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Groundwater/Surface Water Connections

Sam Fernald, Director, New Mexico Water
Resources Research Institute

Sam Fernald was appointed director of the New Mexico Water Resources Research
Institute (NM WRRI) in July 2013 after having served as interim director since January
2011. As director, he will lead the institute in its mission to develop and disseminate
knowledge that will assist the state, region, and nation in solving water resources
problems. The NM WRRI, one of 54 water institutes in the nation, encourages
university faculty statewide to pursue critical areas of water resources research
while providing training opportunities for students, and transfers research findings
to the academic community, water managers and the general public. Professor
Fernald also is a faculty member in the Department of Animal and Range Sciences at
New Mexico State University.

Sam’s earned degrees include a 1987 B.A. in international relations from Stanford

University, an M.E.M. in 1993 in water and air resources from Duke University, and a Ph.D. in watershed science from
Colorado State University in 1997. His primary research interests include water quality hydrology; land use effects on
infiltration, runoff, sediment yield, and nonpoint source pollution; and effects of surface water/groundwater exchange
on water availability and water quality. Sam received a Fulbright Scholarship to Patagonian National University, Trelew,
Argentina in 2008, and another Fulbright Scholarship to the University of Concepcion, Concepcion, Chile in 2000.
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Figure 1. Introduction. Figure 2. Outline.
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WILLAMETTE RIVER; OREGON, USA

e

Figure 3. Willamette River in Oregon, USA.

STUDIED WATER QUALITY IN RIVER AND ALCOVES
AND SURFACE WATER GROUNDWATER EXCHANGE

Figure 5. Studied water quality in rivers and alcoves and
surface water groundwater exchange.

Figure 6.

Used dye to trace solute movement.
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COMPUTER MODEL SIMULATES DYE TRANSPORT

Transient storage zone
measured and simulated dye concentrations

Willamette River study section 1; July 2, 1998

Gravel well water measured: Km 271.5
Gravel well water measured: Km 271.4
Off-channel backwater measured: Km 271.1
Main channelbackwater measured: Km 270 .4
Km 271.5 transient storage zone simulated
Km 270.4 transient storage zone simulated

Rhodamine dye concentration (ppb)

Time from dye release (hr)

Figure 7. Computer model simulates dye transport.

GRAVEL BARS FILTER RIVER WATER
ALCOVE WATER IS COOL AND CLEAN FOR FISH

Figure 8. Gravel bars filter river water so the alcove water is cool
and clean for fish.
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DAMS THROUGHOUT WILLAMETTE RIVER BASIN
MAINTAIN STEADY LOW FLOW AND SURFACE
GROUND WATER EXCHANGE

Willametlte Basin
Land Use

NEW MEXICO WATERSHED MANAGEMENT: RESTORATION, UTILIZATION, AND PROTECTION
NOVEMBER NEW MEXICO WATER RESOURCES RESEARCH INSTITUTE 2001

Alexander “Sam™ Fernald was appointed assistant

professor of watershed management at NMSU earlier

this year. He received a B.A. in 1957 in international

relations from Stanford University, an MEM in water

and air resources from Duke University in 1993, and

a Ph.D. in watershed science from Colorado State

University in 1997. Sam was a Fuibright Scholar in

] Chile in 2000 where he tanght classes in gronndwarer!
Urban srfiace water interactions and condircted a study as
part of an inmegrated watershed assessment of the

Agricufturs! agriculinral Chilian River Basin. From [997-2000.
Sam held a National Research Council Postdoctoral

B rorested pasition with the US. Environmemal Protection
] Agency in Corvallis, Oregon. His major field of
Water interesi is water guality hydrology.
Misc

GROUNDWATER/SURFACE WATER INTERACTIONS

Figure 9. Dams throughout Willamette River basin maintain steady low flow and surface/
groundwater exchange.

RIBBONS OF GREEN

* lIrrigated river valleys are green
swaths across arid regions

* In northern New Mexico, traditiona
acequias are the main irrigation
systems

* Located in mountain runoff'fed

stream and river valleys

Figure 10. Ribbons of green in northern New Mexico.
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WISDOM OF THE ANCIENTS
IRRIGATION SEEPAGE EFFECTS

HYDROLOGIC BUDGET COMPONENTS

* Riparian vegetation
* Water quality protection
* Aquifer recharge

...but no data (before study)
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Figure 11. Wisdom of the ancients irrigation seepage Figure 12. Hydrological budget components.
effects.
Alcalde Acequia three year (2005-2007) averaged water balance.
Amount from canal
Component diversion (%) Range (%)
Surface water return flow  Turnouts 9i5 0to 14
Crop field tailwater 8.9 0to 19
Canal outflow 409 28 to 67
Ground water return flow  Ditch seepage 121 5to17
Deep percolation 212 9to32
Evapotranspiration 7.4 1to 15
Total 100.0

Figure 13. Alcalde Acequia three year (2005-2007) averaged

water balance.

Deep percolation

» Tracked the wetting front and
calculated deep percolation below
the root zone for different crops
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Figure 14. Water level response to deep percolation.
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Figure 15. Irrigation recharges groundwater.
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Figure 16. Potential effects of reduced groundwater recharge.
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Groundwater levels in selected groundwater basins along the Rio
Grande, showing precipitous declines downstream where pumping
exceeds recharge from surface water (USGS 2016; Ochoa et al. 2013).
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Figure 17. Groundwater levels in selected groundwater basins along the Rio Grande.
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Figure 18. Acequias linking culture and nature. Casual flow chart with human and natural linkages
through an acequia.
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USGS stream flow
data and projections

Return flow services

Water inputs for

Runoff and crop and forage

Crop price and costs

seepage productio of production Upland grazing
x / policies
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Feedback effects of
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and land use on
mutualism

Key

> Physical linkages (water,

Willingness to lands, dollars, etc.)
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to economics = = = P | etween naturalandsocial
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Figure 19. Conceptual diagram showing the major endogenous components within the acequia model and
the linkages between them.

