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ABSTRACT

In the traditional formulation of kinematic wave theory the kinematic
wave frictlon relationship parameter 1s treated as constant. The present
study relaxes this assumption of parameter constancy, allows continuous
spatial variability in the parameter and attempts to develop a more general
formulation of the kinematic wave theory. This concept of parameter variability
leads to a completely distributed model, and might hopefully eliminate the
necessity of utilizing a complex network model to represent the watershed
system. Furthermore, this more general formulation appears to reduce the
complexity of modeling watershed surface runoff and save greatly the computa-
tional time and effort.

A converging geometry 1s chosen to represent the natural watershed geo-
metry, and is utilized to develop the converging overland flow model. A
laboratory investigation is performed to study the behavior of kinematic
wave parameters. 1t is demonstrated that for many hydrologic problems the
kinematic wave parameter n can be fixed at 1.5 and thus the two~parameter
model can be reduced to a one-parameter model.

The converging overland flow model is studied on a number of natural,
agricultural watersheds. It is found that the topographic map of a watershed
is sufficient to transform its natural geometry into an equivalent converging
geometry. The concept of both parameter constancy and variability is studied
in detail on several agricultural watersheds. The model, in both lumped and
distributed forms, is applied to predict surface runoff from several of these

watersheds.
The converging overland flow on infiltrating watersheds i1s formulated
as a free boundary problem. Mathematical solutions are developed to study

the effect of infiltration on nonlinear overland flow dynamics. To develop
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explicit solutions rainfall and infiltration are represented by simple

space—~and-time invariant functioms.
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CHAPTER 1
INTRODUCTION

1.1 GENERAL REMARKS

Since its formulation by Lighthill and Whitham (1955), its appli-
cation to watershed modeling by Henderson and Wooding (1964) and Wooding
(1965a, 1965b, 1966), and the subsequent demonstration of its applica-
bility, in general; to problems of hydrologic significance by Woolhiser
and Ligget (1967), the kinematic wave theory has been increasingly
utilized in numerous investigations on watershed runoff modeling
(Brakensiek, 1967; Woolhiser, 1969; Kibler and Woolhiser, 1970; Wool-
hiser et al, 1970; Eagleson, 1972; Singh, 1974, 1975a, 1975b: Rovey,
1974; Li, 1974; Lane, 1975). 1In these investigations the formulation of

kinemetic wave theory has been as follows:

The continuity equation for the plane section,

5h , 3Q (1-1)
53ty = 4(x,.t)

and the kinematic approximation to momentum equation,

Q=uh=oh" (1-2)

where h = local depth of flow, u = local average velocity, q&x,t) =
rate of effective lateral inflow varying in time and space, Q = rate of
outflow per unit width, x = space coordinate, t = time coordinate,

n = exponent between 1 and 3 inclusive, and o = the kinematic wave fric-
tion relationship parameter.

Equations (1-1) and (1-2) constitute what is called as the tradi-
tional formulation of kinemative wave theory. A close examination of
Egs. (1-1) and (1-2) can easily show that the structure of a kinematic
wave model of watershed surface runoff will depend on (1) the characteri-

zation of the parameter o , and (2) the geometric configuration chosen to



represent the natural watershed geometry. It is apparent from Eg. (1-2)
that in the traditional formulation the kinematic wave friction relation-
ship parameter o does not vary in time or space. One approach that
partly relaxes this assumption of parameter constancy is to employ a
network model which considers the parameter to be different for different
elements in the network geometry,

Most natural drainage systems have a very complex surface config-
uration. TFor purposes of hydrograph simulation it is necessary to trans-—
form the complex configuration into a simpler one having a similar
hydrologic response. In the recent past four alternate simplified geo-
metric configurations have been proposed to represent the geometry of a
natural watershed. Accordingly, mathematical models of watershed surface
runoff based on kinematic wave theory can be classified into four groups:

1. Converging overland flow model

2. Wooding's model

3. Composite section model

4. Cascade model

These models entail varying degrees of geometric abstractions, and
are either lumped or at most quasi-distributed depending upon the
characterization of the parameter o .

The converging overland flow model (Woolhiser, 1969; Singh, 1974,
1975a, 1975b) is a lumped parameter model. Of all it has the highest
degree of geometric abstraction. It is shown in Fig. 1-1 where LO
denotes the length of flow region, r the degree of convergence, 8 the
interior angle, and S the ground slope. Wooding's model (Wooding,
1965a, 1965b, 1966) has relatively lesser degree of geometric abstraction.

This is also a lumped parameter model, or at most quasi-distributed






if the parameter o is allowed to vary from one element to another in

the network geometry. The model geometry is V-shaped having two planes
discharging into a channel as shown in Fig. 1-2 where W denotes the plane
width and LO the plane length. The composite section model (Singh, 1974,
1975b) has even lesser degree of abstraction. This model will be quasi-
distributed if the parameter o is allowed to be different for different
elements in the network geometry, The model geometry is shown in Fig.

1-3 where Lo(l - r) denotes the length of converging flow, which is equal
to the length of the plane and W the width of the plane which is equal to
the length of the channel. It should be pointed out that the length of
flow over the plane must be normal to the channel; it can therefore be
computed directly from Lo(l - r) and the interior aungle 6 of the con-
verging section. Obviously this geometry is a combination of the
geometries of the two previous models. The cascade model (Brakensiek,
1967; Kibler and Woolhiser, 1970; Singh, 1974) has the least order of
abstraction and hence more close to reality. The model geometry consists
of planes and channels as shown in Fig. 1-4 where there are N planes,
having length L

and width Lc discharging into a channel of width WC

k k’
and length LC; k denotes a dummy index. The arrangement of planes and
channels will naturally differ from one watershed to another. Permitting
the parameter o to vary from one element to another will make the cascade
model a quasi-distributed model. Although a cascade model can be made so
complex as to provide an almost perfect representation of the watershed
system, it will be too complex and too time consuming to be of any real
operational value.

A consideration of watershed runoff dynamics might suggest that the

watershed surface roughness characteristics have more predominent influence

on the runoff generation process than the watershed geometry as such.
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This contention was expressed in a recent study by Singh (1974) which
concluded that regardless of its complexity the geometry of a natural
watershed could be transformed into a simple converging geometry which
would preserve the hydrologic response to a large extent. This same view
was expressed much earlier by Woolhiser (1969). Besides their obvious
simplicity this premise might be another explanation for the popularity
of such simple geometries as converging geometry and V-shaped geometry

in representation of a natural watershed.

In the present study the roughness characteristics are being
represented by the parameter o . It may then be argued that the above
geometrical configurations have been advanced primarily to better
represent the spatial distribution of the parameter a. It is then sug—
gested that the necessity of a complex geometric configuration can be
eliminated by employing a simple geometry and allowing the parameter o to
vary continuously in space. By so doing the resulting model will be
simpler in geometry (for example, a converging geometry or a plane
geometry) and completely distributed. It will be interesting to note
that this concept of parameter variability is not an artificial ome,
but is consistent with runoff dynamics. Before proceeding further, it
must be made clear that by no means we are suggesting here that geometri-
cal details will have no influence on runoff process at all.

In the present study we will examine the physical plausibility of
the concept of parameter variability utilizing a converging section, and
test by considering its application to natural agricultural watersheds.
This examination will be conducted in light of the development of a

systematic treatment to the problem of surface runoff.



1.2 OBJECTLVES

The objectives of this study are:

1. To conduct a laboratory investigation of the lumped parameter
converging overland flow model.

2. To test the lumped parameter converging overland flow model on
natural agricultural watersheds.

3. To develop mathematics of distributed converging overland flow.

4, To test the distributed converging overland flow model on
natural agricultural watersheds.

5. To develop mathematical solutions for infiltrating watersheds.



10

CHAPTER 2
MATHEMATICAL SOLUTIONS FOR CONVERGING OVERLAND
FLOW FROM IMPERVIOUS WATERSHEDS
2.1 GENERAL REMARKS
The kinematic wave equations of continuity and momentum for a
converging section (Singh, 1974) can be written respectively in most

general one—dimensional form (see appendix A) as:

] h
%% + u%% + hgﬁ = q(x,t) + (Luax) -1
’ 0
Q = uh = a(x,t)h"” (2-2)

where h = local depth of flow, u = local average velocity, q(x,t) =
rate of effective lateral inflow varying in both time and space, Q = rate
of outflow per unit width, x = space coordinate, t = time coordinate,

LO = length of the converging section, n = exponent, an index of non-
linearity and greater than 1, and o = kinematic wave friction relation-
ship parameter. These equations are derived in appendix A. Here the
parameter o is a function of both time and space. For a specified rainfall
duration T, q(x,t) = 0 when t>T, and q(x,t) > 0 when t £ T. Substituting
Eaq. (2-2) into Eq. (2-1) we obtain:

dh n-1 3h _ a(x,t)hn n do(x,t)
Y + na(x,t)h pri q(X,t) + (L—O'—X—)_ - h -"""‘“‘a""x——' (2—3)

Equation (2-3) holds din S = {0<x<LO(l~r), t>0}. Depending upon the
funcgional forms or distributional characteristics of a(x,t) and q(x,t)
we can have sixteen special cases of Eq. (2-3):

When o(x,t) = o, a constant, then

(1) q(x,t) = q, constant

(2) q(x,t) = q(x)

(3) qlx,t) = q(t)
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(4)  aq(x,t)

When a(x,t) = a(x) then

(5) q(x,t) =q

(6) a(x,t) = q(x)

(7) q(x,t) = q(t)

(8) qx,t)

When a(x,t) = a(t) then

9) qx,t) = q

(10) q(x,t) = q(x)

(11) q(x,t) = q(t)

(12) q(x,t)

When a(x,t) = a(x,t) then

(13) qix,t) = ¢q

(14) q(x,t) = q(x)

(15) q(x,t) = q(t)

(16) q(x,t)

However, it may be interesting to note the two special cases:
1. When the parameter o is constant then Eq. (2-3) becomes:

oh n-1 3h oh"

— + nah — = q(X,t) + —('—'L-;:;{—) (2-4)

9t X
This case has been investigated by Woolhiser (1969), Woolhiser et al
(1970) and Singh (1974, 1975a, 1975b, 1975¢, 19754, 1975e).

2. When the parameter o is a function of space only, then Eq.

(2-13) becomes:

oho n-1 3h _ a(x)hn n 3o (x)
= b na(x)h r i q(x,t) + (Lo'x) h S (2-5)

This case has not been investigated before and the present study attempts
to do it. 1t is apparent that the former case given by Eq. (2-4) is also

a special case of the latter given by Eq. (2-5).
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2.2 MATHEMATICAL SOLUTIONS

We desire solution of Eq. (2-5). In the context of watershed
surface runoff problem it is reasonable to assume the boundary conditions
representing an initially dry surface:
h{x,0) = @ Q ;:XV;:LO(l—r) (2-6)

0 Q

h(o,t)

fIn

t<T

it is physically plausible that h(0,t) should not be specified for t>T;
that is, the solution of Eq. (2-5) in S below t=T subject to Eq. (2-6)
should extend into S above t=T. This will be seen to be true in the
ensuing mathematical discussion.

Tt must be pointed out that here q(x,t) forms input to the model.
Tts hydrological significance is twofold:

(1) Rainfall or any other source of lateral inflow will directly
contribute to inmput. This implies that the watershed surface is
impervious, and infiltration is disregarded. This is true for parking
lots, highways, runways, etc.

(2) Rainfall excess may form the input to the model. Here infil-
tration is considered and subtracted off from rainfall to yield rainfall
excess. An important implication of this notiom of rainfall-excess is that
infiltration is allowed to take place only during the period of rainfall.
As soon as rainfall ceases to exist, infiltration is assumed to cease
simultaneously. This assumption, although far from reality, has been and
continues to be used in most studies om hydrologic modeling.

In developing solutions of Egqs. (2-5) and (2-6) the method of
characteristics appears to be most practical. The essence of the method
lies in reducing a partial differential equation to a system of ordinary

differential equations called the characteristic equations. Thus the
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characteristic equations of Eq. (2-5) are:

ds
dx = na(x)hn—l
ds
n
dh a(x)h n do(x)
ds 10, 8) + (LO-X) h dx

where s is a parameter. Then the characteristic curves of Eq. (2-5) are
given by the solution of the above system of ordinary differential
equations. Through each point of space (x,t,h) there passes a unique
characteristic curve. The solution of Egs. (2-5) and (2-6) 1is the
surface formed by all the characteristic curves passing through the seg-
ment t = o, 0 < X é_Lo(l—r) and the segment x = 0, 0 < t < T (in

appendix B we will show that this solution extends into all of S above

t = T). Figure 2-1 shows the projections of these characteristic curves
onto the x — t plane. To obtain the surface formed by the characteristic

curves we may take x as parameter instead of s. Then we have:
dt 1

& ot (2-7)
dx na (X)hn—l

dh _ _q(x,t) h __h de(x) .
dx ~ na(x)hnml + n(Lo—x) na(x)  dx (2-8)

The initial conditions are:
t (o) = ty h{o) = o
or
t(xo) = 0 ; h(xo) = 0
The solution of Egs. (2-7) and (2-8) will be the solution of Eq. (2-5).
To obtain the solution of Egs. (2-7) and (2-8) we distinguish two cases:
1. Case A: The characteristic curve t = t(x,0) through the origin
(0,0) intersects x = Lo(l~r)‘(the downstream boundar&) before it intersects
t = T (the duration of rainfall q(x,t)). This case will result in

equilibrium hydrograph, and is shown in Tig. 2-2. Thus t* < T. The
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>

Fig. 2-1. The kinematic wave diagram.
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Fig. 2-2. Solution domain for equilibrium hydrograph.
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characteristic issuing from the origin is called as the limiting
characteristic. Here t* is identical to watershed equilibrium time.

2. Case B. The characteristic curve t = t(x,0) through the origin
(0,0) intersects t = T before it intersects the downstream boundary
X = Lo(l—r). This case will result in partial equilibrium hydrograph and
is shown in Fig. 2-3. Thus t* > T for this case. Here t* will depend on
T, and is not equal to t* of case A.

The solutions to these two cases will completely characterize the
surface runoff hydrograph. We will develop mathematical solutions to
these two cases.

