using the data period of 1961-2005 and is 

given as follows:  

  
ttt a

BB
PRCP

B
y

)1.0483.01(

1

)857.01(

182.0
21

−−
+

−
= −

   (5.5) 

Equation 5.5 can also be written as: 
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13211

018.0088.0

182.0086.0314.0ˆ857.0483.0
 (5.6) 

 The final models that can be used to provide Del Norte monthly flow one-

month-ahead forecasts for each month of a year were proposed in Table 5.7. 

However, some conclusions presented in the table were based on the testing 

performance of the models for only 2000 to 2005. More data may be needed for 

further testing of the model performance to reach more accurate conclusions.  



 
 
 

 
Table 5.7 Final models that could be used for one-month-ahead forecasting of Del Norte monthly flow 

 

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Deseasonalization 
equation t

tt
t

YY
y

σ̂

−
=  

One-month-ahead 
forecast equation 

32

13211

018.0088.0

182.0086.0314.0ˆ857.0483.0ˆ

−−

−−−−−

−−

+−−+=

tt

tttttt

PRCPPRCP

PRCPyyyyy
 

 

Forecast modification 
using SWE 

NO NO NO YES YES YES YES YES YES NO NO NO 

Improvement by 
modification 

- - - YES YES YES YES YES NO - - - 

Backtransforming tttt yYY σ̂+=  

          Notes:     yt = deseasonalized series for month t  

                          Yt = original series for month t  

                         tY = sample average of the original series for month t 

                         
tσ̂ = sample standard deviation of the original series for month t
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5.2 Elephant Butte Reservoir Net Inflow 

 In the previous sections, different statistical models were developed to 

improve one-month-ahead forecast accuracy for the monthly natural flow at Del 

Norte Gaging Station, Rio Grande, Colorado. The time series models such as 

ARIMA, TFN and ANN models were proposed and their one-month-ahead 

forecasting performance was analyzed and compared. The proposed methodologies 

showed favorable results in forecasting monthly natural flow in the spring-summer 

season in the Basin. The monthly Elephant Butter Reservoir net inflow, which is 

defined as the sum of monthly releases measured below Elephant Butte Reservoir and 

the monthly change in storage of the Reservoir, is heavily regulated and liable to 

human intervention. As a result, the correlation of some predictors with net inflow 

has been weakened due to regulation. This inevitably results in more difficulties in 

modeling procedure and less forecast accuracy compared to Del Norte natural flow. 

However, the importance of Elephant Butte Reservoir net inflow forecasting in 

reservoir operation and water management in the region is one of the main motives to 

conduct this study. In the following sections of this chapter, the application of the 

methodologies in the modeling of the monthly Elephant Butter Reservoir net inflow, 

Rio Grande was examined and discussed.   

 

5.2.1 Data Description 

 The Elephant Butte Reservoir monthly net inflow time series from 1961 to 

2007 is shown in Figure 1.8. To develop time series models for the monthly net  
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inflow, a deseasonalization transformation was performed to original data using 

monthly average and standard deviation to produce deseasonalized time series. 

Equation 4.2 was used for the deseasonalization of monthly flow by replacing the 

season with month. The normality plots of monthly net inflow time series and 

deseasonalized monthly net inflow time series are shown in Figures 5.6 and 5.7. The 

normality plots showed the normality approximation of deseasonalized series 

improved significantly compared to the original data series. Hence, as in Del Norte 

monthly flow modeling, the deseasonalized series was also used in the Elephant Butte 

net inflow time series modeling. 

 

  
Figure 5.6 Normality plot of the monthly net inflow of Elephant Butte Reservoir 

(1961-1999) 
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Figure 5.7 Normality plot of the deseasonalized monthly net inflow of Elephant Butte 

Reservoir (1961-1999) 
 
 
 In addition to monthly net inflow data, the monthly average SNOTEL 

precipitation index of the Rio Grande Basin above Elephant Butte Reservoir from 

1961 to 2007 was used in monthly time series modeling. The calculation of monthly 

SNOTEL precipitation index was given in detail in section 1.4.1 and the data was 

shown in Figure 1.11. the SWE data used in this chapter was the monthly basin 

average SWE index data for the period of 1961-2007 (as shown in Figure 1.10). The 

previous year June-November and October-December SOI data were also used in the 

modeling (Figure 1.12). 
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5.2.2 Model Formulation and Development 

5.2.2.1 Correlation Analysis between SOI, SWE and Monthly Net Inflow 

 A correlation analysis between the monthly SWE index and Elephant Butte 

Reservoir monthly net inflow was performed in order to determine the pattern and 

magnitude of relationship between the two variables. The results (Table 4.5) indicate 

that the basin average SWE index which was measured in the first days of January to 

June were significantly correlated with the March to July Elephant Butte monthly net 

inflow at the 0.05 significant level. Although the correlations between March net 

inflow and February, January SWEs were statistically significant at the 0.05 

significance level, they are not as high as in other months. The December and 

November net inflow were also significantly correlated with May 1st and June 1st 

SWEs, but these relationships were not realistic because the effect of snowmelt runoff 

on Elephant Butte Reservoir net inflow is only up to July each year. Hence, the SWEs 

were not used as the predictors to net inflows from August to December. The monthly 

SWEs from March to June have been used in the forecast modification for the March 

to July net inflow. 

 In addition, a correlation analysis has been performed between the averaged 

June-November SOI, averaged October-December SOI and Elephant Butte Reservoir 

monthly net inflow to determine if SOI could be a predictor for any specific month. 

Previous studies have suggested that there is a negative correlation between the 

averaged June-November SOI and average monthly October-March streamflow and 

precipitation for the southwest United States (Redmond and Koch, 1991). The March-
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July flow has the highest correlations coefficients with October-December SOI index, 

and the correlation coefficients are less than -0.35 in some part of the Middle Rio 

Grande (NRCS, 1997). This indicates that higher than average streamflow may occur 

during El Niño years (when the SOI is negative), and lower than average streamflow 

may occur during La Niña (when the SOI is positive). The correlation results (Table 

5.8) suggest that the averaged October-December SOI has higher correlation 

coefficients with May and June net inflow than the June-November SOI, and only the 

May and June net inflow of a year are significantly related to the October-December 

SOI with the correlation coefficients less than -0.4. Therefore, the October-December 

SOI could be used as potential predictors in forecasting Elephant Butte Reservoir net 

inflow of those specific months.  

 
Table 5.8 The correlation coefficients significance test between June-November 

average SOI, October-November average SOI and monthly Elephant Butte Reservoir 
net inflow (1961-2007) 

 

Monthly 
Net Inflow 

   Jun-Nov average SOI    Oct-Dec average SOI  

  
Correlation 
coefficients 

p-value   
Correlation 
coefficients  

p-value 

Jan 
 

-0.062 0.682 
 

-0.034 0.825 

Feb 
 

-0.151 0.316 
 

-0.174 0.247 

Mar 
 

-0.298 0.044 
 

-0.281 0.058 

Apr 
 

-0.201 0.179 
 

-0.198 0.188 

May 
 

-0.296 0.046 
 

-0.405 0.005 

Jun 
 

-0.272 0.068 
 

-0.422 0.004 

Jul 
 

-0.175 0.246 
 

-0.288 0.052 

Aug 
 

0.145 0.337 
 

0.064 0.671 

Sep 
 

0.195 0.193 
 

0.075 0.623 

Oct 
 

0.161 0.286 
 

0.160 0.288 

Nov 
 

0.090 0.552 
 

0.002 0.987 

Dec   0.053 0.727   -0.062 0.683 

Note: the bold numbers indicate the correlations are significant at 0.05 significance level 
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5.2.2.2 ARIMA 

 To fit an ARIMA model, the monthly net inflow series was deseasonalized 

using monthly average and monthly standard deviation of the data period 1961-2007, 

then the data set was divided into a calibration set and a test set, which covered the 

periods of 1961-1999 and 2000-2007 respectively. The autocorrelation functions 

(ACF) and partial autocorrelation functions (PACF) suggested  a AR(1) model could 

be fitted to deseasonalized net inflow series. The following ARIMA model was 

developed for the series and it passed all the diagnostic checks: 

  ttt ayy += −1602.0           (5.7) 

Where 

yt, yt-1  = deseasonalized net inflow series at month t and t-1 respectively. 

 The model explains 62% of variability of the Elephant Butte Reservoir 

monthly net inflow. One-month-ahead rolling forward forecasts were made for 8 

years (2000-2007) to evaluate the performance of the model. Only the ARIMA model 

forecasts for March to July were compared and analyzed.  

 

5.2.2.3 TFN 

 To build a TFN model using basin precipitation as an input, the relationship of 

two time series was investigated using cross correlation analysis. Based on the sample 

cross correlation functions between the input series and output series, the appropriate 

form of TFN model was suggested. The sample cross correlation between the 

Elephant Butte monthly net inflow and monthly precipitation time series was 
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performed by prewhitening the input series and filtering the output series using 

ARIMA models. The precipitation series was deseasonalized by subtracting means 

and dividing by seasonal standard deviations. The AR(1) model was fitted to the 

deseasonalized precipitation series based on the ACF and PACF of the series. The 

monthly PRCP series was prewhitened and the monthly net inflow series was filtered 

by using the same model. The sample cross correlation function between two series is 

shown in Figure 5.8.  
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Figure 5.8 Cross correlation function between prewhitened deseasonalized 
precipitation and filtered deseasonalized net inflow (1961-2007) 
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 The following TFN model was built for the deseasonalized monthly net 

inflow series with the deseasonalized precipitation series as an input using calibration 

set data. The model parameters were estimated using conditional least squares method 

and the model passed all the diagnostic checks according to Box and Jenkins (1976) 

modeling procedure: 
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B

B
y

)097.0474.01(
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+
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               (5.8) 

    Equation 5.8 can also be written as:  

6543
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(5.9) 

 The built TFN model can explain 70% of variability of Elephant Butte 

monthly net inflow, indicating that TFN model performed better than ARIMA model. 

This was also explained by the model variance and Akaike Information Criterion 

(AIC) (Akaike, 1974) of both models. The model performance of the deseasonalized 

net inflow series for the calibration phase showed that the model variance and AIC of 

TFN model decreased from 0.685 to 0.614, and 1152 to 1095 respectively compared 

to the ARIMA model. The one-month-ahead rolling forward forecasts were made for 

2000-2007 using the TFN model for all the months. Again, only the TFN forecasts for 

March to July were compared and analyzed.  
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5.2.2.4 ANN 

 The cross correlation analysis in section 4.3.1 (Table 4.5) showed that the 

correlations between SWE index and net inflow are significant only during certain 

months of a year. Therefore, the ANN models were built for only the months that the 

net inflow has significant relationships with SWE, which were the March to July 

months of a year in this study. The Figure 1.9 also suggested that the spring-summer 

net inflow, which is mainly contributed by snowmelt runoff in the Basin, occurs in 

the months of March to July for the Elephant Butte Reservoir inflow. The NRCS 

seasonal volume runoff forecasts at San Marcial Gaging Station is also focused on the 

March-July flow which is very important in the operation of Elephant Butte 

Reservoir.  

 To build monthly ANN models, the input variable selection procedure that 

was used for seasonal ANN model development in section 4.2.3.3 was also utilized in 

the selection of input variables for the monthly ANN models in this study. The 

sample cross correlation function between prewhitened precipitation series and 

filtered net inflow series (Figure 5.8) suggested that the net inflow is significantly 

correlated with the basin SNOTEL precipitation index prior to four months. The TFN 

structure also indicated that the current month flow is strongly related to the net 

inflows of previous two months. The results of cross correlation analysis between 

SWE, SOI and monthly net inflow in the previous sections suggested that up to three 

previous months of SWEs could be potential input variables for ANN, but the lag 

relationship could be different from month to month. The SOI has a stronger relation 
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with the May and June net inflow, while there is no significant correlation existing 

between SOI and the net inflow for the rest of the months of a year. 