Causal loop diagram of our Dynamic Hypothesis showing principle factors threatening
community mutualism (A “+” on the arrow connecting two variables indicates the
variable at the tail causes a change in the head variable in the same direction. A “-”
would indicate a change in the opposite direction. The “B” in center loop indicates itis a
balancing feedback loop, in which a change in one variable feeds back to stabilize the
InltlalChange) Mutualism needed to
sustain acequia

T +
/_Ep in acequia

e l‘.m"'y mutualism
mutualism
+
L8 pecns
Acequia activities
Acequia members and connect community
) resources interaction members
Family - 5
continuity
Participation in
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Externaljob  ~ _ —w»
activities =

Land and water
rights sold

Figure 20. Causal loop diagram of our dynamic hypothesis showing principle factors
threatening community mutualism.
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Physical parameter sensitivity tests in the acequia irrigation part of model.
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Figure 21. Physical parameter sensitivity tests in the acequia irrigation part of model.

Hydrological connectivity
between groundwater and surface water,
watershed and river valley

Hydro-social connectedness
between water users and water infrastructure,

community and water management

Figure 22. Conceptual diagram of the relationship between resilience and hydrologic
connectivity and hydro-social connectedness.
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Hydrology Conclusions:

1. Large flows are rapidly exchanged between river, irrigation
system, and fluvial aquifer.

2. Asignificant amount of water being diverted into the valley
returns back to the river after completing important production
and ecological tasks.

3. The irrigation systems collectively take spring and summer
runoff from the river and retransmit the flow to later in the year
through seepage and groundwater return flow.

4. Human water management drives surface water groundwater

interactions

Figure 23. Hydrology conclusions.

Thriving human hydrologic connections:

1. Humans interface with and reinforce hydrologic connections
2. Incorporating human impact is required to understand and

manage surface water groundwater exchange

Figure 24. Thriving human hydrologic connections.

THANKS !

Funding
USDA CSREES NRI

NM Agricultural Experiment Station
USDA Rio Grande Basin Initiative
Sandia National Laboratories

US Bureau of Reclamation

State of New Mexico

NSF B

Figure 25. Sponsors for the research.
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CHANGING WATER USE AND SEEPAGE

Future ditch lining, land use changes, and water transfers out of
local agriculture combine to make likely reduced seepage and
deep percolation from acequia irrigation systems with potential loss
of hydrological benefits.

Acequia-irrigated fields Previously irrigated crop land

Figure 27. Changing water use and seepage.

Acequia flow measurements — Las nueve acequias

Name of the Ditch

San JuanPueblo Inflow
Alcalde Ditch Inflow
Alcalde Ditch [Arroyo Chavez)
Alcalde Ditch (North of cleanout Amovo Chavez)
Alcalde Ditch (South of deanout, Arrovo Chavez)
Alcaide Ditch [Outfiow, Rosa Sanchez)
Canova Ditch Inflow
Canova Ditch Outflow
Bosgue Ditch Inflow.
10} Bosoue Ditch Outfiow (Point?
11) Bosque Ditch to the river (Paint 3)
12} Ancon Inflow (Point 1)
13} Ancon Ditch Qufflow
14) ElGuique Ditch Inflow
15} ElGuique Ditch Outflow
16} ElMedio Ditch Outflow
47} Chicos Ditch Qutflow
18} ElMedic and Chicos Combinstion Inflow
19} ElMedic and Chicos Combination Outflow

20} ElMedic Ditch Inflow

21} Chicos Ditch Inflow

22} Garcia Ditch Inflow

23} Garcia Ditch Qufflow

24) Rinconada kla Ditch Inflow
25} Rincenada kla Ditch Qutflow

Figure 28. Acequia flow measurements in Las nueve acequias.
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Figure 29. Evapotranspiration and water use using crop survey.

Crop ET
» Climate data for calculating crop ET

» Used modified Penman-Monteith

Weather station

Figure 30. Calculating crop evapotranspiration.

¢ Relatively rapid water level response

* Water level rise of up to 13.8 inches in well 1
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Figure 31. Water level fluctuation in response to deep
percolation input.
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Groundwater measurements 3 7

» 24 monitoring wells equipped with
water level loggers

» Water levels respond seasonally to
ditch and irrigation inputs

Water level response to ditch and irrigation seepage along one
transect of wells from Alcalde Ditch to the Rio Grande
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Figure 32. Groundwater measurements to monitor aquifer response.
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Figure 33. Seepage dilutes groundwater ions.
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System Dynamics Model
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Figure 34. System dynamics model for testing aquifer-river interactions.

» The system dynamics model allows scenario testing of aquifer-river
interactions with and without irrigation diversions.
+ Aquifer discharge to the river is reduced without diversions.
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Figure 35. System dynamics model allows scenario testing. For example, aquifer discharge to river
with and without irrigation diversions.
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Community

Figure 36. Connections between valley irrigation community and contributing upland watershed.

Figure 4. Study sites on Landsat ETM+ image showing: study
communities (black circles) and their associated irrigated valleys (red
lines) and contributing watersheds (blue lines); other acequia-irrigated
areas along streams and rivers show up as light green.

Figure 37. Study sites on Landsat EMT+ image.
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