2,2,1 Case A: Equilibrium Situation

We can write the input q(x,t) as:

qx,t) ostsT 3 T > t%

v

q(x,t) =
o} t>T

where T = rainfall duration, and t* = time taken by the limiting
characteristic to intersect the downstream boundary. It must be noted

that here t* is independent of T, and may be characterized as the watershed
equilibrium time. For this case we divide the solution domain into four
subdomains as shown in Fig. 2-2. First, we wish to obtain the éurface

formed by the characteristics passing through the t-axis. We have:

Domain DZ' For this domain we can write our initial conditions as:

t{o) =t M < < -
() =t, 302t <T (2-9)
h{o) = o

The solution surface is then expressed in terms of x and t, where:

s
I

t(x,tO)

=2
il

hix,t )
o

X = X
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Fig. 2-3. Solution domain for partial equilibrium hydrograph.
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We will assume that, under appropriate conditionms on a(x) and q(x,t), the
curves t = t(x,to) do not, for distinct values of to’ intersect in S. It
will be seen in appendix C that this is true for q(x,t) = q, a constant.
t(x,to) is an increasing function of x for fixed to since h(x) > o in S
(from Eq. (2-10) below) and, by our nonintersection assumption, it is an
increasing function of to. Thus we can solve for to in t = t(x,to) and we
can, therefore, express h as a function of x and t. We can write Eq. (2-8)

as:

%; {a(x)hn(Lo - x)} = (LO - x)qlx,t)

Integrating and using the condition h(o) = o we obtain:

X
L - x)a(x)h" = g (L - E)q(E,t(E, £ ))dE

Thus we have:

1

1 ® n
h(x,to) = {m £ (Lo— €)q(£,t(€,to))d€} (2-10)
Inserting Eq. (2-10) into Eq. (2-7) we get: 1
dt _ 1 1 fx n
é’;& = nu(x) (LO" X)G(X) . (LO“ E)q(gst(gsto))dg
Upon integration,

in
_ ¥ 1 n n

Equation (2-11) is a nonlinear integral equation for t(x,to) whose
solution will obviously depend on the functional form of a(x) in space and
that of q(x,t) in time and space. Inserting the solution of Eq. (2-11)
into Eq. (2-10) we get h(x,to). There can be seven special cases of Eqgs.

(2-10) and (2-11) that we now examine:
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1. 1f q(x,t) is constant then we get explicit solutions:
1

a? - @, - 0Haq|"

h(x,to) = 2a(x)(L0 - (2-12)
X 1-n
1-n ot 1
q n —%' Li - (LO - n)2 n
t(x,t ) =t + (a(n)) 7@ - ™ dn (2-13)
o
2. If q(x,t) varies in space only, then we obtain:
1 n
h(x,to) = E?§7?53"3“§5 (Lo - £)q(g)dg (2-14)
0
1-n
: = o1 (" K
- 11 -y B - : _
EGoe ) =t ko J {a(n)} @, - n { { @, a)qca)da} dn  (2-15)
o} o
3. If q{x,t) varies in time only, then we have:
x 1
I S S - _ n
h(x,e ) = {a(x)(L —5 J o a>q<t(a,to>>aa} (2-16)
© )
X l P:—:-I:- n ..]:.:...].".1.
' . _ 1 1" oo n
t(x,t ) = ¢+ - J {a(n)} [LO - n] i [ (LO - E)q(t(g,to))dg} dn
o o
4. If o(x) and q(x,t) both are constant then we get:
1
”(ZLOx ~ x9q
h(X, tO) = ‘{m:_—x—)— (2—18)
n-1 1 x ool
2 n 1 n 1 (LO - g) n
ey e v )T [ {20 19
o 0 q o n 2Lo£ _ 52

(2-17)
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Equation (2-19) is, however, expressible in terms of Beta functions as

follows: -1
n-1 _:_L_X T
1 (2] ® ()" Ty~ 8
t(X,tO) = t0+;1 [C—J ['&] 5 5 dg
Lo - (Lo - &)
o
L -¢)?
Substituting n = OL s
0
1-n 11 1 1
qn Lon ™ E-l
e(x,t ) =t + - 5a ) (1.-mn dn
L - x
L
o}
in %1 1 1
qn LO (l*'{ﬁ]—l ;—l
=t, t= 5a ) n (r-n dn
L - x]
L
o

1
1-n = 1
e L I I 1oy
=t tD 7. 1-m

o 2a n dn -
0

L - x 2
o

L

o)

bl A
n (r - dn
o
1-n -

(2-20)



where a = ,

B

1 -
(l"'z_n)yb_
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2

L X

O

and ¢ =

The quantity 8, without
0

a subscript, denotes a complete Beta function and can be expressed in

terms of Gamma function as:

T'(a)T(b)

B(a;b) = T{a + b)

(2-21)

However, B, with a subscript, denotes incomplete Beta function and has

the following mathematical connotation:

b
8¢(a;b) = J €a—l(l‘“ E)bwl dg i:a>03b>03 ¢¢e (0,1) (2-22)
0
BRI\l PN TCR S T VR (2-23)
a L Bla+ by i+ 1)
j=o
Using Egs. (2-21) - (2-23) we can write Eq. (2-20) as: 1
( 2 - 1 n
1 L~ x n L - x)?
= o 1)) |2 1 - |-2—o
n (L7 I‘[l _T]P[_] L L
ezt ) =t + ]2 oL AR B 2
o o n 20 1 1
I’[l + '.z_n] {1 ~ 5}-1]
® B[Z—Ej:-;]-i-l] L xz(j+l)
1+ 7 i I‘j (2-24)
5. If o(x) is constant but gq(x,t) varies in both time and space
then we get: 1
x n
_ 1
h(x,to) R T [ (LO - €)q(5,t(€,t0))d£ (2-25)
° )
1-n
%‘ X n-1 n n
- 11 - P
tlx,e ) =t + n{a] [ L, - J q(g,t(g,t ))dE dn (2-26)
0 o
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6. If a(x) is constant but q(x,t) varies in space only, then we

obtain: 1
n
x
1
- - 2-27
h(x,to) u(Lo ) q(E)(LO £)dg ( )
o
1
X n n
= n-1
t(x,t ) =t + 1k ’ L -n) " q(E)(L_ - &)dg dn (2-28)
7o o nio o
o o
7. 1f a(x) is constant but q(x,t) varies in time only, then we
. 1
get: . =
1
h(x,t ) = PTREE) J q(e(g,t )) (L, - £)dE (2~29)
° o
x i-n
L =l o n
t(x,t ) = t_+ Lf1)® @w - " (t(,t )) (L_ - £)dE dn (2-30)
*o o n(o o 4 * "o o
0 0

From these solutions we observe that in the strip

D, the surface h, as a function

i

{o < x §_Lo(l - r) ; t(x,0) <t i_T}
of x and t, depends only on x if q(x,t) is comnstant or varies only in

space, regardless of the functional form of a(x). We also note that the
characteristics issuing from the non-negative t—axis will have t-axis as

dt
their tangent. In particular, Eq. (2-7) implies that = = ® at X = 0,

Domain D3. To obtain the surface containing the x-axis, that is, h in D3,

we solve Eqs. (2-7) and (2-8) subject to the boundary conditions:

) : 0 <X

t(xo) o 5_L0(1~r)

h(xo)

i}
Q
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Then the solution surface is expressed in terms of x and xo:

L= t(x,xo)
h = h(x,x )

o)
X = X

We again assume that the curves t = t(x,to) do not intersect for distinct
values of X, Thus t(x,xo) is, for fixed X, an increasing function of
x and, for fixed x, a decreasing function of Xo' This nonintersection
property will be proved in appendix C under the condition q(x,t) a constant
and o(x) an increasing function of x.

The solution of Eqs. (2-7) and (2-8) subject to the above specified

boundary conditions is:

1
f x n
-— 1 —— -
h(x,x ) = *—-—*———"—a(x) EANEIEY J q(&,t(E,x ) (L £)dg (2-31)
\ X
X in
L p=l [ n "
1
t(X,xo) = - {&%%3] (LO - n) o J q(&,t(ﬁ,xo)) (Lo - £)dg dn (2-32)
X
O
X
o]

Equation (2-32) is a nonlinear integral equation for t(x,xo), the solution
of which will obviously depend on the functional forms of a(x) and q(x,t).
We get h(x,xo) by inserting the solutiom of Eq. (2-32) into Eq. (2-31).
The seven special cases for this domain are:

1. 1If q(x,t) is constant, we get explicit solutions:

i
n

@, - x)? - - x)z}

h(x,xo) = 2000 (L, - D (2-33)
X i-n

1-n 1 n

B = 2 2

n n |(L -x) - (@ =-mn

= 4 1 0 o 0

t(x,xo) = {a(n)} Z(Lo — dn (2-34)

X
o]
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2. 1If q(x,t) varies in space only, then we have:

« 1
1 n
h(x,Xo) = {az;;zzf":—§j J q(E)(LO - &) d&} (2-35)
° x
o
i
® L n—-1 n "
n n-1
E(x,x ) = & J {—1~} @ -m" [ q(g) (L_ - &) d& dn (2-36)
>0 n an) o o
X %o |
o

3. 1f q(x,t) varies in time only, then we get:

L
X n
— l - —
h(x,xo) R TS Y] J q(t(E,xo)) (Lo g) dg (2-37)
° X
o]
X L
;]} n-1 [ 0 "
t(x,xo) = i {agﬁ)} (L0 -m " 1 J q(t(E,xo)) (Lo - £) dg dn (2-38)
X
X C

4., 1f q(x,t) and o(x) both are constant then we get:

1
n
q[ZLO(x - xo) - (x2 - XE)J
h(x,x ) = TTCA— (2-39)
x in
n—1 1 n
== = 2 .2
BOENAEE ZLO(E - XO) - (&7 - X))
t(X,XO) = {a] [a} a (LO ” E) dE (2"40)

]
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-1
il 1of ey
| e
" g o n _ 2 _ 3 2
J @, - x)" = (@, -8
X
o
LO - & 2
Substituting the transformation n = = and making proper
0O
algebraic manipulations we get:
1
n-l n : 1 1
1] ® Lo T %01 1~ n) 1 P
’C(X,XO) = {a] e oy 2“ (L - dn  (2-41)
L -x ]
0
L - x
o o

Equation (2-41) is expressible in terms of Beta function. We can

write:
1 1
n—-1 n 1 1
AT [l“'z}?]‘l a " an -
t{x,x ) = |~ — - n (1 - n)
0 q 2a n
o
2 At
- X
o]
L =-x
o o
R
n (L - n) dny
(e]
1 1
n-1 . A
_ n Y I _ n , 2
P [ s s
2 - - -
q o n P[l + é%] o xo 1 L0 xo
- 1 2(5 + 1)
1 3{2 2n,3+1J LO
1 L - x (2-42)
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5. If a(x) is constant but q(x,t) varies in both space and time,

then we obtain:

1
x n
1 1 _ -
h(X’XO> = a 'Zf;':_ﬁ [ q(tgt(gaxo)) (LO E) dE (2 43)
X
0
1-n
2 x n-1 | n "
R f (E,t(E,x)) (L - &) dEy  dn  (2-44)
o n[a 0 qtss %o o ?
%5 %

6. If a(x) is constant but q(x,t) varies in space only, then we

obtain:
1 . 2
1\* 1
h(x,x ) = {a] T -0 j a®) @ _ - g) dg (2-45)
° X
o J
1-n
1 X n—-1 n _E—
(Y21 "
t(x,xo) = la] = J (L -n) J q(&) (Lo - &) dg dn (2-46)
%5 %o

7. If a(x) is comstant but q(x,t) varies in time only, then we

get:
1
1 b
hG,x ) = (ﬁ]n zfuifjgg f a(t(5,x ) (L - &) dg (2-47)
OX
[s]
1
1 -l [ 0 "
(%) = 5[}] [ @ - " J qCt(E,t ) (L - £) dE (2-48)
00!10 [0 2RE 6 |
X X



27

From the above solutions it is clear that in domain D3 h, as a
function of x and t, now depends on both x and t.
Domain Dl' We must modify Egs. (2-7) and (2-8) subject to the condition

g(x,t) = o for t > T. Thus we have:

dt 1

—_—— = _— (2“'49)
dx noz(x)hn 1
dh _ h __h do(x) _
dx n(LD - X) no(x) dx (2-50)
Then our initial condition will become:
*
t(xo) =T (2-51)
b * * _
(xo) = h(xo,T) = h0

%
where h(xo) is obtained from Egs. (2-9) and (2-10). The solution in domain

*
Dl will be expressed in terms of x and X,

%
t = t(x,xo)

%
h = h(x,xo)
X = X
The solution of Egqs. (2-49) and (2-50) in conjunction with Eq.
(2-51) is:
1
% %
« L - x)ox)|®
hi(x,x ) = h 2 9 2
>“o ) (LO - x)a(x) (2-52)
h 1-n 1-n X L n-1
EGox) = T + Y@ - x)f " L 1" ’
Xy @ Xo o Xo) a(&) Lo“g dg (2-53)
*
%o

. . %
Equation (2-53) is a nonlinear integral equation for t(x,xo), the

solution of which will depend on functional forms of a(x) and q(x,t). By
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*
inserting the solutiom of Eq. (2-53) into Eq. (2-52) we get h(x,xo).

Again we examine the seven special cases:

1f q(x,t) is constant then the solution is:

1.
L
q(LO2 - @, - Xz)z) "
h = ” 2 (2-54)
2u(x0)(L0 - xo)
1
o faa - - b
h(x,xo) = e (Lo ) (2-55)
in x 1 n-1
w 1 laf, 2 _ A 1 Inf, A\ n _
S TURE I [Pl - o oo
Xs‘c
(o]

If q(x,t) varies in space only, then we obtain:

2.
% 1
X 11
o]
b = {———— [ a(®) (L, - £)aE (2-57)
o(x )(L - x)
o] (o] o
o]
1
X )8
[
%* 1
h(X,XO) = Efﬁjff;”:—Ej J a® (@ - g) dg (2-58)
o]
* l_“'_l'_lw
X n X 1

1 n-1
) (@ - &) dt J {af%s}n{Lo - a} Bogg (2-59)
*

X
O



29

1f q(x,t) varies in time only, then we obtain:

3.
*
x
(o)
h = % 1
° alx J(L_ - x)
o’ o o’ o
1 * = ~—-———-----——————1
(X)) = VTR
° o
%
x
o
* 1
t(X,XO) =T + E
o]
" 1
1 }“L _
a(%) 0
b
(o]
4,
1
* 2 \n
2L x - x_ )q
o 0 o]
ho - 20 (L >'<)
o o Xo
(L % *2)
q ¥ - X
h(x,x) = oo o}
o Zu(Lo - %)

*

X
[0}

J (L, - € q (e(5,t)) dE

[ (LO -8 q (t(ﬁ,to)) dg

1-n

i
n

J (L - & q (£(5,t)) dE

1
0

get:

(2-60)

(2-61)

(2-62)

(2-63)

(2-64)
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1-n 1 2n-1 2n-1

2 —— Phaudl
t(x,xZ) =T+ {%(ZLOXZ- xz ﬁ-“ [5]“ L @ -0 " - - xZ)

o] (2n - 1) o

5. If oa(x) is constant but q(x,t) varies in both time and space,

then we get:

1
x n
0
h = ——E—TJ a(E, (8t ) (L= ) de (2-66)
a(L - x ) ©
o o’ o
1
X n
o
* 1
h(x’xo) - d(L — X) J Q(E,t(i,to)) (LO - E) dE (2"67)
° o
* 1i-n
XO n 1
ko e
t(X’XO) =T + { Q(Eat(iato)) (LO - E) dg [a]
o)

2n-1 2n-1
L -x * - @ - x*) a
o} 0 o (2-68)
(2n - 1)

6. If a(x) is constant but q(x,t) varies in space only, then we
obtain:
* =
X n
[
1
h = ——TJ a(®) (L - &) d& (2-69)
a(LO - xo)

L (o]

(2-65)
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% 1
X n
o]
et - 2-70
h(xyxo) - O'.(L - X) J Q(E;) (LO ‘E) dg ( )
© (o]
% 1-n 1 2n-1 2n-1
. o T A B i I
t(X,XO) =T+ J q(g) (LO - E) dg [a] (ZH _ l)
o

7. If o(x) is constant but q(x,t) varies in time only, then we

obtain:
% 1
X n
o
h = ““““QL——;— J q(t(E,to)) (LO - §) dg (2-72)
© o(l, - x)
o o’ o
* 1
X n
0
* 1 ) _ B
h(x,xo) al Py g [ q(L(g,tO)) (L0 g) dg (2-73)
© o)
1-n

il

%
t(x,xo)

X
(e}
T + J q(t(&,to)) (LO - &) dg
LO

( 2n-1 2n-1

n *.on
(LO - X) - (LO xo)

(2-74)
(2n - 1)

It is clear from the above discussion that in domain D,, h depends on both

l’
. %
x and t. The curves t = t(x,xo) fill out the entire domain Dl as x_

ranges from o to Lo(l - r). We now summarize the case A, t* < T,

(2-71)
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(1) In domain D3 the solution is given by Egs. (2-31) and (2-32).