 Based on the input variable selection procedures discussed above, a number of 

ANN models were developed for the months of March to July separately using SWE, 

PRCP and net inflow of the previous months as the inputs. The general structure of 

the ANN models was formulated as follows: 

Yt = f (Yt-1, Yt-2, PRCPt-1, PRCPt-2, PRCPt-3, PRCPt-4, SWEt, SWEt-1, SWEt-2, SOI)  (5.10) 

 After initial input variables for ANNs were selected, the same procedure that 

had been used to select input variables for the Del Norte monthly flow modeling was 

applied in order to enhance the generalization capability of the networks. Depending 

on the correlations between monthly net inflows and candidate input variables, the 

number of previous SWE, PRCP, SOI and net inflow inputs and lags were different 

for ANN models for different months. The structures of final monthly ANN models 

developed for March to July are shown in Table 5.9.  

 

Table 5.9 The ANN models developed for monthly Elephant Butte Reservoir net 
inflow from March to July 

 

Months Model structure Model configuration 

March ANN (4-2-1) Ymar = f (Yfeb, PRCPnov , PRCPfeb ,SWEmar1st) 

April ANN (5-2-1) Yapr = f (Ymar, PRCPdec , PRCPfeb ,SWEmar1st, SWEapr1st) 

May ANN (5-2-1) Ymay = f (Yapr, PRCPjan , PRCPmar ,SWEmay1st, SOI) 

June ANN (5-2-1) Yjun = f (Ymay, PRCPapr , PRCPmay ,SWEapr1st, SOI) 

July  ANN (4-2-1) Yjul = f (Yjun, PRCPmar , PRCPmay , SWEmay1st) 
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 To build ANN models, the total data period (1961-2007) was divided into a 

calibration set (1961-1999) and a testing set (2000-2007); then the calibration set was 

randomized and divided further into a training set and a cross validation set. Cross 

validation was used for early stopping of the training to protect the network from 

overtraining. The same ANN model building procedures used in chapter 4 and ANN 

modeling of Del Norte monthly flow including model structure, training algorithm, 

transfer function selection, number of epochs for training and cross validation, were 

used in building of monthly ANN models. 

 

5.2.2.5 TFN with Modification 

The results of correlation analysis between basin SWE index, SOI and 

Elephant Butte monthly net inflow showed that the March to July monthly net 

inflows were highly correlated with SWEs. The October-December averaged SOI has 

a significant relationship with the May and June net inflow. As mentioned in previous 

sections, the inclusion of these variables in the TFN modeling procedure is very 

difficult since there is no systematic lag relationship between SWE, SOI and the 

dependent variables. However, the inclusion of these variables, particularly the SWE, 

in forecasting March to July net inflow is of vital importance since the March to July 

streamflows are mainly related to the SWE in the Basin. To address this, same hybrid 

approach as in chapter 4, a modification of TFN model forecasts with PRCP input 

using SWE and SOI, was performed using the artificial neural networks (ANN) 

method for the months of March to July.   
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 The general formulation of TFN with modification approach was described as 

in Equation 4.1 in section 4.1.1. The only difference is that the monthly net inflow 

was used as the dependent variable instead of seasonal flow. The structures of the 

final monthly ANN models developed for March to July net inflow are shown in 

Table 5.10. The same data partitioning, training and cross validation procedure, and 

cross validation stopping criteria that were used in the previous sections were utilized 

in the ANN model building. The maximum number of inputs for ANN models in this 

procedure was limited to 4, so as to keep a much smaller network size and to enhance 

the generalization ability of the ANN with a smaller sample size. 

 

 

Table 5.10 The monthly net inflow ANN models developed for forecast modification 
of Elephant Butte Reservoir, Rio Grande. 

 

Months Model structure Model configuration 

March  ANN (3-2-1) Ymar, modified = f (SWEfeb1st, SWEmar1st, Ymar, forecasted) 

April ANN (3-2-1) Yapr, modified = f (SWEmar1st, SWEapr1st, Yapr, forecasted) 

May ANN (4-2-1) Ymay, modified = f (SWEapr1st, SWEmay1st, SOI, Ymay, forecasted) 

June ANN (3-2-1) Yjun, modified = f (SWEapr1st, SWEmay1st, SOI, Yjun, forecasted) 

July ANN (3-2-1) Yjul, modified = f (SWEapr1st, SWEmay1st, Yjul, forecasted) 

  Notes:  Yt, modified  =  monthly net inflow forecasts after the forecast modification in month t  

   Yt, forecasted = monthly net inflow forecasts of TFN model with PRCP input in month t 
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5.2.3 Model Diagnostics and Comparison 

 Wang (2006) discussed an important issue in evaluating forecast performance 

of seasonal models. The model performance for the whole year is better than most 

separate seasons when using coefficient of determination (R2) as an evaluation index. 

Obtaining high coefficient of determination between observed and forecasted 

monthly net inflow for the whole testing period using a certain forecasting model 

does not necessarily mean it is a good model. Although the overall coefficient of 

determination may be high for the whole year, the model performance for some 

months may be very poor. Sometimes the observed mean might be a better forecast 

for some months. For example, Table 5.11 summarized the one-month-ahead forecast 

performance of TFN model for monthly net inflow for both the calibration and the 

testing periods. The R2, RMSE and NRMSE are tabulated in Table 5.11 for each 

month, for March-July, and whole year, respectively. As can be seen, the coefficient 

of determination for the whole year and the March-July months were higher than the 

averages of individual months, which illogically indicates that model performance for 

the whole year is better than for most of the individual months (Wang, 2006). Hence, 

when a monthly model is developed, the performance of the model for each month 

should be evaluated, so that water managers can selectively use the model for each 

month of a year based on the performance of the model for that specific month. 

 No better results than in Table 5.11 can be expected for the forecasting of net 

inflow in the study site using ARIMA and TFN model with precipitation input. This 

is because the ARIMA model is basically built for the persistence of the runoff, while 
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TFN model includes only the precipitation information other than persistence. The 

inclusion of precipitation information may improve model performance for winter 

and fall months. In contrast, precipitation may not contribute significantly to forecast 

improvement for the spring-summer months, since the large proportion of spring-

summer flow are contributed by snowmelt in the Basin.  As shown in Table 4.5, the 

March to July reservoir net inflow is significantly correlated with SWE in the Basin. 

The net inflows for some months, such as May and June, have very high correlations 

coefficients with SWE in the Basin. Moreover, net inflows of these months also have 

a significant correlation with SOI information. Therefore, the forecasts of March to 

July could be improved by inputting information from these predictors to the 

forecasting models. 

 
Table 5.11 One-month-ahead forecasting performance of TFN model for Elephant 

Butte Reservoir monthly net inflow 
 

  
Month 

Calibration period (1961-1999)   Forecasting period (2000-2007) 

R
2
 RMSE (kaf) NRMSE   R

2
 RMSE (kaf) NRMSE 

JAN 0.23 14.2 0.93 
 

0.55 4.5 0.29 

FEB 0.59 18.5 0.70 
 

0.64 7.5 0.28 

MAR 0.68 19.0 0.62 
 

0.70 8.0 0.26 

APR 0.55 41.1 0.70 
 

0.46 24.1 0.41 

MAY 0.61 63.5 0.63 
 

0.81 39.2 0.39 

JUN 0.83 43.3 0.45 
 

0.70 40.3 0.42 

JUL 0.55 47.0 0.72 
 

0.09 37.8 0.58 

AUG 0.16 37.2 0.90 
 

0.35 48.0 1.16 

SEP 0.16 22.8 1.00 
 

0.00 19.9 0.87 

OCT 0.30 23.3 0.90 
 

0.07 23.3 0.90 

NOV 0.41 19.4 0.79 
 

0.89 8.1 0.33 

DEC 0.44 18.5 0.78 
 

0.34 10.6 0.45 

APR-SEP 0.71 45.1 0.57 
 

0.65 32.4 0.41 

 YEAR 0.70 34.0 0.58   0.56 27.3 0.46 
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 As far as the winter and fall net inflow are considered, the persistence and 

precipitation might be the only inputs that should be included in the net inflow 

forecasts in the study (as in ARIMA and TFN) since they are not significantly 

correlated with SWE and SOI. Moreover, from the practical point of view, about two 

thirds of the Elephant Butte Reservoir annual net inflow is concentrated in the March 

to July months (Figure 1.9). Hence, the forecasting of spring-summer net inflow with 

acceptable accuracy is a crucial issue in water management for irrigation, 

environmental and compact purposes in the Basin, particularly in the lower Rio 

Grande region. In the following sections, the March to July net inflow forecast 

performance is mainly discussed and analyzed. 

 Table 5.12 illustrates the different model performance for the one-month-

ahead forecasting of net inflows from March through July for the period of 2000-

2007. The results showed that the forecast performance improved significantly from 

simple the ARIMA model that was built based on the autocorrelation of monthly net 

inflow itself to the TFN model with precipitation, to ANN models that were 

calibrated for each month using previous SWE, PRCP, SOI, and net inflow as the 

inputs, and to the TFN model with forecast modification using SWE and SOI 

information. It can be seen that the TFN model with forecast modification performed 

better than any other modeling method. There was a significant improvement in 

forecast performance compare to the ARIMA model and TFN model with 

precipitation input.  
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Table 5.12 Monthly net inflow forecast performance of different models for the 
March to July months of 2000-2007 

 
Models R

2
 MAE (kaf) MAPE(%) RMSE (kaf) NRMSE E 

ARIMA 0.58 28.5 403 36.2 0.46 0.51 

TFN 0.65 24.1 539 32.4 0.41 0.61 

ANN 0.87 13.6 96 18.9 0.24 0.87 

TFN with modification 0.89 11.6 45 17.0 0.21 0.89 

 
 
 
 It can also be seen from Table 5.12 that the overall forecast performance of 

ANN models calibrated for each month was not as good as the TFN with forecast 

modification. This may be due to the generalization capability and inclusion of 

information of the neural networks that were used in both methods. As in TFN with 

forecast modification, fewer inputs were used than ANN models calibrated for each 

month, which enables the network to have a smaller size and more generalization 

capability. In addition, the forecasts from TFN with precipitation input have already 

included persistence, precipitation and stochastic components in one input variable 

for the ANN models that were used for the modification. 

 Figure 5.9 illustrates the forecast accuracy improvement of TFN with the 

forecast modification method compared to other modeling approaches by plotting a 

scatter plot of forecasted and observed March to July monthly net inflow for the 

period of 2000-2007. As can be seen from the figure, the forecasted net inflow that 

deviated largely from the observed net inflow using ARIMA and TFN models were 

successfully smoothed and lessened using ANN modeling and forecast modification 

approach for March to July net inflows. The correlation coefficients between 
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observed and forecasted net inflows using TFN models and TFN with modification 

were 0.81 and 0.95 respectively, indicating that considerable improvement in forecast 

accuracy was obtained through using the forecast modification approach. This also 

suggested that the forecast modification with SWE and SOI information for the 

March to July net inflow using ANN method is practically effective in net inflow 

forecasting of Elephant Butte Reservoir.  
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Figure 5.9 Scatter plots of observed and forecasted monthly Elephant Butte Reservoir 

net inflow using ARIMA, TFN, ANN and TFN with modification for the March to 
July months of 2000-2007 
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 As mentioned earlier, the well-performed model which is evaluated for whole 

year and/or season by model performance evaluation indices, such as coefficient of 

determination for March to July period, does not mean it performs well for each 

individual month. As shown in Table 5.12, the TFN with forecast combination 

approach has coefficient of determination 0.89, model efficiency of 0.89, and 

normalized root mean squared error of 0.21, which indicates that a good one-month-

ahead performance, and is a satisfactory model. However, the results vary in the 

model performance for each month from March to July. Table 5.13 and Figure 5.10 

illustrate how each modeling method performed for each month from March to July. 

No forecast improvement was obtained for March even after using forecast 

combination and ANN modeling technique using SWE information as the inputs. 