Here the parameter Xo assumes values on the segment 0 < X f_Lo(l - 1),
t ¥ o.
(2) 1In domain D2 the solution is given by Egs. (2-10) and (2-11).

Here the parameter t0 assumes values on the segment x = 0o, o £ t < T,

(3) In domain Dl the solution is given by Egqs. (2-52) and (2-53).

*
Here the parameter x  assumes values on the segment o < X i-Lo’ t = T.

We now consider, in case A with q(x,t) = q, h as a function of t
for fixed x, that is, we want to know the appearance of the curve cut out
of the surface h(x,t) by a plane perpendicular to the x axis. In domain

D. we have:

3

h  (x,x )
sh(x, ) _ 8h(x,xo) ﬁfg ) X o
ot on ot tXO(x,xo)

(2-75)

From Egs. (2-33) and (2-34) we see that hX (x,xo) < p. From these
0
equations it also follows, although the discussion is more complicated,

In domain D

that £ (x,xo) < 0. Thus ht(x,t) > o if (x,t) ¢ D3. 2

0
h(x,t) is independent of t for time-invariant input and for space-

invariant input. In domain Dl’ we have from Egs. (2-55) and (2-56),

* *

hxz(x,xo) > o and tXZ(x,xo) < o, Thus ht(x,t) < 0. From Eq. (2-56)
*

t > o for fixed x is equivalent to % -+ o for fixed x, and from Eq. (2-55)

h(x,t) » o as t » =, It then follows that, for a fixed value of x, the

function h(x,t), due to a pulse input, has the appearance as shown in

Fig. 2-4. We may obtain the approximate behavior of h(x,t) for large t
*

*
(and therefore small xo) by setting X, =0 in the integral in Eq. (2-56)

*
and eliminating X between Eq. (2~55) and (2-56):
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t=1(x,0) t=T

Fig. 2-4. The depth of flow at x for equilibrium case, t* < T, q(x,t) = q.
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h(x,t) = ww-mﬁz%:gl
(t - T)n—l
1
X A n-l |n-l
J (a(n)) ", - n ™ dn
(o]
where P(x) =

1

AH:I {a(x)(Lo - x)}IT
We note that the decline of h to o as t - » is not exponential. Thus,
if n = 1.5, h(x,t) goes to zero as t_z. In Table 2-1 we summarize the
conditions leading to explicit analytic solutions.

Tt may be instructive at this point to determine the equilibrium
time and the equilibrium depth; both these quantities will be given when
the characteristic curve passing through the origin (0o,0) intersects the
downstream boundary Lo(l ~ r). TFor case A equilibrium time will be the
same as t* in Fig. 2-2, and will be independent of rainfall pattern and

duration. Thus we have:

1
L (1-1) -
o
_ 1
he - 1 Ty { (LO - E) q (Est(g)) dE (2_76)
© o
L (1-1) 1-n
o n —
= 1 1
fe J na(n) |oa(m) (L - n) J (LO - &) q (&,t(8)) dg dn (2-77)
° o)

where vy is the value of a(x) at x = Lo(l - 1), he the equilibrium

depth at x = Lo(l - r), and ty equilibrium time at x = Lo(l - r). Let
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us now determine the equilibrium depth and time for the seven special

cases:

1. If q(x,t) is constant then we get:

1

2, |n
qLo(l )

he - 2ry
L (1-r)
Lo ® 1p 2 9 2D
n —i L - (@ - n
£ = q 1 nj o 0 dn
e n a(n) 2(L - n)
o
2. If q(x,t) varies in space only, then we obtain:
1
Lo(l~r) n
1 (
by = 1355 | q(€) (L - &) di
L ° o
Lo(l—r) 1en
1 n-1 n n
b =2 SR S (L_- &) q (g) dg dn
e n a(n) 0 o
o
3. If q(x,t) varies in time only, then we obtain:
1
Lo(l—r) n
_ 1
IO J (L - &) a (£(8) d

(2-78)

(2-79)

(2-80)

(2-81)

(2-82)
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1-n
Lo(l—.r) n_}. n n

p n-1

J {—QL—}H{L - n} n J (L - &) q (£(&)) d& dn (2-83)
a(n) 0 0

o] (s}

f=

T
il
(=

4, If o(x) and q(x,t) both are constant then we get:

1
qL (1 - r2) n
ho=doo (2-84)
e 2or
1 1 1
n-1 - 1 1 2= =
oo T'(1 —= -=)I'(=
oo ;[g] . {1;9]“ O-2T@  (»n "a-p°
e q o T 1 21
1+ Zn) a 2n
1+ ¥ 1 (r)“™ (2-85)
j=o B(L + -5 3+ 1)
If however r is small, as is the case most often, we can simply
write:

1
n 1.p,1

n (L))" T - =) ()

¢ = E[Z} [_9} 2n1 n (2-86)
e nlq o (1 + iﬁ)

5. If o(x) is constant but q(x,t) varies in both space and time

then we have:

1
Lo(l—r) n

a(e,e(8)) (L - &) & (2-87)

=2
i)
2
or'H
H

o —
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1-n
1 Lo(l—r) n-1 n =
11 o n
t === L -mn q(&,t(8)) d& dn (2-88)
e nla o
) o
6. If a(x) is constant but q(x,t) varies in space only, then we
obtain:
L
L (1-1) n
o)
_]a N i
he = oLt j Q(é)(Lo £) dg (2-89)
o)
1-n
1 Lo(l~r) n-l n -
t, = 11" w ~-m" q(e)(L_ - &) dg dn (2-90)
e nla o o

Q
0

7. If o(x) is constant but q(x,t) varies in time only, then we

get:
L
Lo(l—r) n
—_— l —
he i = J (Lo £) q (£(8)) dg
° 5
i-n
1 L (1-r) n-1 n n
t = lilim ° L - " (£(8)) Q- &) dg d
e nla J o " 4 ‘o 1
[0]
o

2.2.2 Case B: Partial Equilibrium Case
We can write the input as:

q(x,t) o;_tf__T,T<t*

q(x,t) =
o otherwise

(2-91)

(2-92)

This case is somewhat more complicated. The quantity t* will depend on
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T. The solution domain is shown in Fig. 2-3, and is divided into four

parts., Let x* be the solution of T = t(x,0). Let Dll be the domain

above the line t = T and above the curve t = t(x,x*). The curve t =

t(x,x*) is just the propagation of t = t(x,0) beyond t = T, Let Dl2 be

the domain bounded by t = T, t = t(x,x*), and x = LO. The domain D2 is

hounded by t = T, x = o and the curve t = t(x,0). The domain D3 is

)

bounded by t t(x,0), £t =T, t = 0 and x = Lo(l - 1),

Domain D,. The solution is given by Egs. (2-10) and (2-~11)

2
Domain Ds- The solution is given by Egs. (2-31) and (2-32)
*
Domain Dll' Let o < X < x*, t = T, then the solution is given by Egs.

(2-52) and (2-53)

*
Domain D12' Let X be the solution of T = t(x,xo), that is the value of

x where the curve t = t(x,xo) given by Eq. (2-32) intersects the line
*
t = T. Then along the segment x* < XO < Lo(l - r), t =T, we have from

Eq. (2-31):

B l_
X n

o]
TF J Ly, = &) a (& t(E,x ) dE (2-93)

o X
(o]

1

*
a(xo)(Lo

*
h(xo,xo) =

Now we solve the two differential equations given by Egs. (2-49) and

(2-50) subject to the initial conditions:

*
t(xo) = T
h % _ %
(xo) = h(xo, xo)

Then the solution follows:

1
x p @y - xeeh |
h(X;XO’xO) = h(XO’XO) (LO - X)G(X) (2'—94)

or
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X

% 3 1
h(x;x , x ) = ff;":_ijafgj

X
o}

1-n X

n (1
J'*(LO - g) [a( )]

t(x;x:,xo) = T 4 %(h(x:,}co))lwn {(Lo - x:)a(x:)} n

%
Here X and X are bound by the relation:

*
X n-1 1-n

o 4L ol
(L0~n) " " g

T = _""‘"“"'"‘—"1_‘ J (LO - E) q (E&t(gsxo)) dE dn

X

x, n(am)® %o

X

1
n

J @ - §) a (5,t(E,x)) d& (2-95)

n-1

¥t

(2-97)

%*
Thus in Egs. (2-95) and (2-96) we may think of X, as the parameter in

1
n

which case we have to replace X which appears in these equations by its

*
solution to Eq. (2-97) in terms of X - On the other hand we may think

of x, as the parameter in Egs. (2-95) and (2-96); in that case we have

*
to replace X, in these equations by its solution to Eq. (2-97). Since,

*
in Eq. (2-97) X is an increasing function of XO, the correspondence

%

between X, and X is one to one. We now examine the seven special cases:

1. If q(x,t) is constant then we obtain:

1
* (Lo - X0)2 - (Lo - X:)z .
hi(x , x ) =43
° ° 2 a(x*)(L - x*)
o’ ‘o o}
1
2 * 2in
(Lo - xo) - (Lo - xo)

%
h(xsx %)) = 43 T, - Dam

(2-98)

(2-99)

dg

(2-96)



l-n X 1
Y V0 a-l
P _ 1l iq B 2 _ _ * 2 1 _ n _
L(x,xo,xo) = T + = {é{(Lo xo) (L0 xo) }} [ [a(E)J (LO £) dg (2-100)
*
X
(o]
2. If q(x,t) varies in space only, then we obtain:
* 1
X n
0
* 1
h(x ,x ) = o o f (L - &) q(&) dg (2-101)
0’7o o
alx Y(L_ - x)
o o o
o
1
( X n
* L d (2-102
h(X’XO’XO) = (T = x)alx) (LO - &) q(&) dg - )
° X
o
1-n
* n
o o n-1 1
* _ -1— _ B n ....l_ n _
t(x,xo,xo) =T+ = J (L0 g) q(&) dg (L, - [a(n)] dt  (2-103)
x X
o o
3. If q(x,t) varies in time only, then we obtain:
L
X}‘: n
o
% 1 {
h(x , x ) = 7 | @y - ® ateEx)) d (2-104)
alx )L - X ) ©
o o o’ x
(8]
1
% n
* 1
h(x,xo,xo) = zi;":“ETazgj [ @, - £) q(t(&,xo)) dg (2-105)

X
Q
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1
{ * -
X
(o]
ECrixe, x ) = T+ 3 [ (L, - &) ale(E,x)) di
X
Q
¥ 1
% n-1 =
o L) (2-106)
(LO - n) ETHT dn
X
(o]

4, TIf a(x) and q(x,t) both are .constant then we obtain:

*
* _Ja o o 0 0 B
h(xo, xo) 5 (2-107)

1
2 * 2\n
* (Lo B Xo) i (Lo - Xo)
h(x;xo,xo) =13 FTEED) (2-108)
o
im 1
n (0
t(x;xz,xo) =T+ {%{(LO - Xo)z - @, - X:)ZE} [é]
2n~-1 2n-1
* n n
L -x) - (L - %)
9.2 Q (2-109)
(2n - 1)

5. If o(x) is constant but q(x,t) varies in time and space then

we obtain:

IR o

*
X
o

[ (LO - &) Q(€3t(E’XO)) dg (2-110)

L -
( o T XJu g

*
hix ,x ) = 1
0’7o

o
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1
* i1
X
Q
b 1
h(x;xo,xo) 1 T 9 J (L0 - &) q(E,t(s,xo)) dg (2-111)
I
(o]
1
o n
* 1
1
t(X;XZ’XO) =T+ J (LO - E) Q(‘S;t(gaxo)) dg [a]n
X
o
2n-1 2n—~1
e -x) " - @ -x n
o] (e} -
D (2-112)

6. If o(x) is constant but q(x,t) varies in space only, then we

get:

1
( * n
t X
o
* 1
hix ,x ) = J (L~ &) q(&) dg (2-113)
0’0o o
(L - x)o
o o’ x
o
1
* n
x
o}
X% = 1 d (2-114)
h(xsx ,x ) = T - 9o (L, = &) q(&) d&
© x
o
1
* n
X 1
t(x;xz,xo) =T+ J (L, - &) q(g) dg {%]n
x
o
2n-1 2n-1
*, n n
(L0 - xo) - (LO - %)

V) (2-115)
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7. If o(x) is constant but'q(x,t) varies in time only, then we

obtain:
1
* o
X
o]
* 1
hix ,x ) = J (L - &) q (e(&,x_)) dE (2-116)
(o] O o O
(L - x)o
O (o]
o]
1
* n
X
0O
o = 1 (2-117
h(xsx_,x)) = TR (L, -8 4q (e(g,x )) dE -117)
o o’ L
o
1
n
X 1
t(x;x*,x )y =T+ I (L~ &) q (t(g,x)) d& [l]n
0 (o] o] o] o
X
o]
2n-1 2n—1
w -x) " - @ -x "
QO O
VR (2-118)

We summarize the case B, t* > T:

(1) 1In domain D3 the solution is given by Egs. (2-31) and (2-32).
Here the parameter assumes values on the segment o < X j_Lo(l - r), t = o.

(2) 1In domain D2 the solution is given by Egs. (2-10) and (2-11).
Here the parameter t, assumes values on the segment x = o, o < t < T,

(3) In domain Dll the solution is given by Egqs. (2-52) and (2-53),
where X, is replaced in these equations by x:. The parametex x: assumes

* *
values on the segment o < x_ < x , t = T.
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(4) In domain D12 the solution is given by Eqs. (2-95) and (2-96)

* %
where X is replaced by X in these equations. The parameter X assumes

values on the segment o j_xz i_(Lo(l - r) - x*). Here we may regard
either x  or x: as the parameter.

As in case A we consider h as a function of t for fixed x when
q(x,t) = q. In case B this behavior of h(x,t) is the same as in case A
for o < x < x* as shown in Fig 2~4. If x* <x E_Lo(l - r) then h(x,t)
is an increasing function of t if (x,t) € D3, and it is a decreasing
function of t if (x,t) ¢ Dllg the arguments are the same as in case A.
It remains to consider the behavior of h(x,t) when x is fixed and
(x,t) ¢ D12; the maximum of h(x,t), for x fixed, will occur in D12’

*
possibly on t = T or on t = t(x,x ). We have:

% on(x,t)
h (x,t) = hxo(x;xo(xo),xo) 3T
h %
Xo(x,xo(xo),xo)
= ¥ (2-119)
t. (x;xo(xo),xo)
(o]
*
b Gx (% ),x ) = h (% o e n *
x_ x,xo(x0 sX ) = X x,xo,xo) a;; Xo(x,xo,xo) (2-120)

Using Eq. (2-98) we get from Eq. (2-120):

1
1 1

2T % Mt
nix -x)Q2L -x - x)
hx (X;xZ(xo),xo) = _[(_21] [0 o Ol o:l

n
O =
[y, - ="

™o

*
dx

L - x) —2
O'Xo%@‘(%"{o)
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*
Thus the sign of hx (X;XO(XO)’XO) is determined by the sign of

(o]
%
% 4% .
(T, - x) EE; - (L, - %)

We consider now the special case when a(x) = a, constant.

becomes:

n-1 1 n

IR0 | ] ¢
q o (=% )y@L, - x - M) n

We introduce the change of variable (Lo - 1) = (L0 - xo)g.

(2-122) becomes:

L 1_4 % -2l
To™ T n (Lo - xo)(Lo " %o n
n—1 (Lo B Xo) - 2 *,2
—_— L -x)" (L -x

[2} n o o o} 0
nls
q
% L %
-1 Efg o~ %o

Solving Eq. (2-124) for = Ve obtain:
)

(2-121)

Then Eq. (2-97)

(2-122)

Then Eq.

(2-123)

(2-124)
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Invoking the identity

N

aN - bN - (a - b) Z &ka bk"l

k=1

n-1 -1
% *
* 1 [}L - X )2 - (L -x ){] e o-x) N
dx n o] o] o] o o o
BB ()
dx n—-1 n—1
© n L % n
[ L
q
Then Eq. (2-121) becomes:
n-1
1
2 x 2] B = 1
{(Lo - Xo) 3 (Lo - Xo) } Ta" (L - *)n _
(L - x) n~1 %5
o 0 o
o) ™
(3
L4
i
2 * 2in
(Lo N xo) - (Lo - Xo) ]

(2-125)

(2-126)

the bracked term in Eq. (2-126) is nonpositive if and only if

is nonpositive, where g = o

We can write Eq.

(2-127)

(2-127) as:



* 2
2 o xo
(LO—X) _—
Q (o]

2| 2 1

=(L~xo)u+u—
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(2-128)

*
where 1 = (L0 - xo)/(LO - xo). We have o < u < 1. Let F(p) be the

bracket on the right side of Eq.

;']2: s 0_<_:€

L oum——
et
[ Nt
ey
[
—
=]
fin
TN
rol =
| R
4

and
n
1 n-1
1-8
u
1
= — (1 - )
2n 1
Thus
F(u)<u2

21
1 _ <
n-1 =
(r-¢g "
n-1 -
1(1] n
<l Ja-w
u

l = —
+ ;E:i p(l - p) - 1= [l

n-1

(2-128).

|

Since

fia

u +

= N

dg

ER—

n-1

w-1<o
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if n > o and o < yu < 1. We conclude then, that when a(x) = a,
% . %
hx (x;xo(xo),xo) < 0. Since tX (x;xo(xg,xo) < o we see that, when a(x)

Q
= a, h(x,t) is an increasing function of t for fixed x when (x,t) ¢ DlZ'

Thus the maximum of h(x,t), as a function of t for fixed x, x* < x £
Lo(l - 1r) is reached on the curve t = t(x,x*)(See appendix D for addi-
tional details). We summarize the behavior, in case B, of h(x,t) for
fixed x (see Fig. 2-5):

(1) If o < x < x*, h(x,t) increases if (x,t) ¢ D3, is independent
of t if (x,t) ¢ D2, and decreases if (x,t) & Dll' h{x,t) ~ o as t = o=,
(2) 1f x* <x < Lo(l - r), h{x,t) increases if (x,t) € D3,

achieves its maximum in the interval T < t < t(x,x*) and decreases if
(x,t) € Dll' h(x,t) > o as t »«, If a(x) = constant, h(x,t) increases
in the interval T X ¢t ;:t(x,x*) so that the maximum is reached on t =

t(x,x*).

In case A we have from Egs. (2-12) and (2-13):

n

1 2 2
B q\; Lox - X _
hmax(x) - ['Z'J C{.(X) (LO — X) (2"’129)
tmax(x) = {t;t(x,o) <x < T} (2-130)

*
In case B Egqs. (2-128) and (2-130) also hold if o < x < x ; where

* *
x dis the root of T = t(x,0). If x < x £ Lo(l - r) and o(x) = a then
from Eq. (2~55) we have:
1 1
q n 2Lox - X |n

and from Eq. (2~56):



50

"V

Flg- 2 S-



51

= . 2n-1 2n-1
1 1 1 % 2-1323
%J 2n - 1[~] % *2] - ma-n ]S
- x

3 =T +
max(x) T

2.2.3 Definition of t*

We define t* as the time of intersection of t = t(x,0) with x =
Lo(l - r) in case A, and as the time of intersection of t = t(x,x*) with
X = Lo(l -~ r) in case B. Thus t* is a function of T. Define TO =
F(Lo(l - 1)). Then t*(T) = TO when T > To and, when T < TO, t*(T) is

*
defined, through x , by

T = F(x) (2-133)
L (1-x)
n-1 © o-1
n n-l (L -n) "
L, x 1{2 1 n o
ek = F(x ) + == % %7 T (2-134)
q ZLox - X o
(a(n))
%
Since

B * - %
aT dx dT dx

de* _ dr#* dx* _de* // F'(x*)
and since F'(x*) > o, the sign of dt*/dT is the same as the sign of
dt*/dx*. Using Eq. (2-134) it is easily seen that dt*/dx* < o. Thus
t*(T) is a decreasing function of T in o < T < TO as shown in Fig. 2-6.
As T » o, x* + o, and we see from Eq. (2-134) that t% > .

We will now try to establish the explicit functional relationship
between t* and T. From Fig. 2-3 we see that t* = T + At where At is the
difference between t* and T, or the time of propagation of t(x,o0) beyond

t = T until the downstream boundary. Hence our interest is in the

determination of At. Thus we have from Eq. (2-53):
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Iig. 2-6.

T

t* as a function of T, rainfall duration.

V
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%
X n 1 n-1

[ (L, = &) a(&,t(8)) dt [a%n)]“cLo -n) 7 dn (2-135)

o %
x

ol o]

We shall give the quantity t* for all seven cases:
1. If q(x,t) is constant then we get:

L (1-1r)
° 1
1-n 1 - n—-1
= n
k43

1 n
[a—(-ﬁ";] (LO - 1) dn (2-136)

E3

2. If q(x,t) varies in space only, then we obtain:
1I-n
” Lo(l-r)

ek = T + % [ (L, - &) a(g) dE [&f%?] L -m ® dn (2-137)
[s)

3. If q(x,t) varies in time only, then we obtain:

1-n
* EN
X Py n-1
g o= T + (L - £) q (£(8)) dE Ll -m™ an (2-138)
n o > a(n) o
o *
X
4, 1If both o(x) and q(x,t) are constant then we obtain:
1 2n-1 2n-1
% = - = - -
t T + nq (Lo X ) (a] CEEED) (2-139)

5. If o(x) is constant but q(x,t) varies in both time and space:
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l-n
1 , 2l Zn-]_} r -
ne L@, - %) -(1.01_»)n
tx = T + [a} On = D 'J (LO - &) q (£,t(8)) dg (2-140)
o
6. If a(x) is constant but q(x,t) varies in space only, then we
obtain:
1 2n—~-1 2n-1 * 1~n
= *
ke {(Lo - x) no_ (Lor) n } X n
tk = T + [a] (zn _ l) J (LO - g) Q(E) dg (2~141)
o
7. If a(x) is constant but q(x,t) varies in time only, then we
obtain:
1 2n—-1 2n—~1 * 1-n
= %
Nk {(L0 - X ) - (Lor) n } X o
ko= T+ [a] T J (L &) a(E) dt (2-142)
)

*
We must, however, determine x before we can hope to determine the
partial equilibrium hydrograph. This quantity can be determined by
solving for the limiting characteristic curve t(x,0), passing through

the origin, at the point in (x,t) plane where it intersects the segment

t = T. That is,
% i-n
X n n
_ 1 1 3 -
T = J na(n) a(n)(Lo — n) [ (LO E) q (E,t(E)) dE dﬂ (2 143)
o} o}

Now we will consider all seven special cases.
1. If q(x,t) is constant then we get:

* I-n

X
1-n 1 9 o] B

T~ q n { 1 }n L0 - (L0 -n)
a(n) 2(L - n)

dn (2-144)
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then we have:

o}

J wr, -n" [ a(E,t(8)) 4t

n-1 n

dn

(o]

(2-145)

(2-146)

(2-147)

2. If q(x,t) varies in space only then we get:
* 1 n-1 i
X - —_ n n
1 1 \¢ n
T = EJ ETHS} {LO - n} J (Lo - &) q(&) dg dn
o] o
3. If q(x,t) varies in time only, then we obtain:
L (1-1) 1 n-1 i
) = —— | N n
1 1R n
T== {azﬁj} {Lo - n} J (Lo - &) q (t(&)) d& dn
o o
4, If o(x) and q(x,t) both are constant then we get:
( 1 1
* 2’-5 " 2in
Lo - X LO - X
a1 1).(1 T - 1T
n (L |n |[T|1 - 5=[T}~- 0 o
1{1 o) 2nj (n
r=3lE ) ) T T
r[1+§;1] [1—-2—11]
1
2(3+1)
1 %
o R|2 - == 3+ L|IL ~-x
1+ ] zln OL \
j=0 B[l + 7m s 3+ 1J o)
5. If o(x) is constant but q(x,t) varies in both space and time,

(2~148)
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6. If a(x) is constant but q(x,t) varies in space only, then we

get:
1-n
* ~-n
i X n-1 n n
=Y @ -m {[e@a -0l (2-149)
nlo o o
o o
7. If a(x) is constant but q(x,t) varies in time only, then we
get:
1-n
% —n
%- X n-1 n n
1i1 n
T = E[Q] f L, - f a(e(8)) (L - &) d5p  dn (2-150)
o o

2.2.4 Criterion to Distinguish Equilibrium and Partial Equilibrium Situations
One question arises: how can we distinguish cases A and B beforehand?

1t turns out that there is a simple criteriom, when q(x,t) = q, which

distinguishes cases A and B. From Eq. (2-13) we obtain, by setting t,=o0

and the left side equal to T,

dn (2-151)

*
Equation (2-151) has a root x between o and Lo(l - r) in case B and does
not have a root in case A. Since the right side, F(x), of Eq. (2-151) is
an increasing function of x, it is sufficient to determine the value of F
at x = Lo(l - r):
F(Lo(l - 1)) <T , case A

F(Lo(l - r)) >T , case B



57

CHAPTER 3
CONVERGING FLOW ON INFILTRATING WATERSHEDS

3.1 GENERAL REMARKS

The overland flow and infiltration have been extensively studied
as separate components of hydrologic cycle (Woolhiser and Ligget,
1967; Woolhiser, 1969; Kibler and Woolhiser, 1970; Singh, 1974; Lane,
1975; Philip, 1957; Hanks and Bowers, 1962; Whisler and Klute, 19653
Rubin, 1966). A combined study of these two phases is required for
modeling overland flow. Barring a few exceptions, notably the work
by Smith (1970) and Smith and Woolhiser (1971), the conventional
approach (Wooding, 1965; Eagleson, 1972; Singh, 1975f) to combine
these phases has been through the familiar notion of so-called rain-
fall-excess. In this approach infiltration is independently determined
and subtracted off from rainfall; the residual is termed as rainfall-
excess, which forms inmput to the overland flow model. It seems that
this concept of rainfall-excess is more of an artifice than a reality.
The processes of infiltration and rumoff occur almost simultaneously
in nature during and after the occurrence of rainfall and, therefore,
must be studied together. 1In this chapter we develop a combined
treatment of infiltration and overland flow on a converging surface.
The combined treatment will be useful in studying the effect of
infiltration on nonlinear watershed runoff dymamics. It goes without
saying that unlike the conventional approach, the present approach
does not require an independent, apriori determination of infiltration;
rather by specifying an infiltration function, infiltration and over-
land flow are simultaneously determined. Interestingly enough, this

evolves into a free boundary problem.
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3.2 MATHEMATICAL SOLUTIONS FOR CONVERGING FLOW ON INFILTRATING SURFACES
In the previous chapter, infiltration of water through the ground

surface was either disregarded or considered through rainfall-excess.

In this chapter we treat infiltration and overland flow simultaneously.

Let f(x,t) be the rate of infiltration; £ 1is dependent on the depth

of flow, h , in the following sense:

f(x,t) > o if h{x,t) > o

f(x,t) = o if h{x,t) = o

We will assume further that

q(x,t) > f(x,t) 3 o2t<T , oZ<X ;:Lo(l—r)

All the symbols retain their same meaning. Then the continuity and

momentum equations are:

oh , 3(uh) _ _ uh _
ﬁ + E}'{ = Q(Xa t) f(X,t) + (Lo_x) (3 l)
Q = uh = a(x) h" (3-2)

As before n > 1, and q(x,t) = o when t > T . The initial and
boundary conditions are:

h{(x,0) =

f
o
o

A

x < Lo(l—r) .
(3-3)
h(o,t) =0, o0t <T

It is plausible on physical grounds that there will be a curve

t=t%%) in{t>T; o<xx Lo(l—r)} , starting at x =0, t=7T,

and such that h(x,to(x)) o . This curve gives the time history of

the water edge as it progresses from x = o0 to X = L0(1~r) . Equations
(3-1) and (3-2) are satisfied in S = {o < t < to(x) , 0 <x< Lo(l—r)} .
Thus t = to(x) is a free boundary, and Egs. (3-1) to (3-3) and
h(x,to(x)) = o form a free boundary problem. In the domain above the

curve t = to(x) , h(x,t) = o . The determination of the free boundary

t = to(x) is, as we will see, relatively simple when ¢ and £ are
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constant (see Fig. 3-1); in this study we will discuss only that case
in detail.