Rather, the TFN model with precipitation input was a best-performing model for the 

March net inflow of the Elephant Butte Reservoir with coefficient of determination of 

0.7 and RMSE of 0.26.  This may be because of the heavy regulation of March net 

inflow. The regulation of the net inflow may weaken the natural relationship existing 

between March net inflow and the basin SWE index. For July, none of the models 

were acceptable in terms of the coefficient of determination although July had 

relatively smaller normalized RMSEs. 
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Table 5.13 Forecast performance of modeling methods for different months from 
March to July for Elephant Butte Reservoir net inflow (2000-2007) 

 

Models ARIMA  TFN  ANN  TFN with modification 

Month R
2
 NRMSE  R

2
 NRMSE  R

2
 NRMSE  R

2
 NRMSE 

March 0.58 0.38  0.70 0.26  0.38 0.43  0.56 0.33 

April 0.41 0.46  0.46 0.41  0.73 0.38  0.75 0.29 

May 0.80 0.56  0.81 0.39  0.91 0.22  0.93 0.20 

June 0.85 0.41  0.70 0.42  0.95 0.18  0.97 0.13 

July 0.06 0.47  0.09 0.58  0.14 0.28  0.09 0.34 

 
 

 
 
 
 Figure 5.10 and Table 5.13 indicated that there was substantial improvement 

in forecasting performance by ANN and TFN with forecast modification for the 

months of April, May and June. When comparing the forecast accuracies of different 

months, the May and June net inflows were forecasted with high accuracy, while the 

April net inflows forecasts were fairly acceptable. For example, the forecast RMSE of 

TFN with modification for June is 13015 acre-ft, is about one third of the highest 

forecasting RMSE (39660 acre-ft) of simple ARIMA model. Hence, in order to 

improve the one-month-ahead forecast accuracy, the different models may be used for 

the different months of a year for net inflow forecasting at Elephant Butte Reservoir, 

Rio Grande. 
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Figure 5.10 Comparison of March to July forecast RMSEs of different modeling 

methods for Elephant Butte Reservoir monthly net inflow (2000-2007) 
 
 
 
 
5.2.4 Final Models  

 According to model performance analysis in the previous sections, the TFN 

model with modification using basin SWE and SOI can be recommended for the 

months of April, May, June and July of the year for one-month-ahead net inflow 

forecasting. For fall and winter months such as November, December, January, 

February and March, the TFN model with SNOTEL precipitation index as input 

could be used for one-month-ahead net inflow forecasting. For the other months of 

the year such as August, September and October, the TFN model with precipitation 
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input may be used to provide monthly forecasts, but is not recommended as a basis 

for reservoir operation because of limited forecast accuracy. The final TFN model 

that could be used for one-month-ahead net inflow forecasting at Elephant Butter 

Reservoir has been calibrated using data period of 1961-2007 and is given as follows: 
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  (5.12) 

 The final models that can be used for each month of the year for forecasting of 

Elephant Butte net inflow are proposed in Table 5.14. The recommendation to use 

different modeling approaches for individual months is also given based on the model 

forecast performance. It was suggested that the methodologies presented in the study 

may not be applicable for the forecasting of July to October net inflow due to high 

forecast error and uncertainty. However, the suggestions given here were based on the 

performance of models that were calibrated and tested using the very short data 

period of 47 years. Some other limitations such as the period of calibration, data 

preparation, selection of input variables, and selected study site for the models may 

also affect the conclusions. 

 

 

 

 



 
 

 
 

Table 5.14 Final models that could be used for Elephant Butte Reservoir monthly net inflow forecasting 
 

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Deseasonalization 
equation 

t

tt
t

YY
y

σ̂

−
=  

One-month-ahead 
forecast equation 54

21211

036.0081.0

066.0148.0381.0ˆ853.0447.0ˆ

−−

−−−−−

−+

−+−+=

tt

tttttt

PRCPPRCP

PRCPPRCPyyyy
 

 

Forecast modification 
using SWE and SOI NO NO YES YES YES YES YES NO NO NO NO NO 

Improvement by 
modification 

- - NO YES YES YES YES - - - - - 

Backtransforming tttt yYY σ̂+=  

          Notes:  yt = deseasonalized net inflow series for month t 

                      Yt = original net inflow series for month t  

                     
tY = sample average of the original net inflow for month t 

                     
tσ̂ = sample standard deviation of the original net inflow for month t 
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5.3 Summary 

 In this chapter, the application of autoregressive integrated moving average 

(ARIMA), transfer function-noise (TFN) modeling and artificial neural network 

(ANN) techniques in forecasting naturalized streamflow and reservoir net inflow 

using various input variables has been illustrated and their one-month ahead 

forecasting performance has been evaluated by using several performance indices, 

such as coefficient of determination (R2), root mean squared error (RMSE) and 

normalized RMSE. The results from this study indicate that the ANN is a useful tool 

in forecasting monthly streamflow whether it is used for direct modeling of monthly 

flow or used as a forecast modification technique when there are enough observed 

data the model development. The TFN modeling could be used for monthly 

streamflow forecasting in the winter and fall seasons of the year. Furthermore, the 

TFN modeling procedure could also be used to identify significant input variables for 

the building of ANN models.  

 The forecast modification using ANN technique with inputs such as forecast 

results of TFN with precipitation input, basin snow water equivalent and SOI, was 

proved to be effective method through this study in one-month-ahead forecasting of 

Del Norte spring-summer flow and Elephant Butte spring-summer net inflow. This 

method has showed better generalization capability than the ANN models that 

specifically calibrated for each month of snowmelt season, and therefore, was able to 

improve net inflow forecast accuracy. It also implied that the combination of different 

modeling methods could be a powerful and favorable approach in improving forecast  

 237 
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accuracy of one-month-ahead monthly reservoir net inflow.   

 The comparison of time series models, namely ARIMA and TFN with 

precipitation input which were calibrated for the whole year, with ANN models that 

either were directly used for modeling or were used for forecast modification of TFN 

model forecasts for the months of spring-summer season suggest that the ANN 

models perform better than time series models in general. This may be because the 

ANN modeling technique can incorporate various predictors easily into the model 

and showed more flexibility in modeling procedure compared to the TFN models. In 

addition, and more importantly, the ANN algorithm can capture a nonlinear 

relationship between inputs and outputs, while the TFN model is able to deal only 

with linearity. This is particularly useful in modeling regulated flows, such as 

reservoir net inflow, where input and output relationships are of a complex and 

nonlinear nature. 

 Usually, the model performance for the whole year is better than most 

separate seasons when using coefficient of determination (R2) as an evaluation index. 

Hence, high coefficient of determination between observed and forecasted monthly 

streamflow for the whole testing period does not necessarily mean it would be a good 

model. Although the overall coefficient of determination is high for the whole year, 

the model performance for some months may be very poor, and sometimes the 

observed mean might actually be a better forecast for some months. Therefore it was 

suggested that the performance of the model for each month should be evaluated 

when using a monthly forecasting model, so that water managers can selectively use 
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the model for each month of a year based on the performance of the model for that 

specific month. 

 The results from this study may provide an impetus for monthly streamflow 

forecasting, particularly reservoir net inflow forecasting, by using a combined TFN 

and ANN approach with various operationally available climatic variables. However, 

both the TFN models and the ANN models developed in this study are local models 

that are limited to applications within the study area and with the observed specific 

conditions. For other study areas, new ANN architectures may be developed using 

different input variables and lag time relations for forecasting monthly flow and 

reservoir net inflow based on the specific characteristics of a basin. Further research 

may be directed to explore the application of more effective modeling methodologies 

aimed at improving monthly reservoir net inflow forecasting for reservoir operations. 
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6 SUMMARY AND CONCLUSIONS 

 

 Streamflow forecasting is challenging because of the complexity of the 

hydrologic system. Improving the quality of streamflow forecasting has always been 

an important task for researchers and hydrologic forecasters. In this dissertation, the 

improvement of seasonal and monthly streamflow forecasting using various data-

driven statistical models was investigated for naturalized streamflow at Del Norte 

Gaging Station and observed reservoir net inflow of Elephant Butte Reservoir, Rio 

Grande. The application of partial least squares regression and hybrid models in 

seasonal streamflow forecasting were investigated with the purpose of improving the 

quality of seasonal streamflow forecasting. Some issues in monthly streamflow 

forecasting, such as monthly model performance evaluation, inclusion of snowpack 

and El Niño Southern Oscillation (ENSO) information in the monthly streamflow 

forecasting were discussed and analyzed.  

 Two approaches were presented in forecasting seasonal streamflow volume 

runoff. They were discussed in chapter 3 and chapter 4 respectively. In chapter 3, the 

spring-summer seasonal runoff volumes, the April-September streamflow volume at 

Del Norte Gaging Station and the March-July net inflow volume of Elephant Butte 

Reservoir, were used for modeling to be consistent with the current forecast practices 

of NRCS. The multivariate regression methods, such as partial least squares 

regression (PLSR) and principal components regression (PCR) were applied to 

develop spring-summer seasonal volume runoff forecasting equations in the selected 
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basins and the forecast performance was compared to the NRCS official forecasts. 

Some issues related to regression equation development, such as the selection of the 

optimal number of components using the jackknife cross validation scheme, the 

variable selection procedures in PLSR, and forecast performance evaluation were 

analyzed and discussed. In chapter 4, to apply time series models in seasonal 

streamflow forecasting, four different seasons were defined for each study basin 

based on the characteristics of streamflow processes of the particular basin. The 

ARIMA and TFN models were developed for the defined seasonal flow time series. 

The ANN models and two hybrid modeling approaches, a forecast modification using 

a combination of transfer function-noise (TFN) with artificial neural networks (ANN) 

and the combination of principal components analysis (PCA) with ANN, were 

applied to the snowmelt runoff seasons in both basins to investigate the possible 

forecast improvement by using these approaches. The one-season-ahead forecasts of 

proposed models were compared to the same lead time NRCS official forecasts.  

 Monthly streamflow forecasting was discussed in chapter 5. The application 

of ARIMA, TFN modeling and ANN techniques in forecasting naturalized 

streamflow and reservoir net inflow using various input variables has been illustrated. 

The one-month-ahead forecasting performances of the models have been evaluated by 

using several performance indices. The inclusion of snowpack and ENSO information 

in the monthly streamflow forecasting models were carried out using a cross 

correlation analysis and forecast modification using ANN techniques. Some issues 

related to the performance of monthly forecasting models were also addressed to 
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make better use of monthly models in the operational streamflow forecasting 

environment.  

 

6.1 Seasonal Model Capabilities and Limitations 

6.1.1 PLSR and PCR Forecasting Equations  

 The developed forecasting equations for the April-September natural flow at 

Del Norte Gaging Station and the March-July net inflow of Elephant Butter Reservoir 

using partial least squares regression showed potential ability in modeling procedure 

and improving forecast accuracy. Particularly, the PLSR equations using the 

composite precipitation index as input resulted in better performance with 

parsimonious structure. The comparative results of the model forecasts with NRCS 

official forecasts were also encouraging. Moreover, this approach is easily applicable 

in operational seasonal streamflow forecasting environment. The final forecasting 

equations proposed for the April-September natural flow forecasting at the Del Norte 

Gaging Station and the March-July Elephant Butte Reservoir net inflow forecasting 

can be applied in operational seasonal streamflow forecasting within the study basins.  

 The composite precipitation index was first introduced in this study to 

examine if better forecast skills could be obtained. The results indicate that both 

PLSR and PCR equations using composite index as inputs provided better or 

equivalent forecasts as compared to those using monthly observed precipitation as the 

direct inputs. In addition, this approach is more robust because of the parsimonious 

feature of models that reduces the number of input variables without loss of accuracy. 
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This is particularly important for larger basins where more information is available 

from numerous SNOTEL sites for forecast equation development. The algorithm used 

in this study was limited to using the weighted average of monthly precipitation based 

on the correlation coefficients with corresponding spring-summer forecast target 

volume. However, this may be not the best way to drive the composite precipitation 

indices. In practice, there may be other ways to calculate different composite indices 

to develop better models. 

 The comparison of the performance of PLSR and PCR in forecasting both 

natural flow and measured reservoir net inflow suggest that there are no significant 

differences in the forecasting performance of the two methodologies. However, it was 

observed that the PLSR can reach its minimal prediction error with a smaller number 

of components than PCR. This is a unique feature of PLSR compared to PCR when 

developing regression equations. Moreover, the explained variation (coefficient of 

determination for calibration) of the dependent variable by PLSR is always higher 

than PCR for the same number of components extracted. In general, the PLSR is 

more powerful than PCR in extracting components that deal with collinearity issue, 

yet it may not necessarily guarantee that PLSR would be better than PCR in terms of 

forecasting accuracy in seasonal streamflow forecasting. 

 The proposed forecasting equations in the study using PLSR and PCR were 

calibrated using only 22 years of data. This calibration period in this study is shorter 

than that of the NRCS forecasting equations because the data used in the calibration 

were of continuous high quality data measured from NRCS automatic SNOTEL sites. 
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Except for several years of SNOTEL precipitation data that were extended back to the 

1980s using weather station precipitation data, neither an estimation of missing data 

was performed, nor was the Snow Course data used in the calibration of the 

regression equations. The standoff between using a shorter calibration period and 

using real-time good quality data is often encountered in seasonal streamflow 

forecasting equation development. However, with the accumulation of real-time 

measured SNOTEL data through time, the regression equations can be recalibrated 

every year when the new data become available. The final forecasting equations 

proposed in the study were calibrated using 27 years of data, which are all the data 

available up to the present.  

 The PLSR and PCR regression equations developed in this study were used to 

compute the median value of the seasonal water volume forecast distribution. If 

needed, the ensembles/probabilistic forecasts can be added by analyzing the statistical 

properties of the model error series (i.e., residuals) that occur in reproducing observed 

historical streamflow data using a jackknife procedure.  The results from statistical 

tests of residuals of all PLSR models developed in the study showed that they are 

normally distributed at 0.05 significance level. Based on the normally- distributed 

errors, the exceedance probability forecasts of PLSR equation can be provided. The 

width of the probabilistic forecast error bound is proportional to the root mean 

squared error between these jackknife hindcasts and their respective observations. In 

general, the application of PLSR in seasonal streamflow forecasting is promising. 

Together with PCA and Z-score regression, the PLSR approach can be combined into 
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NRCS’s operational forecasting platform to facilitate its application in operational 

forecasting environment.   

  

6.1.2 Hybrid Modeling Approaches 

 The application of hybrid modeling approaches in the two study basins 

showed their potential capability to improve forecast accuracy in seasonal streamflow 

modeling as compared to single models. For the modeling of seasonal natural 

streamflow at the Del Norte Gaging Station, the combination of PCA and ANN 

performed better for April-June and April-September streamflow volume forecasting. 

The performance of this approach was comparable to NRCS official forecasts. For the 

modeling of Elephant Butte Reservoir seasonal net inflow, the best-performing model 

for April-July seasonal net inflow forecasting was the forecast modification of TFN 

with ANN approach. However, no distinct difference could be observed when 

comparing the performance of both approaches for either basin. Both approaches 

performed reasonably well compared to the single models. The number of principal 

components used as inputs in the ANN models is crucial and may affect the 

performance of the PCA+ANN modeling approach. Overall, the TFN with forecast 

modification approach was preferred in this study due to smaller network size and the 

inclusion of more information using transfer function-noise models. 

 It was observed that none of the models presented in this study performed 

with reasonable accuracy in the forecasting of late summer and early fall streamflows. 

In particular, the July-September flow at the Del Norte Gaging Station and August-
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October Elephant Butte Reservoir net inflow. The normalized root mean squared 

errors of the forecasted and observed streamflow for these seasons was close to 1.0 or 

higher, indicating that there was no significant difference compared to using the 

historical average as the forecast. This may be due to the high variability of 

streamflows in these seasons that are affected by low elevation rainfall in the basins. 

In addition, there is no significant relationship existing between snowpack 

information and streamflow processes during these seasons. This is particularly 

obvious for August-October net inflow of the Elephant Butte Reservoir. Hence, it 

would not be appropriate to use any of the models developed in this study to forecast 

streamflows in these seasons due to high forecast errors.  

 The hybrid modeling approaches were not applied for the late fall and winter 

streamflow because no meaningful relationship exists between snowpack and 

streamflow processes during these seasons. However, the streamflows of these 

seasons have been forecasted reasonably well using the TFN model with precipitation 

input for both study basins. These seasons are the January-March and October-

December seasonal streamflows at Del Norte Gaging Station and the January-March 

and November-December seasonal net inflow of Elephant Butte Reservoir. Although 

the runoff for these seasons does not seem not as important as spring-summer runoff 

for water management in the basin due to their smaller contribution to the annual 

runoff, forecasting of streamflows for these seasons may provide an earlier indication 

of magnitude of spring-summer runoff volume. In addition, the streamflow volumes 

for these seasons can be forecasted using time series models with reasonable 
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accuracy. This is partly due to the smaller interannual variation of the streamflow 

processes in these seasons. This suggests that the TFN model with SNOTEL 

precipitation as input is sufficient for forecasting seasonal streamflow volume for 

these seasons in the study basins.  

 It was observed in the Elephant Butte Reservoir net inflow modeling that the 

performance of the single ANN model and combination of PCA and ANN approach 

were also comparable to the TFN with forecast modification approach. However, the 

latter is preferable for use in April-July Elephant Butte Reservoir net inflow volume 

forecasting due to its simpler structure and higher forecast accuracy. The converted 

forecasts made by routing equation using NRCS official forecasts at San Marcial 

Gaging Station was not preferred because of the higher forecast errors compared to 

other modeling approaches. This may be because the relationship between the input 

variables and the Elephant Butte Reservoir seasonal net inflow is not linear due to 

human intervention and complex features of the net inflow that are affected by many 

factors such as reservoir evaporation, seepage and the contribution of low-altitude 

rainfall to the net inflow. Most of the operational forecasts issued by NRCS are based 

on linear regression equations. 

Hybrid modeling proved to be a robust approach in seasonal streamflow 

forecasting. The TFN with forecast modification approach using one-season-ahead 

TFN forecasts shows significant improvement in forecast accuracy. However, this is 

applicable for one-season-ahead seasonal volume forecasting only. To obtain longer 

lead time forecasting, the two-season-ahead TFN forecast may be used. Yet, the two-
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season-ahead forecasting accumulates forecasting errors which inevitably affects the 

performance of the hybrid approach. It was observed in this study that the two-

season-ahead forecasts were not acceptable due to high forecast errors. This limitation 

results in difficulties in the application of the TFN+ANN approach in longer lead 

time forecasting.  

 The definition of hydrological seasons for both study basins is somewhat 

subjective, requiring personal judgment of the author based on understanding of the 

specific basin being studied. This is an important step in the application of time series 

models and hybrid approaches in the seasonal streamflow modeling and may also 

affect the quality of the modeling and forecasting. More studies are needed on this 

issue. Further, due to the time limitation of this dissertation study, the forecast 

uncertainty evaluation of these hybrid modeling approaches was not presented. It is 

hoped that future hydrological forecasting research efforts will exploit the potential 

capabilities of hybrid modeling in achieving increased forecast accuracy and perform 

forecasting uncertainty analysis of hybrid models. 

 

6.2 Monthly Model Capabilities and Limitations 

 Several statistical methods including ARIMA, TFN, ANN and the forecast 

modification with ANN were applied to monthly streamflow and net inflow modeling 

in the study basins. The results indicated that the ANN is a useful tool in forecasting 

monthly streamflow, whether it is used for direct modeling of monthly flow or used 

as a forecast modification technique when there are enough observed data for model 
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development. The TFN modeling could be used for monthly streamflow forecasting 

in the winter and fall seasons of the year. Furthermore, the TFN modeling procedure 

could also be used to identify significant input variables for the building of ANN 

models.  

 The forecast modification approach using ANN technique with inputs such as 

forecast results of TFN with precipitation input, basin snow water equivalent and 

SOI, proved to be an effective method throughout this study in one-month-ahead 

forecasting of Del Norte spring-summer flow and Elephant Butte spring-summer net 

inflow. This method displayed better generalization capability than the ANN models 

that were specifically calibrated for each month of snowmelt season and was able to 

improve forecast accuracy significantly. These findings also implied that the 

combination of different modeling methods is an advantageous approach in 

improving forecast accuracy of one-month-ahead monthly streamflow and reservoir 

net inflow.   

 The comparison of time series models, namely ARIMA and TFN with 

precipitation input which were calibrated for the whole year, with ANN models that 

either were directly used for modeling or were used for forecast modification of TFN 

model forecasts for the months of spring-summer season, suggested that the ANN 

models perform better than time series models in general. This may be because the 

ANN modeling technique can incorporate various predictors easily into the model 

and showed more flexibility in modeling procedure compared to the TFN models. In 

addition, and more importantly, the ANN algorithm can capture a nonlinear 
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relationship between inputs and outputs, while the TFN model is able to deal only 

with linearity. This is particularly useful in modeling regulated flows, such as 

reservoir net inflow, where input and output relationships are of a complex and 

nonlinear nature. 

 In general, the model performance for the whole year is better than for most 

separate seasons when using the coefficient of determination (R2) as an evaluation 

index. Hence, high coefficient of determination between observed and forecasted 

monthly streamflow for the whole testing period does not mean it is necessarily a 

good model. Although the overall coefficient of determination is high for the entire 

year, the model performance for some months may be poor, and sometimes the 

observed mean might actually be a better forecast for some months. Therefore it was 

suggested that the performance of the model for each month should be evaluated 

when using a monthly forecasting model, so that water managers may selectively use 

the model for each month of a year based on the performance of the model for that 

specific month. 

 Similar to seasonal flow modeling, the data period used to calibrate the 

monthly ANN models and TFN with forecasts modification was short due to the 

limited availability of snow water equivalent data (starting from 1961). Although the 

procedures that can protect the network from overtraining were applied in the training 

of all ANN models in the study, the generalization of ANN is always an issue in 

model training. Moreover, it was observed from the study that the longer lead time 

such as two-month-ahead forecasts with proposed monthly models were not adequate 
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in terms of forecast accuracy. Hence, this will limit the application of the monthly 

models for the early decision-making in the reservoir operation and water 

management.  

The findings of this study may provide an impetus for monthly streamflow 

forecasting, particularly reservoir net inflow forecasting, by using a combined TFN 

and ANN approach with various operationally available climatic variables. However, 

both the TFN models and the ANN models developed in this study are local models 

that are limited to applications within the study area and within the observed specific 

conditions. For other study areas, new ANN architectures may be developed using 

different input variables and lag time relations for forecasting monthly flow and 

reservoir net inflow based on the specific characteristics of a basin.  

 

6.3 Recommendations and Future Work 

 The application of partial least squares regression in seasonal streamflow 

forecasting is promising. The selection of numbers of components with PLSR and 

variable selection procedures in seasonal streamflow forecasting equation 

development have been attempted for the first time in this study. However, the 

variable selection in PLSR is always a challenging task due to the complexity of the 

hydrologic process. Similar to Garen’s (1992) method of variable selection for PCR, 

the investigation and application of more robust variable selection approaches, such 

as systematic searching of optimal or near optimal variable combination in PLSR 

would be desirable in future seasonal streamflow forecasting research studies.  
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Hybrid modeling is a new and robust approach in streamflow forecasting. The 

possible categorization of hybrid modeling methods was discussed in the study 

through a literature review. Two hybrid approaches including the combination of time 

series and ANN, combination of PCA and ANN were introduced. Their applications 

in seasonal and monthly streamflow forecasting were investigated in this study. There 

are many other hybrid approaches that can be applicable in streamflow forecasting 

that need to be explored in future research. The study of the relationships between the 

application of the complex hybrid modeling methods and their operational capability 

in streamflow forecasting environment are potentially useful and are also an 

interesting research topic in the field of streamflow forecasting.  

In order to ensure the operational capabilities of proposed models, only 

hydrologic variables that are measured in the SNOTEL sites were used as the 

predictor variables. The low elevation precipitation information was not included in 

the models for two reasons. First, weather station data from climate networks are not 

readily available on the first day of the month. Second, the monthly and seasonal 

streamflow process is highly correlated with low elevation precipitation in the same 

period or lag. The inclusion of low elevation precipitation in the monthly and 

seasonal streamflow forecasting models requires that predicted precipitation should 

be used as an input, which would introduce prediction errors of precipitation into 

streamflow forecasting, consequently degrading forecast accuracy. As observed in 

this study, the low elevation precipitation affects significantly the late summer and 

early fall streamflow processes in the study basins. Therefore, it would be worthwhile 
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to investigate the methods of inclusion of low elevation precipitation in monthly and 

seasonal streamflow forecasting models to improve the forecasting accuracy of the 

late summer and early fall streamflow processes. 