Eliminating u between Eqs. (3-1) and (3-2) we get:

%% + n alx) hnml %g = q(x,t) - £(x,t) + %%ilzhzj - o' (x) n" (3~4)
Then the characteristic equations are:

&t _

%g = n o(x) pt1

& e gt - £t + %{%% - o' (x) B

The solution of Egs. (3-4) and (3-3) is the surface h(x,t) formed by

all the characteristic curves through the segment ¢t =0 , ©

kA

Lo(lwr) and the segment x =0, o0 <t < T . The free boundary
t = to(x) is the locus h(x,t) = o in the (x,t) plane. If we take

x as a parameter then the characteristic curves are given by:

de _ 1 — (3-5)
dx  n a(x) h*

dh _ g(x,t) = £(x,t) + h _ a'(x) h (3-6)
dx n a{x) hn_l n(Lo—x) n o(x)

and the initial conditions are:

t(o)=to , h(oe) = o0, o_;to_;'f (3-7)
or

t(xo) =0 , h(xo) =0, 0X% X é:Lo(l—r) (3-8)

We assume that the curves ¢t = t(x,to) , which are the solutions of

Eqs. (3-5) - (3~7), do not intersect for distinct values of t -
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Rainfall
4

~Infiltration

LIS ST TSI S S S S
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Y
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Fig. 3-1. Rainfall and infiltration, constant in time and space.
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Similarly we assume that the curves t = t(x,xo) which are the solutions
of Egs. (3-5), (3-6) and (3-8), do not intersect for distinct values of
X, This is true when ¢q and f are constant and (LO - x)/o(x) is
a decreasing function of x ; it is known from the previous chapter
when t < T , i.e., in domains Dy and D3 (Fig. 3-2) and when t > T ,
it is proved in appendix E.

We distinguish three cases A, Bj and By which depend on the relative
disposition of the three curves t = to(x) , t=T, and t = t(x,0)
(t = t(x,x*) 1is the prolongation of t = t(x,0) to the right of
x = x*) as shown in Figs. 3-2 - 3-4 .
Case A. to(x) > T > t(x,0) , 0 <X ;:Lo(l-r)

Case Bj. to(x) > T and to(x) > t(x,0) , but t =T and t = t(x,0)

t

intersect at x = x* , i.e., T = t(x¥,0) and o < x* < Lo(lwr) .

Case Bj. to(x) >T but t =T and t = t(x,0) intersect at x = x¥
and t = to(x) and t = t(x,x*) intersect at x =%, i.e., to(;) =
t(;,x*) and o < x < Lo(l—r)

Since to(x) and t(x,0) are not known until we have solved the
problem, it appears that we cannot distinguish these cases beforehand.
But in the special case which we consider in this paper, q(x,t) and
f(x,t) both constant, we can distinguish the three cases beforehand.
The domains Dj, Dy and D3 in case A, and the domains Dj;, D32, Dy and
D3 in cases By and B, are indicated in Figs. 3-2 - 3-4 respectively.
3.2.1 Case A: Equilibrium Situation

In case A the solutions in domains D, and D3, when q and £ are

constant, are obtained from the discussion in chapter 2. Let us define:

q*:

q«.
*_q*
B‘[E}

Sl Hh



62

t=11x)
O
q=0
g>0
D,
D3
t=1(x,0)

Fig.

x=L{I-r)

3-2. Solution domain for equilibrium case A.
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t
t=1°(x)
b=t (%, ™)
DH
q=0 Di2
-
q>0 !
Dz ' D3
t=1(x,0) ;
0 x> Lft-r) %

Fig. 3-3. Solution domain for partial equilibrium case Bl.
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ft(x,x)
t=1(x) |
Dy, I
q=0 D2
q>0 ! |
' i
Do | :
t=t(x,0) : !
| i
i i
| |
: !
! l -
x" X Ll-r) %

Fig. 3~4. Solution domain for partial equilibrium case BZ'
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Then in domain D, the solution is given by Eqs. (2-12) and (2-13) with

q replaced by (g - £f)

1
_ n
% o2 - &y - x)?
h(x,to) = B LQ(X) (LO _ X) (3‘_9)
X i n-1
1 |n LO -1 n
e(x,t ) = £+ 7 7 dn (3-10)
a(n) L - (L =-n
| o o
If a(x) = o , a constant, then we have:
1 1
e T2 - @, - w2 n
h(x)to) = 8 a (Lo - X) (3"‘}.1)
1= -1
% iln Lo -1 n
t(x,to) = to + v" - " ) dn (3-12)
o LO - (LO - n)
o

The bracketed term in the intergrand can be expressed by an incomplete
Beta function. Substituting & =((LO - n)/LO)2 in Eq. (3-12) we

obtain:

t(x,to) = t
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1 1
vk L 3 (I-52)-1 =-1
=t ts |73 g -8 dg -
J
(o] o
(1-55)-1 11
3 -8 dg
1 1
% % 1 1 Lo - x : Lo = % 1
v L ra - 3) T - 1o |2
N _ 0 o
1 -1
2 o (1 + Zn) (1 Zn)
o B2 - i+ D (L - x) 20
1+ ) T (3-13)
j=o R(1 + 5 s i+ D LO

In domain D3 the solution is given by Eqs. (2-33) and (2-34) with q
replaced by (q - f) :
1
L -x)2-(L -x2|"
Lok 0 0 () _
L n-1
N £\ L, - "
t(x,x ) =¥ " - dn (3-15)
a(n) L, - %)%~ (@&, -n)

%o
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Tf a(x) = o , a constant, then we obtain:

1 i
N @ -x)2-@ -x2|"
- * [0} [o} (e} _
h(x,x ) = B [&} o (3-16)
1 n~1
o n-1
l it (L - n) n
e(x,x ) = v* |- = dn (3-17)
o (L0 - XO)2 - (LO - )%
X0

Substituting the transformation ¢ ((L0 - n)/(LO - xo))2 and making

proper algebraic manipulations we get:

11
v (L, - =" (1—:;—n)—1 %1-1
t(x,x ) = 5 |7 g€ (-8 dn
2
[L = ]
[o]
L ~-x
(e} Q
1 5.1 2.1
% n 1 1 n n
) I Lo - X (1 Eﬁ) P(n) _ Lo - X - L0 - x
1
2 o r{1 + 5;) Lo—x0 L0 - %,
1 o B2 -5 D (L 2(3+1)
— |1+ ) T (3-18)
1 - 55) j=o B(1 + PR i+ L0 - X

In domain D; we solve Egqs. (3-5) and (3-6), with q(x,t) = o and

f(x,t) = £ , subject to:

t
=

%
t(x7) =
° 1
it

2 _ _ oG *N2
L0 (Lo xo)

i
w
%

Y
a(xo) (Lo - xo)

Then the solution is (here p = f/q)
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1
(1-p)L2-(L -x92+p(@_-x2 |
h(x,x2) = 8 2 °o.9° 0 (3-19)
2 a(x) (L - x)
(]
1 n-1
< E n-1
1 a L ~n n
t(x,x:) =T+ vy " o r— > dn (3-20)
a(n) (1-p) Lo - (LO—XO) + D(Lo-n)
*
X
e}
If o(x) = a , we obtain:
1 1
Nl @-)L2-(1@L -xMH2+p@ -x)2|"
hGe,x®) = 8 |- ... 2.0 ° (3-21)
o 2(L_ - x)
o]
1 n-1
1 nox L0 -n n
t(x,xg) =T+y |- - — - dn (3-22)
o (I-p) L° - (Lo—xo) + o(L0~n)
X*
[o]

Equation (3-22) can be expressed in terms of Beta functions.

Let

= - - 2 _ow®2
A (1 p) LO + (Lo xo)
" E — 2
£=3 C)

Then we can write:

o ol n-1
1in 1in L -n n
t(x,x:) =T + v [—} [——] ;
_ _P -2
o N A 1 i (LO )
[s]
P *
T (L -x7)
R o n-1
1, .
_ 0" (=1 " (ealp)”|* de
oo e s
p(Lo—x)
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& *
AL
1 led, -1 1 1
no(q 2 — (1—5)—1 E_l
=T+ Yy [-] [35] - 1D € (1-8) dg
o (L -%)
A
¢ 0 N
_ (L -x")
1 }(n—l) n-l Ao "o (l*l)—l 14
nog 2 n n
=T + = — -1 1- d
T+ Yy [] [MJ (-1 * 2 (1-&) &
p (L) °
A )
(1-3-1 I
- & (1-8) dg r
o
PC (CR R
- 1L -1y B I T N - -
=T+ Y [G} AQ ( 1) Bw(l n > I'L) Bd)(l o H Il) (3 23)
P . p(L, ~ %)
where ¢ = " (Lo - xo) and ¢ =
The curves t = t(x,xz) do not intersect in domain D; ; the curves
£ = t(x,to) do not intersect in domain D, ; and on the assumption
L -x
— 2 <5 (3-24)
dx { a(x)

the curves t = t(x,xo) do not intersect in domain Dgy (appendix B).
The free boundary ¢t = to(x) is now determined by

1 - L2- @, - xg)2 +0 (L, - x)2 = o (3-25)

and (3-20). Elim%nating xz between Egs. (3-20) and (3-25) we get
n--

Bl

o
(here w = [%] ) we obtain:
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Bl
i
[

-1 (L -n)
%) = T + o 2 dan (3-26)

a)) | @, - m? - @, - 02

¥ (x)

where Y(x) = LO - [@ -9 LO2 + p(L0 - x)z]lé

As in chapter 2, for fixed x , h(x,t) is an increasing function of
t din domain D3y , independent of t in domain D, , and a decreasing
function of t in domain D; (see Fig. 3-5).

The criterion to distinguish between case A and cases B; and By,

as in chapter 2, is obtained from:

1 n-1

. X 1\ Lo - n
t =y dn (3-27)

a(n) LO2 - (L, - m?

If o(x) = o , then we obtain:

1}n X LO - "E"

2 _ _ 2
L, (LO n)

This can be further simplified and written as:

1.1
1
T=35 |— m (1-n) dn
o
2
—-X
o]
L
Q
L-—xz
1 T
v (L )" (1-5%)-1 %—1 © (1-5%)~1 %—1
=35 13 (1-n) dn - (1-n) dn
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hix,t) A

(x)

max = 0 |- - - = = = = - - = -

|
: region
t(x,0)
{a) Case A 0o < x < Lo(l - r)
(b) Cases B1 and B? o < x < x*

Fig. 3-5. Depth of flow h(x,t) as a function of t for fixed x.
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1

, ——

cpfl bl e

- 1 1
2 la ML+ 5= ) 1 -3

Bl

1 2(3+1)
B(2 = = 3 1+ 1) |[L -x
- 2n1 0 (3-28)
B( 1 + 5 s J+ 1 LO

If Eq. (3-27) does not have a root between o and L0(1~r) then we
are in case A; if there is such a root x* then we are in case By or
Bo. If £(x) is the right side of Eq. (3-27) then case A occurs if
and only if f(Lo(l~r));:T , and case Bj or B, occurs if and only if
f(LO(l—r)) > T . To distinguish between cases By and B, we note,
referring to Eq. (3-19), that:

_ 2 ) - 2 - -
1-0)1, T, = x)*+o(@ ~n) o (3-29)
does not have a root between o and Lo(l—r) in case B; and does
have such a root x in case Bp. Such a root exists if and only if

2.2 1 _ouy2 Lo 2
Lo ré < . (L0 x") (p 1) Lo
or

1 - p(1-r2) < (3-30)

Thus if Eq. (3-30) is true, we are in case B,; otherwise we are in

case B;. In case B, the intersection of the curves ¢t = t(x,x*) and

t = to(x) occurs at
1
o1 -3 O R 2 2
X LO [? (LO x") (p 1) L%J (3~31)
- 1
X -
n
_ 1 (LO - )
t=T+ w dn (3-32)

a(n) (Lo-n)2 - (LO-E)2
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We now discuss the solution in cases Bj and Bj.

3.2.2 Cases By and Bp: Partial Equilibrium Situation

In both cases the solution in domain Dy; is given by Egqs. (3-19)
and (3-20), in domain D, by Egs. (3-9) and (3-10), and in domain Dj
by Eqs. (3-14) and (3-15). It remains to determine the solution in
domain Djy. As in chapter 2, we define xz by T = t(x:,xo) ; here

x> ;,x* £ Lo(l—r) . Thus from Eqs. (3-15) we get:

O =
T w
1 L0 -0
T = Y* 5 5 dn (3_33)
a(m) | (@, - x )%~ (L ~n)
X
o
If a(x) = o , we get:
x* n-1
nl® n
1 L -n
_ Uk 0
T =y - - " dn (3-34)
o (L, ~ x))° -~ (L, -m
X
o

Then from Eqs. (2-33) and (2-34) of chapter 2 we get:
1
n

(1I-p) (L ~x )2 = (L -x¥)2 + o (L —x)?
8 [s s} oo o (3-35)
o(x) (LO - X)

3
h .
(%3 X x )

n~-1
* n Ey
. 1 (L0 -n)
t(x3 X s xo) =T+ v . — "
. a(n) (l~p)(LO-x0) -~ (Lo—xo) + o (L _-n)
XO
(3-36)

It is proved in appendix E that the curves defined by Eqs. (3-34) and
(3-36) do not, on condition given by Eq. (3-24), intersect in domain Dj;.

In case B, part of the boundary of Dy is t = to(x) . This is
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obtained by eliminating X and xz between Eqs. (3-33) and (3-36),
and from Eq. (3-35),

(1=-0) @ - xo)z - (L - xz)z oL, - x)2 = o (3-37)

o}

From Eq. (3-37) we get xz = $(x,x0), where

Woox) =L - [(L-p) (@ - x )2+ P - 027 (3-38)
Thus t = t (x) is defined by
1 n-1
V(x,x ) = n-1
0 1 n (L _ n) n
T = y¥ 0 dn (3-39)
a(n) @, - xo)z - @, - n)2
X
0
* 1 n-1
» 1 \" (L =) "
tx,x) = T+ w o dn (3-40)
a(n) @, - n)? - @, - x)2
W(x,xo)

fn Egs. (3-39) and (3-40) E';:x §2L0(1~r); when o < x < X, to(x) is
defined by Eq. (3-25).