Due to snow water equivalent and precipitation data availability from 

SNOTEL sites, a relatively short period of data was used to calibrate the multivariate 

regression equations, monthly and seasonal ANN models. To obtain more reliable 

seasonal runoff volume forecasting equations and enhance the generalization ability 

of ANN models in monthly and seasonal streamflow forecasting, more appropriate 

procedures for data extension and data pre-processing are worth investigating. At the 

same time, it would be useful to investigate the application of more robust 

generalization methods such as Bayesian regularization and reducing the weights of 

networks by data pre-processing, to enhance the generalization capability of ANN 

models. 

 Another limitation of the present study is that PLSR, PCR, ARIMA, TFN, 

ANN models and hybrid approaches proposed in this study are of local models that 

are limited to applications within the study areas. Only two subbasins of the Rio 

Grande and two hydrologic variables with seasonal and monthly time scales were 

investigated in detail. To obtain general conclusions about seasonal and monthly 

operational streamflow forecasting, the application of the methodologies in more 

streamflow processes in different river basins should be investigated.  
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SAS CODES FOR PLSR CALIBRATION 
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*STEP1-PLSR CALIBRATION; 
 
data dat ; 
input year x1 - x25 y ; 
n=_n_; 
cards; 
 
1981 8.4 14.8 16.6 20.6 3.3 7.3 2.2 2.5 0.8 3.7 1.0
 1.1 2.1 -2.0 -4.2 17.2 14.7 14.9 -6.4 22.1 -5.5 11.6 -6.1
 11.5 -0.4 292.6 
1982 22.3 21.6 33.5 45.6 3.7 22.7 4.0 4.9 3.5 6.6 2.0
 6.2 1.8 -0.6 -6.9 35.7 23.0 15.9 -8.5 13.8 -7.8 11.6
 -5.0 16.4 0.0 562.5 
1983 15.7 16.1 42.0 38.5 6.0 19.5 3.1 3.6 3.0 6.2 1.4
 4.7 0.8 -4.4 -9.9 53.8 24.5 8.9 -8.5 23.6 -7.8 11.6
 -5.7 19.2 -2.7 559.8 
1984 16.3 17.6 37.4 31.6 5.9 24.9 3.4 3.5 2.6 5.7 1.5
 3.8 1.7 -5.3 -8.7 28.4 17.4 15.8 -9.7 14.2 -8.7 13.8
 -6.3 18.0 0.0 659.3 
1985 27.2 29.5 48.2 48.3 8.1 23.1 4.8 5.1 3.1 8.0 1.6
 5.4 -3.5 -5.7 4.3 41.2 31.6 17.4 26.7 17.1 -8.0 13.5
 -5.3 20.0 -0.3 873.8 
1986 17.6 25.3 32.4 40.5 7.4 21.0 4.6 5.5 3.0 7.4 2.3
 4.6 0.7 -5.7 -8.0 48.0 30.4 20.8 -5.3 18.8 -6.7 16.8
 -3.0 28.3 -0.3 830.9 
1987 15.0 28.6 34.5 37.9 12.8 21.3 3.9 5.6 3.6 6.0 3.4
 6.7 -0.2 -5.0 -9.0 49.3 39.1 23.0 -9.7 17.7 -7.5 17.0
 -6.8 25.6 -0.9 892.5 
1988 10.6 12.3 21.8 23.6 2.7 16.1 2.0 3.2 2.9 4.8 1.6
 4.3 3.0 -5.5 -9.5 23.4 19.7 15.9 -10.8 13.9 -7.3 13.8
 -6.2 20.0 -0.5 326.4 
1989 21.7 18.1 37.4 37.9 8.2 25.5 3.3 4.2 2.3 4.8 1.5
 4.3 3.7 -3.3 -8.2 23.1 16.6 14.2 -9.8 12.7 -6.8 13.3
 -0.5 29.2 1.5 385.2 
1990 10.2 13.0 16.6 19.0 3.3 11.4 1.6 2.3 2.2 3.7 1.0
 4.1 1.0 -3.8 -8.3 22.6 12.7 8.2 -9.8 7.5 -9.5 10.4
 -4.0 15.6 -0.2 413.4 
1991 19.0 19.8 32.6 37.1 5.1 23.8 3.8 3.4 3.0 5.5 1.4
 4.8 1.5 -2.0 -9.2 42.5 25.9 15.9 -9.2 13.8 -5.0 12.1
 -6.2 16.0 -0.4 511.3 
1992 15.0 18.5 35.2 27.8 7.8 13.9 3.0 3.7 2.6 5.4 1.7
 5.1 2.2 -6.0 -8.8 19.6 18.7 13.1 -9.7 10.9 -7.3 10.5
 -4.2 17.0 -1.5 411.3 
1993 26.6 24.2 46.2 41.6 7.6 30.3 3.0 3.9 3.4 5.9 1.6
 4.9 2.2 -8.7 -10.2 19.3 15.3 12.6 -8.7 12.6 -8.8 11.1
 -4.5 18.1 -1.2 592.9 
1994 12.6 13.2 25.9 26.9 3.6 18.1 2.7 3.2 3.4 4.7 1.8
 4.5 -0.3 -7.5 -9.3 20.4 15.4 12.9 -9.2 11.0 -9.8 10.2
 -3.5 17.5 -0.6 411.3 
1995 22.8 23.1 44.2 42.6 4.5 30.5 4.4 4.9 3.9 6.7 2.6
 7.3 0.2 -7.0 -7.8 30.5 22.2 18.1 -9.3 13.2 -4.5 13.3
 -4.2 24.9 -1.3 714.6 
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1996 9.8 12.2 18.7 20.2 0.6 18.8 1.6 1.9 2.0 2.6 0.6
 2.1 1.8 -2.7 -7.3 22.3 16.9 12.9 -9.2 11.0 -5.7 13.5
 -5.5 15.1 -0.4 267.6 
1997 19.2 25.1 41.7 36.1 6.9 25.5 4.1 5.9 5.1 7.4 3.7
 7.7 0.7 -4.8 -9.5 22.4 19.7 15.3 -8.8 10.8 -8.5 10.7
 -2.7 28.4 0.3 753.2 
1998 11.0 18.0 25.8 32.1 6.2 17.7 3.2 4.6 3.0 5.6 1.8
 5.8 0.8 -5.2 -9.7 75.2 32.1 21.4 -8.5 15.6 -9.2 14.7
 -5.7 24.4 -1.5 462.1 
1999 7.9 18.1 21.1 26.2 0.8 18.2 4.0 4.8 4.2 6.7 3.1
 7.3 1.0 -4.2 -8.2 29.9 27.2 19.9 -7.7 14.4 -6.3 13.5
 -2.0 23.9 1.2 809.0 
2000 8.0 13.0 17.8 17.5 5.2 17.5 1.5 1.6 1.2 1.7 0.3
 1.8 3.0 -1.2 -8.7 33.3 20.2 16.0 -7.5 12.1 -6.2 11.6
 -4.8 17.4 1.2 297.5 
2001 14.1 24.6 32.6 31.4 9.0 18.4 3.7 5.2 3.5 5.9 3.1
 6.0 1.2 -8.8 -8.0 20.3 16.8 13.4 -10.0 11.0 -7.8 10.8
 -5.0 19.9 1.2 633.8 
2002 4.0 5.8 9.5 10.0 0.0 8.4 1.6 1.3 2.2 2.8 0.6
 2.4 2.5 -3.3 -9.7 15.9 16.5 13.7 -8.7 12.3 -8.5 10.6
 -6.0 16.0 -0.3 97.3 
2003 8.5 13.5 25.9 21.6 0.0 15.4 2.2 3.1 3.1 5.2 0.9
 5.1 0.2 -5.2 -9.8 13.1 9.6 8.7 -5.8 9.0 -8.7 7.5
 -5.0 11.1 -0.9 234.6 
2004 11.4 18.6 27.5 30.8 0.2 18.1 3.2 3.8 2.9 5.0 1.5
 4.0 4.3 -5.7 -8.0 13.7 14.7 12.2 -9.3 11.4 -9.3 10.3
 -1.8 26.9 0.1 416.7 
2005 21.2 25.4 53.2 48.3 8.8 28.0 4.0 5.6 4.2 7.8 3.1
 8.2 1.2 -3.8 -7.2 28.8 19.1 15.4 -6.0 16.4 -6.4 13.5
 -4.8 18.7 -0.8 666.2 
2006 11.1 15.1 17.5 20.8 4.5 17.6 2.5 3.1 2.6 3.7 1.7
 4.5 3.7 -1.5 -6.3 44.1 16.1 11.9 -6.8 10.6 -5.8 9.3
 -3.7 13.0 0.2 411.6 
2007 9.8 16.3 18.8 28.7 3.8 12.7 3.7 4.6 4.4 6.5 2.3
 6.8 2.2 -1.5 -6.3 89.1 23.1 13.5 -8.0 12.5 -4.8 10.7
 -1.3 30.5 -0.7 593.2 
; 
data dat1;  
set dat;  
if (n <= 22);  
run; 
 
data dat2;  
set dat;  
if (n > 22);  
run; 
 
 
*********************************************************/ 
/ Set Parameters for Macros / 
/*********************************************************/; 
%global xvars yvars predname resname xscrname yscrname 
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num_x num_y lv; 
%let xvars= X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X17 X18 X22 
X24; 
 
%let yvars=y; 
%let ypred=yhat1; 
%let yres=yres1; 
%let predname=yhat; 
%let resname=res; 
%let xscrname=xscr; 
%let yscrname=yscr; 
%let num_y=1; 
%let num_x=25; 
 
 
*/*********************************************************/ 
/ Fit the PLS model / 
/*********************************************************/; 
 
proc pls data=dat1 method=pls cv=one cvtest(stat=press) outmodel=est1; 
model &yvars = &xvars/solution; 
output out=outpls p=yhat1 yresidual=yres1 
xresidual=xres1-xres55 xscore=xscr yscore=yscr 
stdy=stdy stdx=stdx h=h press=press t2=t2 
xqres=xqres yqres=yqres; 
run; 
%let lv=1; *** Used 1 PLS components ***; 
 
%plot_scr(outpls); 
 
%plotxscr(outpls,max_lv=2); 
 
%get_wts(est1,dsxwts=xwts); 
 
/*********************************************************/ 
*/  Plot the X-weights vs. the frequency on the same axes /* 
/*********************************************************/; 
%pltwtfrq(xwts,plotyvar=w,plotxvar=n,max_lv=&lv,label=Weight); 
 
 
%plot_wt(xwts,max_lv=2); 
 
%getxload(est1,dsxload=xloads); 
 
/*********************************************************/ 
*/ Plot the X-loadings for each component vs. frequency / 
/*********************************************************/; 
%pltwtfrq(xloads,plotyvar=p,plotxvar=n,max_lv=&lv, 
label=Loading); 
 
%pltxload(xloads,max_lv=2); 
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%get_bpls(est1,dsout=bpls); 
 
%plt_bpls(bpls); 
 
 
/*********************************************************/ 
*/ Get VIP and plot it across frequencies / 
/*********************************************************/; 
%get_vip(est1,dsvip=vip_data); 
%plot_vip(vip_data); 
 
 
%res_plot(outpls); 
 
%nor_plot(outpls); 
 
run; 
 
data eval; 
merge bpls vip_data; 
run; 
 
proc print data=eval; 
run; 
 
 
PROC DBLOAD DBMS=xls DATA=eval; 
PATH='C:\Documents and Settings\Administrator\Desktop\RESULT\ssssss.XLS'; 
PUTNAME=yes; 
LOAD; 
RUN; 
QUIT; 
 

* Notes: Macros used in the PLSR calibration are available through following links:  
 
25009 - Macros to plot statistics generated by PROC PLS 
http://support.sas.com/kb/25/009.html 
 
Examples Using the PLS Procedure 
http://support.sas.com/rnd/app/papers/plsex.pdf 
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* STEP2-PLSR JACKKINFE CROSS VALIDATION; 
 
data dat ; 
input year x1 - x25 y ; 
n=_n_; 
cards; 
 