The behavior of h(x,t} as a function of t for fixed x ,
0 < x < x*, is the same in cases B; and By, as in case A (see Fig. 3-5).
In cases By and By, ht(x,t) > o when (x,t) £ D3 and ht(x,t) < o0
when (x,t) & Dj;; the arguments are the same as in case A. The
maximum of h(x,t) occurs therefore when (x,t) € Dy, (Figs. 3-6 and 3-7),
but it can occur on the boundary of Dy, as chapter 2 (p = o) . Figures
3-8 ~ 3-10 illustrate the possibilities. Appendix F provides further

details.
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h{x,t) |

max

(a) Case B X <x 2 Lo(l - r)

(b) Case B X <x <X

Fig. 3-6. The depth of flow, h(x,t), as a function of t for fixed x.
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i

h(x,t) |

(xX) F-----"~ -2

max

— v wr e = = e o - - -

T fmox(X) fo(X)

Case B ;<<X;Lo(l~r)

Fig. 3-7. The depth of flow, h(x,t), as a function of t for fixed x.
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t A
/’r=1‘°(x)
t=1(x,x")
I
T |
}
|
!
|
|
|
l
]
t=1(x,0) :l
X" L (I-r)
Case Bl: o small; a(x) = a; I = region where ht(x,t) > 0

Fig. 3-8. The behavior of h(x,t) as a function of t for

fixed x in domain D12'
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t=1(x,0)

I

x

Lo(l-r)

Case Bl: p intermediate; a(x) = a; I = region where ht(x,t) > 03
I1 = region where ht(x,t) < o.

Fig. 3-9. The behavior of h(x,t) as a function of t for fixed

X in domain D12'
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t
)

t=t(x)
'\
: *
o ot=t(x,x")
i
1
)
1
l
i
= t=1(x,0)
|
I
i
¥*
X LfI-r)

Case B.: a(x) = o; I = region where h_(x,t) > o; IL =
t
region where ht(x,t) < o.
Fig. 3-10. The behavior of h(x,t) as a function of t

for fixed x in domain D12'
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CHAPTER 4
PARAMETER ESTIMATION AND OPTIMIZATION

4.1 CHOICE OF OBJECTIVE FUNCTION

The concept of automatically determining optimum model parameters
requires that the objective function be compatible with the intended
use. However, there is difficulty in defining an error criterion
that, upon minimization, will produce optimum parameter values without
an undesirable bias,

Several objective functions are available. A brief examination
of each of them will be appropriate at this point.

4.1.1 Sum of Squares of Deviations

For the surface runoff problem the objective function based on

the sum of squares of deviations may be defined as:
M

F=] [Q(ise) - Q (18t)]2 (4-1)

j=1 © e
where F = index of disagreement, or error, Qo(t) = observed runoff at
a given time ¢t , Qe(t) = estimated runoff at a given time t , and
MAt = duration of runoff event. This F is analogous to the residual
variance of a regression analysis. The minimization of the functiom
F 1is designed to match the entire hydrograph even though greater
weight is given to higher values of runoff. 1In the course of matching
the entire hydrograph, it is likely that too great a weight is placed
on small discharge values because of their sheer large number resulting
in poor hydrograph peak matching. One weakness of this objective
function is that it is strongly affected by poor time synchronization
between the measured rainfall and runoff.

The value of F may be computed for each rainfall-runoff event
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if the fitting for an individual event is desired. If the model para-
meters are to be optimized over a set of events, F needs to be com-
puted over the set. In that case F will be a very poor index of
measuring disagreement because the event having the least weight may
be the most important of all. This is a rather severe limitation for
flood studies.
4.1.2 Sum of Squares of Peak Deviations
This can be expressed as:

Q ) -a GN? (4-2)
=1 Po Pao

where QP (j) = observed hydrograph peak for the jth event, Qp Gg) =
o} e

estimated hydrograph peak for the jth event, and N = number of rumnoff
events in optimization set. This is particularly suitable in flood
studies and seems to have some attractive features. Obviously, among
peaks greater weight is placed on higher peaks. Implicitly, it
assumes that from a risk viewpoint loss increases quadratically with
the peak runoff. If F is divided by the number of events, the mean
squared error will result. This shows, on the average, how much
error occurs as the optimization is performed over a set of events.
Because it requires only the hydrograph peak from each event, it is
efficient computationally. However, its use is not recommended where
hydrograph peak is not an important consideration, e.g., low flow
studies.
4.1.3 Sum of Squares of Logarithmic Deviations of Hydrograph Peak
and Volume

The objective function comprises two components:
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N

F =) (#nQ_ (3) - #mQ_ (3))? (4-3)
j=1 po pe
N

F, = ] (faVol (3) - 2avol (3))? (4-4)
j=1

Then

F = aF; + (1 - a)F, (4-5)

where Volo(j) = observed runoff volume for jth event, Vole(j) =
estimated runoff volume for jth event, and a = a weighting factor
chosen arbitrarily. It is evident from the equations that this
objective function gives weight to both the volume and shape character-
istics of the runoff hydrograph. The error between observed and
estimated values is computed in terms of logarithmic deviations
rather than natural units to prevent the parameters from being biased
to fit only large magnitude events. To make it even more flexible,
an arbitrary constant a is introduced as shown in Eq. (4~5). This
constant can be chosen in accordance with the emphasis intended to be
placed on a particular error component. For example, should the
hydrograph peak be emphasized a should be greater than 0.5.

4,.1.4 Sum of Squares of Logarithmic Deviations of Normalizing Time

This is defined as:

F (fnT (§) - 20T (3))? (4-6)

=1 o e

1
=

where T0 (j) = observed normalizing time for event j, and To G3) =
o e

estimated normalizing time for event j. The normalizing time is
defined in appendix G. Tt is specifically designed for kinematic

wave models. Because of its specialized nature it is not usable in
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all runoff model optimization problems.

An attractive feature of this objective function is that the
parameters can be solved analytically as shown in appendix H. Com-
putation of F 1is performed over a set of events chosen for op-
timization. A least squares procedure is invoked to derive explicit,
analytical expressions for the parameters. This feature makes it
computationally more efficient than any other objective functiom.
Hence, the optimization set of events can be as large as desirable.
Implicitly it reflects somewhat on the physical adequacy of model
structure. In other words, if the hydrograph matching is good using
this objection fumction, it is implied that the model structure
adequately represents the dynamics of runoff process.

It must also be pointed out that for each event, parameters n
and o will have to be determined to compute the "observed' normal-
izing time. This will require that the parameter determination should
be based on matching of, say, hydrograph peak. This operation is
carried out for each event in an optimization set.

4.1.5 Sum of Relative Differences Raised to Power K

This can be written as:

u (o (iae) - q_(ist))*

i=1 Q (iAt)

For K = 1 , this objective function places equal emphasis on all the
ordinates. This, in fact, is a normalized version of Eq. (4-1). TFor
K > 1, the effect will be to fit the smaller ordinates better. This

may be more appropriate for fitting drought models.
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1t may be useful to point out that all the foregoing objective
functions share some common properties. They include:

1. For certain classes of problems (linear models) the contours
of F become quadratic surfaces which are amenable to very powerful
optimization techniques.

2. TFor linear models F has statistical significance since
F/(N - 1) (where N = number of data points) is the variance and can
be used to place confidence limits upon the optimized parameter values.

3. For flood forecasting, greater emphasis is placed on matching
the flood peak of a hydrograph. Peak ordinates are often an order of
magnitude greater than the average ordinates and, therefore, near
equal absolute errors mean proportional errors in the large ordinates.

The following objective functions are also useful but have limited
general applicability.

4.1.6 Sum of Absolute Differences

This can be expressed as:

=1
fl
el 4

BRCHCURERCILS (4-8)

This objective function is stable in the sense that reduction of F
quarantees a reduction in the area between the two curves. It places
less emphasis on large ordinates of the hydrograph.

4.1.7 Sum of Squares of Deviations Raised to Power K

We can write as:

M

F=] [q(is) - o (1a0)]" (4-9)
i=0

K=1, 2, . . .
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By increasing K the emphasis of fitting is increasingly placed on
the larger ordinates.

4.1.8 Absolute Differences of Peak and Its Time

This is expressed as:

Q () -a )
Py = |0 Te (4-10)
' Q. ()

pO

t (3) - t_ (J)
po pe

‘ F2 = t (j ) (4"11)
pO

F =aF, + (1 - a)F, (4-12)

where tp (j) = observed hydrograph peak time, and tp (i) = estimated
) e

hydrograph peak time. If equal emphasis is placed on both F; and F,
then a should be 0.5. This function can be used in fitting only one
point on the hydrograph for each event, e.g., the peak and its time.
4.1.9 Absolute Difference between Observed and Computed Peaks
Q () - ()

Py Pe

Qp (3)

(o]

F = (4-13)

This will be frequently utilized in fitting only the hydrograph
peak due to an event. It will be seen in the next chapter that this
will be used in estimating the parameter o of one-parameter kine-
matic wave model. F will be chosen to be less than or equal to 0.0l.
4.2 OPTIMIZATION TECHNIQUES

An optimization technique is an algorithm to find the optimum

value of the objective function, F (as defined in the preceding
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section), for a given problem. In context of the present study, the
optimum value of F will be its minimum. Consider the functional
representation,

F=f(X, X......%) (4-14)
Equation (4-14) shows dependence of the objective function, F , or
quantity whose optimum is required, upon a set of control variables,

or more appropriately parameters, X3, X, + » « + o . XN . For objective
functions that are dependent upon only two parameters the distribution
of F wvalues for different parameter values can be plotted as shown

in Fig. 4-1. For objective functioms controlled by many parameters,

the region in which the F values lie is a multi-dimensional vector
space of which the plane is the two-dimensional example.

The procedure of optimization requires the assignment of a
reference frame by which to define positions of objective function
values. The origin of this reference frame is normally taken as the
point at which all parameters have zero value while reference di-
rections are a set of mutually perpendicular axes that span the full
vector space, i.e. that allow any point within the vector space to be
referenced.

By altering the values of the parameters, different points within
the vector space can be referenced and the corresponding value of the
objective function F evaluated. A comparison of each new value of
F with the previous best value allows a decision to be made as to
whether the new point is better than the old one. As the search
causes the value of F to be evaluated at many points, an impression
of the shape of the response surface can be gained. This impression

may not be comprehensive but can show such things as surface
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X

Fig. 4-1. A typical response surface (after Ibbit, 1970).
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discontinuities, surface steepness, presence of more than one
optimum F value, persistence of surface characteristics, etc. By
utilizing this information it may be possible to make assumptions
about the response surface that allow future searches to be made
more rapidly and easily or place confidence limits upon the final
optimum parameter values found.
4.3 PROBLEMS INVOLVED IN OPTIMIZATION TECHNIQUES

There are four main types of structure in a model response
surface that can confound an optimization routine.
4.3.1 Local and Global Optimum

In maximization problems the global point is the point which
has the highest value of the objective function, F , and vice~versa
for minimization problems. Figure 4~2 shows a two-dimensional response
surface on which there is more than one closed contour for a given
value of F . The "peak" at the center of the righthand closed contour
for F = 2 is a local optimum while the "peak' inside the contour F = 3
is the global optimum. This poses the problem of defining if the true
optimum has been found when the technique is said to have converged.

If the optimization routine starts at point A in Fig. 4-2, it
will, in all probability, find a nearby local optimum such as P, .
Once at the local optimum, the technique will be able to satisfy its
built-in test for convergence. For example, it will find that for
small perturbations about its present point only worse points can be
found. The optimizing program has no means to move to a higher peak
from a lower one since it finds only one peak.

Local optima have all the properties of the global optimum ex-

cept the value of the objective function F . If the optimal F were
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FPig. 4-2. Existence of multiple optima (after Ibbit, 1970).
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known a priori, an assessment could be made as to whether or not the
global peak has been achieved. Normally F is unknown a priori.
Knowledge about the global optimum a priori can enable the decision
to be made about the attainment of global optimum. Even though the
global F value is unable in itself to furnish any information about
its location. Consequently, the only thing to do if an attained opti~
mum has an F value less than a known global F is to re-optimize
the problem from different starting points on the response surface and
hope that the global optimum will be found during a sufficient number
of attempts. It is worth noting that when there is more than one
optimum a saddle point must be present.
4.3.2 Saddle Points

For two-dimensional problems saddle points manifest themselves
having a maximum (A-A) along one direction and a minimum (B~B) along
another direction. This is shown in Fig. 4~3. This structure is less
troublesome than local optima, since directions in which further pro-
gress can be made are available. Unfortunately, if next directions
are defined as C-C and D-D in Fig. 4-3, both these directions
have maxima along them, and then convergence will have been declared
at such points.
4.3.3 Constraints and Feasible Regions

From a physical consideration of the problem being tackled,
certain constraints may be imposed on parameter values, e.g. runoff
cannot be negative. Imposition of limits on the parameters means
searching directions with parameter increments that do not violate
the constraints. This is satisfactory until the best valid point

gets too close to a constraint value. When this occurs step sizes
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Existence of a saddle point (after Ibbit, 1970).
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shrink and the amount of information that the optimizing routine
receives about the shape of the response surface decreases. Eventu-
ally the point is reached at which no information is obtained and

the optimizing routine is unable to continue the search. This
problem not only causes premature convergence on to a constraint
value but is wasteful since many functional evaluations at very small
parameter increments are needed to define what is effectively a false
optimum.

When constraints are applied to a problem, the region in which
the points that satisfy the constraints lie is known as the feasible
region and all points within the region are known as feasible points.
Conversely, the region of points that violate the constraints is known
as infeasible region and contains all the invalid or infeasible points.
The shape of the feasible region depends entirely on the comstraints,
and is important. This is depicted in Fig. 4.4.

If the response surface function is convex and if the constraints
are convex then there is only one optimum, the global optimum. It may
well be that in a constrained problem, the global optimum lies in the
infeasible region. This leads to the best feasible point being at a
position on one or more of the constraints. In this case the optimum
is known as the constrained optimum. The latter is global only if the
conditions of convexity are met.

Constrained optima always occur for linear problems subject to
constraints since the response surface is a straight inclined plane
that stretches to infinity. In this case constraints are vital to con-
vergence and functional evaluations are made only at points on the

boundary of the feasible region.



93

Boundary of the
Feasible Region

Constrained Local
Optimum

!
!
I
!
!
!
!
!
!
/
!
!
]
/

-—Constrained Global

oo,
[ []/]77
/
A A A Optimum
£
X

Fig. 4~4.

regions (after Ibbit, 1970).