1981 8.4 14.8 16.6 20.6 3.3 7.3 2.2 2.5 0.8 3.7 1.0
 1.1 2.1 -2.0 -4.2 17.2 14.7 14.9 -6.4 22.1 -5.5 11.6 -6.1
 11.5 -0.4 292.6 
1982 22.3 21.6 33.5 45.6 3.7 22.7 4.0 4.9 3.5 6.6 2.0
 6.2 1.8 -0.6 -6.9 35.7 23.0 15.9 -8.5 13.8 -7.8 11.6
 -5.0 16.4 0.0 562.5 
1983 15.7 16.1 42.0 38.5 6.0 19.5 3.1 3.6 3.0 6.2 1.4
 4.7 0.8 -4.4 -9.9 53.8 24.5 8.9 -8.5 23.6 -7.8 11.6
 -5.7 19.2 -2.7 559.8 
1984 16.3 17.6 37.4 31.6 5.9 24.9 3.4 3.5 2.6 5.7 1.5
 3.8 1.7 -5.3 -8.7 28.4 17.4 15.8 -9.7 14.2 -8.7 13.8
 -6.3 18.0 0.0 659.3 
1985 27.2 29.5 48.2 48.3 8.1 23.1 4.8 5.1 3.1 8.0 1.6
 5.4 -3.5 -5.7 4.3 41.2 31.6 17.4 26.7 17.1 -8.0 13.5
 -5.3 20.0 -0.3 873.8 
1986 17.6 25.3 32.4 40.5 7.4 21.0 4.6 5.5 3.0 7.4 2.3
 4.6 0.7 -5.7 -8.0 48.0 30.4 20.8 -5.3 18.8 -6.7 16.8
 -3.0 28.3 -0.3 830.9 
1987 15.0 28.6 34.5 37.9 12.8 21.3 3.9 5.6 3.6 6.0 3.4
 6.7 -0.2 -5.0 -9.0 49.3 39.1 23.0 -9.7 17.7 -7.5 17.0
 -6.8 25.6 -0.9 892.5 
1988 10.6 12.3 21.8 23.6 2.7 16.1 2.0 3.2 2.9 4.8 1.6
 4.3 3.0 -5.5 -9.5 23.4 19.7 15.9 -10.8 13.9 -7.3 13.8
 -6.2 20.0 -0.5 326.4 
1989 21.7 18.1 37.4 37.9 8.2 25.5 3.3 4.2 2.3 4.8 1.5
 4.3 3.7 -3.3 -8.2 23.1 16.6 14.2 -9.8 12.7 -6.8 13.3
 -0.5 29.2 1.5 385.2 
1990 10.2 13.0 16.6 19.0 3.3 11.4 1.6 2.3 2.2 3.7 1.0
 4.1 1.0 -3.8 -8.3 22.6 12.7 8.2 -9.8 7.5 -9.5 10.4
 -4.0 15.6 -0.2 413.4 
1991 19.0 19.8 32.6 37.1 5.1 23.8 3.8 3.4 3.0 5.5 1.4
 4.8 1.5 -2.0 -9.2 42.5 25.9 15.9 -9.2 13.8 -5.0 12.1
 -6.2 16.0 -0.4 511.3 
1992 15.0 18.5 35.2 27.8 7.8 13.9 3.0 3.7 2.6 5.4 1.7
 5.1 2.2 -6.0 -8.8 19.6 18.7 13.1 -9.7 10.9 -7.3 10.5
 -4.2 17.0 -1.5 411.3 
1993 26.6 24.2 46.2 41.6 7.6 30.3 3.0 3.9 3.4 5.9 1.6
 4.9 2.2 -8.7 -10.2 19.3 15.3 12.6 -8.7 12.6 -8.8 11.1
 -4.5 18.1 -1.2 592.9 
1994 12.6 13.2 25.9 26.9 3.6 18.1 2.7 3.2 3.4 4.7 1.8
 4.5 -0.3 -7.5 -9.3 20.4 15.4 12.9 -9.2 11.0 -9.8 10.2
 -3.5 17.5 -0.6 411.3 
1995 22.8 23.1 44.2 42.6 4.5 30.5 4.4 4.9 3.9 6.7 2.6
 7.3 0.2 -7.0 -7.8 30.5 22.2 18.1 -9.3 13.2 -4.5 13.3
 -4.2 24.9 -1.3 714.6 
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1996 9.8 12.2 18.7 20.2 0.6 18.8 1.6 1.9 2.0 2.6 0.6
 2.1 1.8 -2.7 -7.3 22.3 16.9 12.9 -9.2 11.0 -5.7 13.5
 -5.5 15.1 -0.4 267.6 
1997 19.2 25.1 41.7 36.1 6.9 25.5 4.1 5.9 5.1 7.4 3.7
 7.7 0.7 -4.8 -9.5 22.4 19.7 15.3 -8.8 10.8 -8.5 10.7
 -2.7 28.4 0.3 753.2 
1998 11.0 18.0 25.8 32.1 6.2 17.7 3.2 4.6 3.0 5.6 1.8
 5.8 0.8 -5.2 -9.7 75.2 32.1 21.4 -8.5 15.6 -9.2 14.7
 -5.7 24.4 -1.5 462.1 
1999 7.9 18.1 21.1 26.2 0.8 18.2 4.0 4.8 4.2 6.7 3.1
 7.3 1.0 -4.2 -8.2 29.9 27.2 19.9 -7.7 14.4 -6.3 13.5
 -2.0 23.9 1.2 809.0 
2000 8.0 13.0 17.8 17.5 5.2 17.5 1.5 1.6 1.2 1.7 0.3
 1.8 3.0 -1.2 -8.7 33.3 20.2 16.0 -7.5 12.1 -6.2 11.6
 -4.8 17.4 1.2 297.5 
2001 14.1 24.6 32.6 31.4 9.0 18.4 3.7 5.2 3.5 5.9 3.1
 6.0 1.2 -8.8 -8.0 20.3 16.8 13.4 -10.0 11.0 -7.8 10.8
 -5.0 19.9 1.2 633.8 
2002 4.0 5.8 9.5 10.0 0.0 8.4 1.6 1.3 2.2 2.8 0.6
 2.4 2.5 -3.3 -9.7 15.9 16.5 13.7 -8.7 12.3 -8.5 10.6
 -6.0 16.0 -0.3 97.3 
2003 8.5 13.5 25.9 21.6 0.0 15.4 2.2 3.1 3.1 5.2 0.9
 5.1 0.2 -5.2 -9.8 13.1 9.6 8.7 -5.8 9.0 -8.7 7.5
 -5.0 11.1 -0.9 234.6 
2004 11.4 18.6 27.5 30.8 0.2 18.1 3.2 3.8 2.9 5.0 1.5
 4.0 4.3 -5.7 -8.0 13.7 14.7 12.2 -9.3 11.4 -9.3 10.3
 -1.8 26.9 0.1 416.7 
2005 21.2 25.4 53.2 48.3 8.8 28.0 4.0 5.6 4.2 7.8 3.1
 8.2 1.2 -3.8 -7.2 28.8 19.1 15.4 -6.0 16.4 -6.4 13.5
 -4.8 18.7 -0.8 666.2 
2006 11.1 15.1 17.5 20.8 4.5 17.6 2.5 3.1 2.6 3.7 1.7
 4.5 3.7 -1.5 -6.3 44.1 16.1 11.9 -6.8 10.6 -5.8 9.3
 -3.7 13.0 0.2 411.6 
2007 9.8 16.3 18.8 28.7 3.8 12.7 3.7 4.6 4.4 6.5 2.3
 6.8 2.2 -1.5 -6.3 89.1 23.1 13.5 -8.0 12.5 -4.8 10.7
 -1.3 30.5 -0.7 593.2 
; 
options ls =75 formdlim = '_'; 
 
data dat1;  
set dat;  
if (n <= 22);  
run; 
 
*  start macro ; 
 
data all; 
pred = .; 
 
%macro rena(nn); 
 
%do i = 1 %to &nn; 
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data dat2; 
set dat1; 
if _n_ = &i  then y = .; 
 
proc pls data = dat2 nfac=1 method=pls; 
model y = X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
 X13 X17 X18  X22 X24 /; 
output out = out2  p = pred ; 
 
data out2 ; 
set out2(keep = pred) ; 
if _n_ = &i ; 
 
data all; 
set all out2 ; 
 
%end; 
; 
dm 'clear log;'; 
dm 'clear output;'; 
 
%mend ; 
 
*  end of macro ; 
 
* call the macro once for each observation ; 
 
options mprint mlogic; 
%rena( 22); 
 
data all; 
set all; 
if _n_ > 1 ; 
 
* join the Y vector with the pred vector ; 
 
data all_y ; 
set dat1( keep = y ) ; 
 
data allpred ; 
merge all_y all ; 
 
*  print the actual y vector and 
jackknife prediction vector ; 
 
proc print data = allpred ; 
run; 
 
*Export the final jackknife prediction to Excel; 
 
PROC DBLOAD DBMS=xls DATA=ALLPRED; 
PATH='C:\Documents and Settings\Administrator\Desktop\RESULT\pred.XLS'; 
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PUTNAME=yes; 
LOAD; 
RUN; 
QUIT; 
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* STEP3-1-PLSR PREDICTION FOR NEW DATA; 
 
data dat ; 
input yr x1 - x25 y ; 
n=_n_; 
cards; 
 
1981 8.4 14.8 16.6 20.6 3.3 7.3 2.2 2.5 0.8 3.7 1.0
 1.1 2.1 -2.0 -4.2 17.2 14.7 14.9 -6.4 22.1 -5.5 11.6 -6.1
 11.5 -0.4 292.6 
1982 22.3 21.6 33.5 45.6 3.7 22.7 4.0 4.9 3.5 6.6 2.0
 6.2 1.8 -0.6 -6.9 35.7 23.0 15.9 -8.5 13.8 -7.8 11.6
 -5.0 16.4 0.0 562.5 
1983 15.7 16.1 42.0 38.5 6.0 19.5 3.1 3.6 3.0 6.2 1.4
 4.7 0.8 -4.4 -9.9 53.8 24.5 8.9 -8.5 23.6 -7.8 11.6
 -5.7 19.2 -2.7 559.8 
1984 16.3 17.6 37.4 31.6 5.9 24.9 3.4 3.5 2.6 5.7 1.5
 3.8 1.7 -5.3 -8.7 28.4 17.4 15.8 -9.7 14.2 -8.7 13.8
 -6.3 18.0 0.0 659.3 
1985 27.2 29.5 48.2 48.3 8.1 23.1 4.8 5.1 3.1 8.0 1.6
 5.4 -3.5 -5.7 4.3 41.2 31.6 17.4 26.7 17.1 -8.0 13.5
 -5.3 20.0 -0.3 873.8 
1986 17.6 25.3 32.4 40.5 7.4 21.0 4.6 5.5 3.0 7.4 2.3
 4.6 0.7 -5.7 -8.0 48.0 30.4 20.8 -5.3 18.8 -6.7 16.8
 -3.0 28.3 -0.3 830.9 
1987 15.0 28.6 34.5 37.9 12.8 21.3 3.9 5.6 3.6 6.0 3.4
 6.7 -0.2 -5.0 -9.0 49.3 39.1 23.0 -9.7 17.7 -7.5 17.0
 -6.8 25.6 -0.9 892.5 
1988 10.6 12.3 21.8 23.6 2.7 16.1 2.0 3.2 2.9 4.8 1.6
 4.3 3.0 -5.5 -9.5 23.4 19.7 15.9 -10.8 13.9 -7.3 13.8
 -6.2 20.0 -0.5 326.4 
1989 21.7 18.1 37.4 37.9 8.2 25.5 3.3 4.2 2.3 4.8 1.5
 4.3 3.7 -3.3 -8.2 23.1 16.6 14.2 -9.8 12.7 -6.8 13.3
 -0.5 29.2 1.5 385.2 
1990 10.2 13.0 16.6 19.0 3.3 11.4 1.6 2.3 2.2 3.7 1.0
 4.1 1.0 -3.8 -8.3 22.6 12.7 8.2 -9.8 7.5 -9.5 10.4
 -4.0 15.6 -0.2 413.4 
1991 19.0 19.8 32.6 37.1 5.1 23.8 3.8 3.4 3.0 5.5 1.4
 4.8 1.5 -2.0 -9.2 42.5 25.9 15.9 -9.2 13.8 -5.0 12.1
 -6.2 16.0 -0.4 511.3 
1992 15.0 18.5 35.2 27.8 7.8 13.9 3.0 3.7 2.6 5.4 1.7
 5.1 2.2 -6.0 -8.8 19.6 18.7 13.1 -9.7 10.9 -7.3 10.5
 -4.2 17.0 -1.5 411.3 
1993 26.6 24.2 46.2 41.6 7.6 30.3 3.0 3.9 3.4 5.9 1.6
 4.9 2.2 -8.7 -10.2 19.3 15.3 12.6 -8.7 12.6 -8.8 11.1
 -4.5 18.1 -1.2 592.9 
1994 12.6 13.2 25.9 26.9 3.6 18.1 2.7 3.2 3.4 4.7 1.8
 4.5 -0.3 -7.5 -9.3 20.4 15.4 12.9 -9.2 11.0 -9.8 10.2
 -3.5 17.5 -0.6 411.3 
1995 22.8 23.1 44.2 42.6 4.5 30.5 4.4 4.9 3.9 6.7 2.6
 7.3 0.2 -7.0 -7.8 30.5 22.2 18.1 -9.3 13.2 -4.5 13.3
 -4.2 24.9 -1.3 714.6 
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1996 9.8 12.2 18.7 20.2 0.6 18.8 1.6 1.9 2.0 2.6 0.6
 2.1 1.8 -2.7 -7.3 22.3 16.9 12.9 -9.2 11.0 -5.7 13.5
 -5.5 15.1 -0.4 267.6 
1997 19.2 25.1 41.7 36.1 6.9 25.5 4.1 5.9 5.1 7.4 3.7
 7.7 0.7 -4.8 -9.5 22.4 19.7 15.3 -8.8 10.8 -8.5 10.7
 -2.7 28.4 0.3 753.2 
1998 11.0 18.0 25.8 32.1 6.2 17.7 3.2 4.6 3.0 5.6 1.8
 5.8 0.8 -5.2 -9.7 75.2 32.1 21.4 -8.5 15.6 -9.2 14.7
 -5.7 24.4 -1.5 462.1 
1999 7.9 18.1 21.1 26.2 0.8 18.2 4.0 4.8 4.2 6.7 3.1
 7.3 1.0 -4.2 -8.2 29.9 27.2 19.9 -7.7 14.4 -6.3 13.5
 -2.0 23.9 1.2 809.0 
2000 8.0 13.0 17.8 17.5 5.2 17.5 1.5 1.6 1.2 1.7 0.3
 1.8 3.0 -1.2 -8.7 33.3 20.2 16.0 -7.5 12.1 -6.2 11.6
 -4.8 17.4 1.2 297.5 
2001 14.1 24.6 32.6 31.4 9.0 18.4 3.7 5.2 3.5 5.9 3.1
 6.0 1.2 -8.8 -8.0 20.3 16.8 13.4 -10.0 11.0 -7.8 10.8
 -5.0 19.9 1.2 633.8 
2002 4.0 5.8 9.5 10.0 0.0 8.4 1.6 1.3 2.2 2.8 0.6
 2.4 2.5 -3.3 -9.7 15.9 16.5 13.7 -8.7 12.3 -8.5 10.6
 -6.0 16.0 -0.3 97.3 
2003 8.5 13.5 25.9 21.6 0.0 15.4 2.2 3.1 3.1 5.2 0.9
 5.1 0.2 -5.2 -9.8 13.1 9.6 8.7 -5.8 9.0 -8.7 7.5
 -5.0 11.1 -0.9 234.6 
2004 11.4 18.6 27.5 30.8 0.2 18.1 3.2 3.8 2.9 5.0 1.5
 4.0 4.3 -5.7 -8.0 13.7 14.7 12.2 -9.3 11.4 -9.3 10.3
 -1.8 26.9 0.1 416.7 
2005 21.2 25.4 53.2 48.3 8.8 28.0 4.0 5.6 4.2 7.8 3.1
 8.2 1.2 -3.8 -7.2 28.8 19.1 15.4 -6.0 16.4 -6.4 13.5
 -4.8 18.7 -0.8 666.2 
2006 11.1 15.1 17.5 20.8 4.5 17.6 2.5 3.1 2.6 3.7 1.7
 4.5 3.7 -1.5 -6.3 44.1 16.1 11.9 -6.8 10.6 -5.8 9.3
 -3.7 13.0 0.2 411.6 
2007 9.8 16.3 18.8 28.7 3.8 12.7 3.7 4.6 4.4 6.5 2.3
 6.8 2.2 -1.5 -6.3 89.1 23.1 13.5 -8.0 12.5 -4.8 10.7
 -1.3 30.5 -0.7 593.2 
; 
 
data dat1;  
set dat;  
if (n <= 22);  
run; 
 
data dat2;  
set dat; 
if (n > 22) ; 
if n > 22 then y = .; 
run; 
 
data all; 
set dat1 dat2; 
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proc pls data=all nfac=1 details method=PLS; 
model y=X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
 X13 X17 X18 X22 X24/solution; 
output out = salam  
         press= ssum 
          predicted=yhat 
    yresidual=yres; 
    run; 
 
proc print data=salam; 
where n>22; 
var y yhat yres ssum; 
RUN; 
 
PROC DBLOAD DBMS=xls DATA=salam; 
PATH='C:\Documents and Settings\Administrator\Desktop\RESULT\PRED.XLS'; 
PUTNAME=yes; 
LOAD; 
RUN; 
QUIT; 
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* STEP3-2-PLSR ROLLING-FORWARD PREDICTION FOR NEW DATA; 
 
data dat ; 
input yr x1 - x25 y ; 
n=_n_; 
cards; 
 
1981 8.4 14.8 16.6 20.6 3.3 7.3 2.2 2.5 0.8 3.7 1.0
 1.1 2.1 -2.0 -4.2 17.2 14.7 14.9 -6.4 22.1 -5.5 11.6 -6.1
 11.5 -0.4 292.6 
1982 22.3 21.6 33.5 45.6 3.7 22.7 4.0 4.9 3.5 6.6 2.0
 6.2 1.8 -0.6 -6.9 35.7 23.0 15.9 -8.5 13.8 -7.8 11.6
 -5.0 16.4 0.0 562.5 
1983 15.7 16.1 42.0 38.5 6.0 19.5 3.1 3.6 3.0 6.2 1.4
 4.7 0.8 -4.4 -9.9 53.8 24.5 8.9 -8.5 23.6 -7.8 11.6
 -5.7 19.2 -2.7 559.8 
1984 16.3 17.6 37.4 31.6 5.9 24.9 3.4 3.5 2.6 5.7 1.5
 3.8 1.7 -5.3 -8.7 28.4 17.4 15.8 -9.7 14.2 -8.7 13.8
 -6.3 18.0 0.0 659.3 
1985 27.2 29.5 48.2 48.3 8.1 23.1 4.8 5.1 3.1 8.0 1.6
 5.4 -3.5 -5.7 4.3 41.2 31.6 17.4 26.7 17.1 -8.0 13.5
 -5.3 20.0 -0.3 873.8 
1986 17.6 25.3 32.4 40.5 7.4 21.0 4.6 5.5 3.0 7.4 2.3
 4.6 0.7 -5.7 -8.0 48.0 30.4 20.8 -5.3 18.8 -6.7 16.8
 -3.0 28.3 -0.3 830.9 
1987 15.0 28.6 34.5 37.9 12.8 21.3 3.9 5.6 3.6 6.0 3.4
 6.7 -0.2 -5.0 -9.0 49.3 39.1 23.0 -9.7 17.7 -7.5 17.0
 -6.8 25.6 -0.9 892.5 
1988 10.6 12.3 21.8 23.6 2.7 16.1 2.0 3.2 2.9 4.8 1.6
 4.3 3.0 -5.5 -9.5 23.4 19.7 15.9 -10.8 13.9 -7.3 13.8
 -6.2 20.0 -0.5 326.4 
1989 21.7 18.1 37.4 37.9 8.2 25.5 3.3 4.2 2.3 4.8 1.5
 4.3 3.7 -3.3 -8.2 23.1 16.6 14.2 -9.8 12.7 -6.8 13.3
 -0.5 29.2 1.5 385.2 
1990 10.2 13.0 16.6 19.0 3.3 11.4 1.6 2.3 2.2 3.7 1.0
 4.1 1.0 -3.8 -8.3 22.6 12.7 8.2 -9.8 7.5 -9.5 10.4
 -4.0 15.6 -0.2 413.4 
1991 19.0 19.8 32.6 37.1 5.1 23.8 3.8 3.4 3.0 5.5 1.4
 4.8 1.5 -2.0 -9.2 42.5 25.9 15.9 -9.2 13.8 -5.0 12.1
 -6.2 16.0 -0.4 511.3 
1992 15.0 18.5 35.2 27.8 7.8 13.9 3.0 3.7 2.6 5.4 1.7
 5.1 2.2 -6.0 -8.8 19.6 18.7 13.1 -9.7 10.9 -7.3 10.5
 -4.2 17.0 -1.5 411.3 
1993 26.6 24.2 46.2 41.6 7.6 30.3 3.0 3.9 3.4 5.9 1.6
 4.9 2.2 -8.7 -10.2 19.3 15.3 12.6 -8.7 12.6 -8.8 11.1
 -4.5 18.1 -1.2 592.9 
1994 12.6 13.2 25.9 26.9 3.6 18.1 2.7 3.2 3.4 4.7 1.8
 4.5 -0.3 -7.5 -9.3 20.4 15.4 12.9 -9.2 11.0 -9.8 10.2
 -3.5 17.5 -0.6 411.3 
1995 22.8 23.1 44.2 42.6 4.5 30.5 4.4 4.9 3.9 6.7 2.6
 7.3 0.2 -7.0 -7.8 30.5 22.2 18.1 -9.3 13.2 -4.5 13.3
 -4.2 24.9 -1.3 714.6 



 
 

271

1996 9.8 12.2 18.7 20.2 0.6 18.8 1.6 1.9 2.0 2.6 0.6
 2.1 1.8 -2.7 -7.3 22.3 16.9 12.9 -9.2 11.0 -5.7 13.5
 -5.5 15.1 -0.4 267.6 
1997 19.2 25.1 41.7 36.1 6.9 25.5 4.1 5.9 5.1 7.4 3.7
 7.7 0.7 -4.8 -9.5 22.4 19.7 15.3 -8.8 10.8 -8.5 10.7
 -2.7 28.4 0.3 753.2 
1998 11.0 18.0 25.8 32.1 6.2 17.7 3.2 4.6 3.0 5.6 1.8
 5.8 0.8 -5.2 -9.7 75.2 32.1 21.4 -8.5 15.6 -9.2 14.7
 -5.7 24.4 -1.5 462.1 
1999 7.9 18.1 21.1 26.2 0.8 18.2 4.0 4.8 4.2 6.7 3.1
 7.3 1.0 -4.2 -8.2 29.9 27.2 19.9 -7.7 14.4 -6.3 13.5
 -2.0 23.9 1.2 809.0 
2000 8.0 13.0 17.8 17.5 5.2 17.5 1.5 1.6 1.2 1.7 0.3
 1.8 3.0 -1.2 -8.7 33.3 20.2 16.0 -7.5 12.1 -6.2 11.6
 -4.8 17.4 1.2 297.5 
2001 14.1 24.6 32.6 31.4 9.0 18.4 3.7 5.2 3.5 5.9 3.1
 6.0 1.2 -8.8 -8.0 20.3 16.8 13.4 -10.0 11.0 -7.8 10.8
 -5.0 19.9 1.2 633.8 
2002 4.0 5.8 9.5 10.0 0.0 8.4 1.6 1.3 2.2 2.8 0.6
 2.4 2.5 -3.3 -9.7 15.9 16.5 13.7 -8.7 12.3 -8.5 10.6
 -6.0 16.0 -0.3 97.3 
2003 8.5 13.5 25.9 21.6 0.0 15.4 2.2 3.1 3.1 5.2 0.9
 5.1 0.2 -5.2 -9.8 13.1 9.6 8.7 -5.8 9.0 -8.7 7.5
 -5.0 11.1 -0.9 234.6 
2004 11.4 18.6 27.5 30.8 0.2 18.1 3.2 3.8 2.9 5.0 1.5
 4.0 4.3 -5.7 -8.0 13.7 14.7 12.2 -9.3 11.4 -9.3 10.3
 -1.8 26.9 0.1 416.7 
2005 21.2 25.4 53.2 48.3 8.8 28.0 4.0 5.6 4.2 7.8 3.1
 8.2 1.2 -3.8 -7.2 28.8 19.1 15.4 -6.0 16.4 -6.4 13.5
 -4.8 18.7 -0.8 666.2 
2006 11.1 15.1 17.5 20.8 4.5 17.6 2.5 3.1 2.6 3.7 1.7
 4.5 3.7 -1.5 -6.3 44.1 16.1 11.9 -6.8 10.6 -5.8 9.3
 -3.7 13.0 0.2 411.6 
2007 9.8 16.3 18.8 28.7 3.8 12.7 3.7 4.6 4.4 6.5 2.3
 6.8 2.2 -1.5 -6.3 89.1 23.1 13.5 -8.0 12.5 -4.8 10.7
 -1.3 30.5 -0.7 593.2 
; 
 
data dat1;  
set dat;  
if (n <= 22);  
run; 
 
data dat2;  
set dat;  
if (n > 22);  
   run; 
 
data all; 
pred = .; 
 