Non~convex



94

4.3.4 Insensitive Directions and Parameter Correlations

Insensitive directions usually occur when a given parameter
completely fails to enter the evaluation of F . This problem can,
to a certain extent, be minimized by a judicious choice of constraints.
If the optimizing technique is stable, insensitive directions reveal
themselves as zero progress and this can cause a collapse of the
vector search space. See Fig. 4-3.

Correlations between parameters exhibit themselves as ridges in
the response surface that are inclined to the parameter axes. If the
parameters are linearly correlated, the axis of the ridge will be
straight as shown in Fig. 4-6. The inclination of the axis of ridge
denotes the degree of correlation or dependence between the parameters.
This dependence may be caused by the model structure in which case it
will be a persistent feature for different data sets or it may be
caused by the data to which the model is being fitted. When the
correlation is nonlinear, the ridge becomes curved.

When correlation between parameters is present, simple one-
parameter-at-a-time optimization techniques, in which search directions
always remain parallel to the parameter axes, are very slow and may
converge prematurely simply because the search directions get astride
the ridge in much the same way as D-D and C-C in Fig. 4-3. Techniques
that can overcome this difficulty use the information gained from a
search cycle to define the axis of the ridge and then use this as a

good new search direction in the next search cycle.
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Axis of Correlation

Fig. 4-6. Parameter correlation (after Ibbit, 1970).
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CHAPTER 5
A LABORATORY INVESTIGAT;ON OF CONVERGING OVERLAND FLOW
5.1 GENERAL REMARKS

Laboratory watershed models offer opportunities to study unsteady
flow in a number of geometrically different systems. They are a power-—
ful tool in testing purely mathematical models of watershed hydraulics
and also in testing the applicability of lumped system models (linear
or nonlinear) over the range of proto type sizes that can be accomodated.
Studies of surface runoff on small prototypes without small variation
in rainfall will unquestionably answer some interesting hydraulic and
hydrologic questions. When used in conjunction with mathematical
models they aid in understanding and predicting watershed behavior.

Experiments on a natural watershed are time-consuming, and there
is no control over the imput. The physical size of the system is also
a problem; so for practical reasons, some investigators attempted to
model hydrologic systems utilizing a change in scale (Chery, 1966).
They found that this was not a viable approach. Grace and Eagleson
(1966) demonstrated that scale models were feasible only in very special
cases.

An important consideration, however, is that a laboratory model
must duplicate the most important features of the complex system. If
it does not, it cannot give insight into real system behavior.
Realizing the significance of laboratory watershed models in hydrologic
research, several investigators have carried out experiments on surface
runoff process (Izzard, 1943; Woo and Brater, 1962; Robertson et al,

19663 Chow, 1967; Yen and Chow, 1969; Dass and Huggins, 19703 Kundu,
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1971; Woolhiser et al, 1971; Langford and Turner, 1973; Muzik, 1973;
Singh, 1974). For a detailed discussion and review of laboratory
experiments see the reference by Singh (1975g).
5.2 ANALYSIS OF EXPERIMENTAL DATA

This chapter includes an analysis of data obtained on the rainfall-
runoff experimental facility at the Colorado State University Engineer-
ing Research Center, Foothills Campus, Fort Collins, Colorado. A
detailed description of the experimental facility can be found elsewhere
(Woolhiser et al, 1971; Woolhiser and Schulz, 1973; and Holland, 1969),
and will not be repeated here. The plan view of the experimental
facility is given in Fig. 5-1. The data considered here are from the
upstream, converging section portion of the facility. Data include
pulse rainfall and runoff hydrograph observations for various con-
figurations. FEach configuration represents a unique type of surface
composition or geometry as indicated in appendix I. A detailed treat-
ment of data acquisition on various types of surfaces is given by
Holland (1969). Data are available for 50 configurations and can be
grouped into seven categories for analysis purposes.

In this study parameters were estimated in two different ways; by
single storm estimation, and by optimization over a set of events.
The term parameter estimation is used for the operation when the
parameters are determined by fitting an individual event. For example,
in this study parameters n and o were estimated for each event by
fitting the hydrograph peak and its time (Eq. 4-12). When n was kept
fixed, parameter « was estimated for each individual event by fitting

its hydrograph peak (Eq. 4-13).
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Fig. 5~1. Plan view of CSU Rainfall-Runoff Experimental Facility.
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The term parameter optimization is used for the operation when
parameters are optimized over a set of events utilizing a specified
objective function. The parameters so obtained will form an optimum
set for that set of events. For example, in this study, parameters
are optimized over a set of events utilizing one of the two objective
functions: either Eq. (4-2) or Eq. (4-6).

5.2.1 Identification of Model Parameters

In the event that there is a one-tc-one correspondence between
the geometric configuration of the watershed and the model, and there
is no infiltration, the kinematic wave model contains only two para-
meters (Eq. (1-2)). When dealing with many events it is important to
have a method of parameter estimation that is simple and fast.

Parameter Estimation

A basic property of the kinematic wave theory suggests that for
a given rainfall there is a unique pair of the parameters n and a
such that the computed peak runoff is exactly the same as the observed
peak runoff at that point in time. In view of the objectives of this
study, the criterion of Eq. (4-12) was used for parameter estimation.
1t was found that this peak matching technique led to predicted
hydrographs that agreed quite well with the observed hydrographs at
all times.

Graphical and numerical peak matching procedures were developed.
The error criterion was chosen to be 0.05 for graphical procedure
and 0.0l for qumerical procedures. The numerical procedures were
based on Newton's algorithm for a system of nonlinear equations

(Conte, 1965). The graphical procedure is illustrated in appendix H.
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Runoff hydrographs were reproduced for several rainfall events
for which the parameters were estimated. They were compared with
the observed runoff hydrographs, and were found to be in good agree-
ment. A sample comparison is shown in Fig. 5-2. It is clear from
the comparison that not only the hydrograph peak and its time ave
well matched but the entire hydrograph is well reproduced. This in-
dicates that the model has the potential for adequately representing
the runoff hydrograph generation process.

Parameter Optimization

A statistical least squares technique was utilized in developing
an optimization program for optimizing the parameters n and o
(Eq. (4-6)). 1Its development is detailed in Appendix H. Twenty
rainfall events were selected for the butyl surface and light gravel
surface of the experimental facility. The parameters n and o
were determined for each event by the numerical procedures using the
objective function of Eq. (4-12). Optimization of the parameters was
performed. Optimized values of the parameters were found to be
n=1.29, and a = 1.91 for that set of selected events.

Utilizing the optimized values of the parameters n and o as
obtained above, hydrograph predictions were performed for four rain-
fall events on the light gravel surface of the experimental facility.
Comparisons were made with observed runoff hydrograph peaks and
their timing, and were found to be in good agreement. Figs. 5-3 and
5-4 demonstrate sample comparisons. Table 5-1 gives statistics of

comparisons.
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Fig. 5-4. Hydrograph prediction on rainfall-runoff
experimental facility.
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Relationship between Qp/q and tp/D

Twenty-five rainfall-runoff events were selected for analysis
on the butyl and gravel surfaces of the experimental facility. The
dimensionless quantities Qp/q (hydrograph peak divided by the rain-
fall intensity), tP/D (time to hydrograph peak divided by rainfall
duration) were computed for each event. Qp/q was found to be cor-
related with the logarithm of tp/D . A remarkably high correlation
coefficient, 0.9423, with a standard error of estimate = 0.0929, was

obtained. The relationship can be expressed as follows:

Q
7% = 0.86557 ~ 0.94709 log (t /D) (5-1)
with standard error 0.07017. A graphical display is shown in Fig. 5-5.

This relationship will be useful in hydrograph analysis.

Relationship between Qp/q and D/To

For the same set of 25 rainfall events on butyl and gravel sur-
faces, the parameters =n and d were estimated by the graphical
procedure, utilizing the objective function of Eq. (4-10). A least
squares analysis was performed to provide optimum values of the
parameters n and o for these events. Employing these optimized
values of n and o , the normalizing times, TO , were computed for
each rainfall event using the defining equation presented in appendix
G. The quantities Qp/q and D/'I‘0 were then computed, and a linear
regression analysis was performed to relate them. The correlation
coefficient was found to be as high as 0.9545 with a standard error of
estimate = 0.0688. The relationship is shown in Fig. 5-6, and ex-

pressed quantitatively as
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Fig. 5-5. Relationship between Qp/q and tp/D for hydrographs

from the butyl and gravel surfaces of rainfall-
runoff experimental facility.
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Fig. 5-6. Relationship between Qp/q and D/To for hydro-

draphs from the butyl and gravel surfaces of
rainfall-runoff experimental facility.
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QP/q = - 0.08600 + 1.31778 D/TO (5-2)

This relationship can be useful in numerous applications-hydrograph
analysis and parameter estimation, to name but a few.

Parameter Variability and Interrelationship

As mentioned before, experimental facility runoff data were
available for 50 geometric configurations of varying surface character-
istics. These geometric configurations were divided into seven groups
according to surface characteristics. Configuratiors having similar
surface characteristics were placed in ome group. The last group was
formed by lumping together all the surfaces.

Two hundred and ten experimental runs were analyzed and parameters
were determined by mathematical procedures utilizing the objective
function of Eq. (4-12) as shown in appendix J. It was found that the
parameter n was quite stable, while the parameter o was extremely
sensitive to rainfall characteristics, surface composition and their
interaction. The parameters were also found to be conspicuously
correlated. For each group of surface characteristics, a simple
statistical analysis based on regression and correlation techniques
was performed. In all cases the correlation coefficient between n

and log o was greater than 0.91. A relation of the form

a = 10 (5-3)
was found to exist between them, where a and b are regression con-
stants. Statistics of the parameters and results of regression and
correlation analysis are given in Table 5~2. The relationships
between the parameters for each of the surfaces of the experimental

facility are shown in Figs. 5-7 - 5-13.
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The strong interaction between the parameters un and o sug-
gested that one parameter could be expressed in terms of the other
and, therefore, the two-parameter model could be reduced to a one-
parameter model. Parameter statistics in Table 5-2, show that the
parameter n has much less variance than the parameter a . It was,
therefore, decided to keep the parameter n fixed and allow the
parameter o to vary. At this point, two questions arise:

1. What should be the value of n ?

2. How much reduction in the variability of o can be achieved

by keeping n fixed at a given value?
Based on the statistics in Table 5-2, the only requirement for the
parameter, n , is that it must have a value somewhere between 1 and
3 inclusive. Within this range the parameter n may be assigned the
value that may have physical justification or interpretation. The
parameter n may also be chosen to have the value corresponding to
the minimum variance of the parameter, o . These two criteria may
not necessarily be complementary. Nevertheless, a value assigned to
n on this basis may be a better choice than an arbitrarily chosen
one. Keeping this in view, the parameter n was fixed at 1.5; this
is physically justifiable in light of Chezy's friction law.

In answering the second question, it must be pointed out that by
keeping n fixed at 1.5, the model reduces to a one-parameter model.
The objective function of Eq. (4-13) was used to find a unique value
of the parameter o corresponding to the matching of computed and
observed hydrograph peaks. Based on this objective functiom, 210

experimental runs covering all the surfaces of the experimental
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facility were analyzed. The parameter a was computed for each rain-
storm corresponding to the parameter n = 1.25, 1.50, 1.75, 2.00, 2.25,
2.50, 2.75, and 3.00 as shown in appendix K. For a selected number of
experimental runs, the variability of o with n is shown in Table
5-3. The interaction between the parameters n and o can also be
demonstrated by considering the expression for the normalizing time.
Rewriting the normalizing time expression,
Lo(l - 1) 1/n

- (n-1)/n ~
T = (/g ) — (5-4)

For a given storm every term in Eq. (5~4) will be constant except n
and o . Taking the logarithmic transformation, Eq. (5-4) becomes
i’.nTO = ((n—l)/n)zn(l/qmax) + (1/n) 2n[LO(l - 1r)] - (1/n) %na (5-5)
Upon rearranging the terms, Eq. (5-5) can be written as:

no = {&n 9oy T 2n[Lo(l - 1)}} - n{fn T, + n qmax}

Let np = {qmax Lo(l - r)}

ny, = {2n T, + n qmax}

Then o = nle—nnz (5-6)
Equation (5~6) shows the high semsitivity of the parameter o to small
changes in the parameter n for a given storm, given the matching of
hydrograph peak.

It appears that an n value of 1.5 will also lead to a small
variance of o . Therefore the model will now have only one parameter, o.
5.2.2 One~Parameter Model Study

The model now contains only one parameter, that is o . So the
questions of estimating the parameter o , and the suitability of the

objective function in Eq. (4-13) are considered first.
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Parameter Estimation for Individual Events

The parameter o was estimated for a given rainstorm on the
experimental facility analytically and numerically. The numerical
scheme was based on Newton's method (Conte, 1965). The analytical
scheme is described in Appendix H. The estimation of the parameter
o was based on the objective function in Eq. (4-13).

In order to check the suitability of objective function in Eq.
(4-13), runoff hydrographs were generated for some selected rain-
fall storms for which the parameter o was estimated a priori.
Comparison of computed hydrographs with observed ones displayed
remarkably well the suitability of the objective function as shown in
sample Fig. 5-14 . It may be falr to say that matching the hydrograph
peak leads to an acceptable match of the entire hydrograph, a remark-
able feature of the model.

Parameter Optimization for a Set of Events

Two optimization schemes—-one based on the statistical least
squares principle, and the other on parabolic interpolation--were
developed for optimizing the parameter o . Ten rainfall events were
selected on the butyl surface of the experimental facility, and the
parameter o was optimized.

The scheme based on the statistical least squares principle is
described in Appendix H. The objective function for this scheme was
based on Eq. (4-6). The parameter o was estimated for each event
using Eq. (4-13). The main advantage of this technique is that it
lends itself to analytical solution. That is, the parameter can be
analytically expressed in terms of other known quantities. This

feature has a tremendous time-saving advantage. Utilizing this
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scheme, the optimal value of the parameter o was found to be 7.34
for the set of selected events. Before leaving this section, it must
be pointed out that the objective of matching the hydrograph is well
served by concocting the optimization scheme on Eq. (4-6)--a remark-
able feature of the kinematic wave model--even though the runoff
peak is not explicitly involved in Eq. (4-6).
The other scheme was based on parabolic interpolation. The
objective function for the scheme was Eq. (4-2). In this scheme
the hydrograph peak appears explicitly. Unlike the previous scheme,
the parameter o cannot be determined explicitly, and a search needs
to be made for the parameter satisfying Eq. (4-2). The optimum
value of the parameter o was found to be 8.70 for that same set of
rainfall events by the search technique of parabolic interpolatiom.
Utilizing the optimized value of the parameter o obtained from
both optimization schemes, hydrograph predictions were made for another
set of events, not included in the optimization set. The predicted
hydrographs are depicted in Figs. 5-15 to 5-18. The agreement between
the predicted and observed hydrographs is remarkably good for both
schemes. However, the scheme based on Eq. (4~2) appears to be a little
better. The prediction performance of the model is shown further in
Table 5-4.