*start macro; 
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%macro combine( n ); 
%do  i = 1 %to &n; 
data dat3; 
set dat2; 
if _n_<=&i ; 
if _n_ = &i  then y = .; 
 
proc print data=dat3; 
 
data dat4; 
set dat1 dat3; 
 
proc print data=dat4; 
 
 
proc pls data= dat4  nfac=1 details method=pls ; 
model y=X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
 X12 X13 X17 X18  X22 X24; 
output out = pred1   p=pred;  
  
 
data dat5; 
  set pred1(keep=pred); 
 if _n_= &i+22; 
 
  proc print data=dat5; 
  title1 ' print of forecasts and resuduals ' ; 
 
  data all; 
   set all dat5; 
proc print data=all; 
 
%end; 
dm 'clear log;'; 
dm 'clear output;'; 
 
%mend; 
*end of macro ; 
 
* call the macro n times ; 
 
options mprint mlogic; 
%combine(5); 
run; 
 
data all; 
set all; 
if _n_ > 1 ; 
 
proc print data=all; 
run; 
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data dat2 ; 
set dat2( keep = y ) ; 
 
proc print data=dat2; 
run; 
 
data allpred ; 
merge dat2 all ; 
 
*  print the actual y vector and 
jack knife prediction vector ; 
 
proc print data = allpred ; 
run; 
 
PROC DBLOAD DBMS=xls DATA=ALLPRED; 
PATH='C:\Documents and Settings\Administrator\Desktop\RESULT\ROLLPRED.XLS'; 
PUTNAME=yes; 
LOAD; 
RUN; 
QUIT; 
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SAS CODES FOR STEPWISE VARIABLE                               

SELECTION ON PRINCIPAL COMPONENTS 
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* PRINCIPCAL COMPONENTS STEPWISE VARIABLE SELECTION; 
 
data dat ; 
input year x1 - x25 y ; 
n=_n_; 
cards; 
 
1981 8.4 14.8 16.6 20.6 3.3 7.3 2.2 2.5 0.8 3.7 1.0
 1.1 2.1 -2.0 -4.2 17.2 14.7 14.9 -6.4 22.1 -5.5 11.6 -6.1
 11.5 -0.4 292.6 
1982 22.3 21.6 33.5 45.6 3.7 22.7 4.0 4.9 3.5 6.6 2.0
 6.2 1.8 -0.6 -6.9 35.7 23.0 15.9 -8.5 13.8 -7.8 11.6
 -5.0 16.4 0.0 562.5 
1983 15.7 16.1 42.0 38.5 6.0 19.5 3.1 3.6 3.0 6.2 1.4
 4.7 0.8 -4.4 -9.9 53.8 24.5 8.9 -8.5 23.6 -7.8 11.6
 -5.7 19.2 -2.7 559.8 
1984 16.3 17.6 37.4 31.6 5.9 24.9 3.4 3.5 2.6 5.7 1.5
 3.8 1.7 -5.3 -8.7 28.4 17.4 15.8 -9.7 14.2 -8.7 13.8
 -6.3 18.0 0.0 659.3 
1985 27.2 29.5 48.2 48.3 8.1 23.1 4.8 5.1 3.1 8.0 1.6
 5.4 -3.5 -5.7 4.3 41.2 31.6 17.4 26.7 17.1 -8.0 13.5
 -5.3 20.0 -0.3 873.8 
1986 17.6 25.3 32.4 40.5 7.4 21.0 4.6 5.5 3.0 7.4 2.3
 4.6 0.7 -5.7 -8.0 48.0 30.4 20.8 -5.3 18.8 -6.7 16.8
 -3.0 28.3 -0.3 830.9 
1987 15.0 28.6 34.5 37.9 12.8 21.3 3.9 5.6 3.6 6.0 3.4
 6.7 -0.2 -5.0 -9.0 49.3 39.1 23.0 -9.7 17.7 -7.5 17.0
 -6.8 25.6 -0.9 892.5 
1988 10.6 12.3 21.8 23.6 2.7 16.1 2.0 3.2 2.9 4.8 1.6
 4.3 3.0 -5.5 -9.5 23.4 19.7 15.9 -10.8 13.9 -7.3 13.8
 -6.2 20.0 -0.5 326.4 
1989 21.7 18.1 37.4 37.9 8.2 25.5 3.3 4.2 2.3 4.8 1.5
 4.3 3.7 -3.3 -8.2 23.1 16.6 14.2 -9.8 12.7 -6.8 13.3
 -0.5 29.2 1.5 385.2 
1990 10.2 13.0 16.6 19.0 3.3 11.4 1.6 2.3 2.2 3.7 1.0
 4.1 1.0 -3.8 -8.3 22.6 12.7 8.2 -9.8 7.5 -9.5 10.4
 -4.0 15.6 -0.2 413.4 
1991 19.0 19.8 32.6 37.1 5.1 23.8 3.8 3.4 3.0 5.5 1.4
 4.8 1.5 -2.0 -9.2 42.5 25.9 15.9 -9.2 13.8 -5.0 12.1
 -6.2 16.0 -0.4 511.3 
1992 15.0 18.5 35.2 27.8 7.8 13.9 3.0 3.7 2.6 5.4 1.7
 5.1 2.2 -6.0 -8.8 19.6 18.7 13.1 -9.7 10.9 -7.3 10.5
 -4.2 17.0 -1.5 411.3 
1993 26.6 24.2 46.2 41.6 7.6 30.3 3.0 3.9 3.4 5.9 1.6
 4.9 2.2 -8.7 -10.2 19.3 15.3 12.6 -8.7 12.6 -8.8 11.1
 -4.5 18.1 -1.2 592.9 
1994 12.6 13.2 25.9 26.9 3.6 18.1 2.7 3.2 3.4 4.7 1.8
 4.5 -0.3 -7.5 -9.3 20.4 15.4 12.9 -9.2 11.0 -9.8 10.2
 -3.5 17.5 -0.6 411.3 
1995 22.8 23.1 44.2 42.6 4.5 30.5 4.4 4.9 3.9 6.7 2.6
 7.3 0.2 -7.0 -7.8 30.5 22.2 18.1 -9.3 13.2 -4.5 13.3
 -4.2 24.9 -1.3 714.6 
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1996 9.8 12.2 18.7 20.2 0.6 18.8 1.6 1.9 2.0 2.6 0.6
 2.1 1.8 -2.7 -7.3 22.3 16.9 12.9 -9.2 11.0 -5.7 13.5
 -5.5 15.1 -0.4 267.6 
1997 19.2 25.1 41.7 36.1 6.9 25.5 4.1 5.9 5.1 7.4 3.7
 7.7 0.7 -4.8 -9.5 22.4 19.7 15.3 -8.8 10.8 -8.5 10.7
 -2.7 28.4 0.3 753.2 
1998 11.0 18.0 25.8 32.1 6.2 17.7 3.2 4.6 3.0 5.6 1.8
 5.8 0.8 -5.2 -9.7 75.2 32.1 21.4 -8.5 15.6 -9.2 14.7
 -5.7 24.4 -1.5 462.1 
1999 7.9 18.1 21.1 26.2 0.8 18.2 4.0 4.8 4.2 6.7 3.1
 7.3 1.0 -4.2 -8.2 29.9 27.2 19.9 -7.7 14.4 -6.3 13.5
 -2.0 23.9 1.2 809.0 
2000 8.0 13.0 17.8 17.5 5.2 17.5 1.5 1.6 1.2 1.7 0.3
 1.8 3.0 -1.2 -8.7 33.3 20.2 16.0 -7.5 12.1 -6.2 11.6
 -4.8 17.4 1.2 297.5 
2001 14.1 24.6 32.6 31.4 9.0 18.4 3.7 5.2 3.5 5.9 3.1
 6.0 1.2 -8.8 -8.0 20.3 16.8 13.4 -10.0 11.0 -7.8 10.8
 -5.0 19.9 1.2 633.8 
2002 4.0 5.8 9.5 10.0 0.0 8.4 1.6 1.3 2.2 2.8 0.6
 2.4 2.5 -3.3 -9.7 15.9 16.5 13.7 -8.7 12.3 -8.5 10.6
 -6.0 16.0 -0.3 97.3 
2003 8.5 13.5 25.9 21.6 0.0 15.4 2.2 3.1 3.1 5.2 0.9
 5.1 0.2 -5.2 -9.8 13.1 9.6 8.7 -5.8 9.0 -8.7 7.5
 -5.0 11.1 -0.9 234.6 
2004 11.4 18.6 27.5 30.8 0.2 18.1 3.2 3.8 2.9 5.0 1.5
 4.0 4.3 -5.7 -8.0 13.7 14.7 12.2 -9.3 11.4 -9.3 10.3
 -1.8 26.9 0.1 416.7 
2005 21.2 25.4 53.2 48.3 8.8 28.0 4.0 5.6 4.2 7.8 3.1
 8.2 1.2 -3.8 -7.2 28.8 19.1 15.4 -6.0 16.4 -6.4 13.5
 -4.8 18.7 -0.8 666.2 
2006 11.1 15.1 17.5 20.8 4.5 17.6 2.5 3.1 2.6 3.7 1.7
 4.5 3.7 -1.5 -6.3 44.1 16.1 11.9 -6.8 10.6 -5.8 9.3
 -3.7 13.0 0.2 411.6 
2007 9.8 16.3 18.8 28.7 3.8 12.7 3.7 4.6 4.4 6.5 2.3
 6.8 2.2 -1.5 -6.3 89.1 23.1 13.5 -8.0 12.5 -4.8 10.7
 -1.3 30.5 -0.7 593.2 
; 
 
data dat1;  
set dat;  
if (n <= 22);  
run; 
 
proc princomp data=dat1 OUT=Result1  PREFIX=Z OUTSTAT = Result2; 
var X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
 X13  X17 X18 X22 X24; 
run; 
 
proc print data=result1; 
run; 
 
proc print data=result2; 
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run; 
 
/* Use a macro to build the list Z[i] of the first “num” Z’s; call the list “depends.” */ 
%MACRO ADINA (n); 
%LOCAL units; 
%DO units=1 %TO &n; 
Z&units 
%END; 
%MEND depends; 
 
*STEPWISE VARIABLE SELECTION AT 0.1 SIGNIFICANCE LEVEL; 
 
PROC REG DATA=Result1; 
MODEL y= %ADINA(5)/vif collinoint p r selection=stepwise slentry=0.1 slstay=0.1; 
output out = dat2   
predicted=yhat 
r= res; 
 
proc print data=dat2; 
run; 
 
* NORMALITY CHECK FOR RESIDUALS; 
 
proc univariate data=dat2 normal plot; 
var res; 
run; 
 
*EXPORT RESULTS TO EXCEL; 
 
PROC DBLOAD DBMS=xls DATA=DAT2; 
PATH='C:\Documents and Settings\Administrator\Desktop\RESULT\ssssss.XLS'; 
PUTNAME=yes; 
LOAD; 
RUN; 
QUIT; 
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