Relating Hydrograph Peak to Rainfall and the Parameter o

It was considered worthwhile to attempt to relate directly the
hydrograph peak to rainfall intensity and its duration, and the friction
parameter o , keeping the parameter n = 1.5. Should this be done,
it would be of immediate use in estimating hydrograph peak, given the

rainfall intensity, duration, and the parameter o . Also a quick
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graphical nomograph solution could be developed to serve as a valuable
practical tool. Xeeping this notion in perspective, 71 rainfall events
on the butyl surface of the experimental facility were analyzed. By
matching the hydrograph peak only the parameter o was estimated for
each rainfall event. In order to relate hydrograph peak Qp to the
rainfall characteristics, q and D , and the parameter a , & multiple
linear regression analysis was performed. In the regression analysis,
input variables were logarithmically transformed in various combin-
ations. A large correlation coefficient was obtained in each case.

The results can be quantitatively summarized as follows:

-3.16876 1,5027% 1,25960 0.u5

Qp = (10) q D o (5-7)

The correlation coefficient in this case was 0.9874 with standard

error of estimate = 0.0807.

-1,07673 ++ 0,00458D + 0.03380 1,35752
Qp = (10) q (5-8)

The correlation coefficient was 0.9388 with the standard error

of estimate = 0.1759.

-2.97890 + 0.03012a 1,4718% 1,23955
Q = (10) q D (5-9)

The correlation coefficient was found to ba a 0.9870 with standard
error of estimate = 0.0822.

Finally,

~1,28287 + 0,00475 D 1.39355 0.52896
Qp = (10) q o (5-10)

The correlation coefficient was found to be 0.9404 with standard
error of estimate = 0.1737. Note that in all cases the relationship
Qp < q must hold. These relationships can be very useful in the

development of flood frequency distribution and associlated relationships.



130

CHAPTER 6
APPLICATION OF LUMPED PARAMETER MODEL TO
NATURAL WATERSHEDS
6.1 GENERAL REMARKS

This chapter includes testing and a rather extensive study of
lumped parameter converging overland flow model on uncontrolled, agri-
cultural watersheds. Twenty-one watersheds were selected for this study.
They are from two regions: 1. Hastings, Nebraska, and 2. Riesel (Waco),
Texas, and have been discussed at some length in the USDA publications
entitled "Hydrologic Data for Experimental Agricultural Watersheds in
the United States" for various years. Table 6~1 entails brief informa-
tion on these watersheds. It should be indicated that the physiographic
characteristics of the two regions are quite different; within the same
region, watershed areas vary from about 2 acres to 4,500 acres.

Deep, fine-textured, granular, slowly permeable, alkaline through-
out, and slow internal drainage are typical characteristics of soils of
watersheds near Riesel (Waco), Texas. The dominance of Houston black
clay is notable. These soils are also noted for the formation of large
extensive cracks upon drying. Surface drainage is, by and large, good,
but no well-defined drainageways exist on the watersheds. Usually, water
is drained by rills and poorly defined field gullies.

Most of the time these watersheds are covered with an agricultural
crop. Because of low permeability of the soils the watersheds respond
rapidly to rainfall and produce quickly rising hydrographs. For the
events under consideration the major part of rainfall was observed as

surface runoff; the infiltration losses did not dominate (see Table 6~5).
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The watersheds near Hastings, Nebraska, have Loessial soils. The
top soil is normally a mixture of silt loam and silt clay. The internal
drainage is medium, and the permeability of subsoil is moderately slow.
Surface drainage is good. The watersheds develop arterial flow toward
a central drainageway. Channel meandering is noticeable and leads to
impounding some water.

These are also agricultural watersheds and have agricultural cover
on the surface. A major part of the rainwater seeps into the ground as
shown in Table 6-2, thus infiltration losses are predominant. Their
response to rainfall input is not as fast as that of watersheds near
Riesel (Waco), Texas, especially for the events under consideration.

Rainfall-runoff data for the aforementioned watersheds were obtained
from two sources: 1. USDA publications on hydrologic data, and 2. the
USDA Hydrologic Data Center, USDA-ARS, Beltsville, Maryland. Rainfall-
runolf data for watersheds near Riesel (Waco), Texas, were obtained directly
from the USDA publications on hydrologic data. These publications are
released almost every year and consist of about one rainfall-runoff event
per year for a watershed.

For watersheds near Hastings, Nebraska, the data were obtained from
the USDA Hydrologic Data Center. They are for a longer period of tiwme and
consist of all rainfall-runoff events for a year on a watershed. The
dates of the rainfall-runoff events used in this analysis are given in
Table 6~3.

Although a watershed has more than one raingage, data are normally
available in the USDA publications for a centrally located raingage only,

indicating that this has been taken to represent the mean areal rainfall.
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In order to be consistent throughout, this practice has been followed on
each watershed.
6.1.1 Determination of Rainfall-Excess

Rainfall-excess forms the input to the model. Estimating infiltra-
tion is essential for determining rainfall-excess. Infiltration was
estimated by two methods:

1. ¢ - Index,

2. Philip's Infiltration Equation.

In the ¢ — Index method the infiltration capacity is assumed constant
throughout a storm. It is the rate above which rainfall volume equals the
runoff volume, thus preserving the continuity of flow over the surface of
the ground. The ¢ - Index will always lie between zero and maximum rain-~
fall intensity. It will vary from storm to storm. It was estimated by
a numerical scheme called the method of '"Regula Falsi' or the method of
false position (Conte, 1965).

Philip's infiltration equation is written as
f=A+ stli ’
or
F = At + 251:1”2 (6-1)
where A = a parameter dependent on soil characteristics and initial moisture
conditions, s = a parameter dependent on soil characteristics and initial
soil moisture conditioms, t = time, £ = infiltration rate, and F = ac-
cumulated infiltration.

The parameters A and s have the dimensions L/T and L//f respectively;
L denotes the length dimension and T time dimension. Note that the parameter

A has the same dimension as f.
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Theoretically, the parameters A and s will vary from storm to storm
on the same watershed and from watershed to watershed for the same storm.
The parameter A was considered roughly identical to steady infiltration,
thus rendered amendable to determination from physical characteristics of
the soil. It could also be considered roughly equivalent to saturated
hydraulic conductivity. 1In the absence of information on steady infiltra-
tion it was taken roughly equal to 50% to 807% of the lowest ¢ - Index
estimated for given storms on the watershed under consideration. The
parameter A determined for each watershed is given in Table 6-4.

The parameter s was allowed to vary with each rainfall episode,
thus accounting for soil moisture conditions existing priox to its occur—
rence. It was estimated for each storm by Newton's Algorithm subject to
preserving the mass continuity. The parameter s was found sensitive to
antecedent soil moisture conditions and relatively less sensifive to the
parameter A. This is clearly evidenced by Table 6-5.

6.1.2 Geometric Representation

An important question is how to represent the watershed geometry
in a simple manner that would preserve some important hydrograph character-
istics and yet not so simple as to sacrifice important details affecting
the dynamics of overland and channel flow. This question was considered
in choosing converging geometry. In the representation of a natural water-
shed geometry by a linearly converging section of a cone, two parameters
ought to be determined, namely, 1) length of flow, Lo(l - r), and 2) degree
of convergence, r, where L0 represents the total length of the converging
section. Given the area of the watershed, the angle, 8, can be determined,

and thus the converging section geometry can be completely characterized.
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The geometric parameters Lo(l - r) and ¥ were determined for a
watershed from its physiographic map. The parameter Lo(lwr) was estimated
by measuring the longest horizontal projection; that is, the horizontal
distance from the outlet to the most remote point of the watershed. The
parameter r was fixed at 0.0l. On the basis of experience this value of
r was found adequate for all the watersheds considered for this study.

The converging geometry for respective watersheds is given in Table 6-6.
6.2 MODEL TESTING

In the quantification of the goodness of model performance an
objective criterion of evaluation must be delineated. Two aspects must
be incorporated in any such criterion. One pertains to hydrodynamic
adequacy and the other computational efficiency. The former implies that
the hypothesized model should represent or encompass in some way those
physical details that affect the overland flow dynamics and hence be able
to reproduce the overland flow process as closely as possible. The
latter must include: 1. efficiency of computation, 2. ease of pro-
gramming, and 3. storage (computer) requirement. This same objective
criterion can be utilized in comparison of one model with another. 1In that
case it is quite likely that one model may be better than the other but
only in some respects and not necessarily uniformly. To choose amongst
models under such circumstances some kind of trade—off seems to be the
only plausible alternative. It must, however, be emphasized that hydro-
dynamic adequacy must form a necessary requirement. The requirement of
sufficiency may be met by satisfying the computational requirement. These
two aspects, therefore, form necessary and sufficient conditions which,

upon satisfaction, will quantify the goodness of a model.
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Table 6-6. Converging section geometry representing natural watersheds.

Serial Watershed Area Length of Degree of
number identification (acres) £low convergence
(ft) r
Riesel (Waco), Texas

1 Watershed C 579.00 8,000 0.01
2 Watershed D 1,110.00 12,000 0.01
Watershed G 4,380.00 22,000 0.01

4 Watershed W-1 176.00 3,500 0.01
5 Watershed W-2 130.00 2,100 0.01
6 Watershed W-6 42.30 1,200 0.01
7 Watershed W-10 19.70 800 0.01
8 Watershed Y 309.00 4,800 0.01
9 Watershed Y-2 132.00 3,200 0.01
10 Watershed Y-4 79.80 2,400 0.01
11 Watershed Y-6 16.30 1,200 0.01
12 Watershed Y-7 40.00 1,800 0.01
13 Watershed Y-8 20.80 1,000 0.01
14 Watershed Y-10 18.60 1,000 0.01
15 Watershed SW-12 2.97 450 0.01
16 Watershed SW-17 2.99 400 0.01

Hastings, Nebraska

17 Watershed 2-H 3.40 600 0.01
18 Watershed &4-H 3.64 500 0.01
19 Watershed W-3 481.00 7,540 0.01
20 Watershed W-8 2,086.00 17,348 0.01
21 Watershed W-11 3,490.00 27,154 0.01




144

Nineteen rainfall-runoff events were selected on watershed 2-H,
Hastings, Nebraska. These were randomly divided into two sets: one was
the optimization set consisting of 10 events and the other the prediction
set consisting of 9 events. These two sets did not have any event in
common. The model parameter o was optimized over the optimization set
by parabolic interpolation scheme utilizing the objective function of Eq.
(4~2). Infiltration was estimated by Philip's equation. The optimum value
of o was 4.75. Utilizing the optimized parameter value hydrograph pre-
dictions were made for another set of events -—— the prediction set.

Upon examining the hydrographs predicted by the model and comparing them
with observed hydrographs it was clear that the model performed fairly'
well in predicting the hydrograph peak in particular and the entire hydro-
graph in general. An examination of the events for which the model pre-
dictions were relatively poor revealed that in most cases these were the
complex events with two or more peaks and that the rainfall excess pattern
as computed was not consistent with the relative magnitude of the observed
peaks. A sample display of hydrographs predicted by the model is shown

in Table 6-7 and Figs. 6-1 through 6-3.

6.3 DETAILED STUDY OF THE MODEL

After preliminary model testing several questions arise that may
require further perusal. One question is to enumerate the effect of in-
filtration on the model performance and its parameters. The other is to
test its adequacy on watersheds in different geographical regions. An-
other is with regard to the parameter o and its estimation a priori from
information ordinarily available on a watershed. These questions will be

addressed in the ensuing discussion.
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Table 6~7. Predictive performance of converging overland flow model on watershed
2-H, Hastings, Nebraska.

Date of Observed Hydrograph Predicted Hydrograph
Serial Rainfall Peak Peak
numbers event (In/hr) (In/hx)
1 6-20-1942 0.572 0.491
2 6-23-1944 0.493 0.311
3 6-26-1952 0.849 1.232
4 7-13-1952 1.860 1.959
5 5-22-1954 1.890 1.632
6 6-12-1958 0.849 0.804
7 7- 3-1959 2.520 4,065
8 5-15-1960 1.550 2.124
9 3-23-1962 1.230 1.751
Mean 1.313 1.597
Variance 0.476 1.270
Standard deviation 0.690 1.127

Coefficient of variation 0.525 0.704
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6.3.1 ELffect of Infiltration on Model Performance and Parameter Estimation

Determining the effect of infiltration estimating scheme on the
model performance and its parameters is essential to assess its adequacy.
One infiltration method may be better than the other, but only under
limited circumstances. The effect of the mechanics of infiltration
estimation on the model performance will be very much governed by the
rainfall characteristics, soil characteristics, antecedent conditions, and
physiography of the watershed. Short duration, high intensity rainstorms
ordinarily produce sharply rising, short duration hydrographs. Under
such circumstances, a simpler method like ¢ - Index may not be wholly
unacceptable. 1In fact, it may work nearly as good as a realatively
complex method. Such situations seem tO exist on some of the watersheds
near Riesel (Waco), Texas, where the combination of climatology with
watershed physiography makes a simple method like ¢ — Index work quite well.

The parameter o was estimated for a number of rainfall events on
watershed SW~17 near Riesel (Waco), Texas, by matching the hydrograph
peak (Eq. (4-13)) utilizing ¢ - Index and Philip's equation for infiltra-
tion. Table 6-8 provides the parameter o obtained by matching the
hydrograph peak for a number of rainfall events. It is evident that for
these cases the parameter o 1s not very sensitive to the mechanies of
infiltration estimation.

To observe the effect of infiltration methods on model results, five
rainfall-runoff events were selected on that same watershed SW-17, and the
parameter a was optimized (objective function, Eq. (4-2)) by the method
of parabolic interpolation. The optimum value of o was found to be 0.900

for both methods of infiltration. Hydrograph predictions were performed
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Table 6-8. Effect of infiltration on the model parameter o for Watershed SW-17,
Riesel (Waco), Texas.

Serial Date of Hydrograph Parameter o
rainfall-runoff peak
number event (in/hr) ¢ - Index Philip's Equation
1 3-12-1953 1.610 0.870 0.858
2 3-31-1957 0.441 0.965 0.962
3 4-24~1957 2.900 0.711 0.709
4 5-13-1957 1.740 0.493 0.529
5 6~24~1957 2.170 1.395 0.928
6 6-25-1961 0.604 2.026 1.720
7 7-16-1961 0.348 0.618 0.640
8 6- 9-1962 3.790 1.398 1.381
9 3-29-1965 2.440 0.346 0.342
Mean 1.783 1.060 0.897
Variance 1.392 0.264 0.183
Standard Deviation 1.180 0.513 0.428

Coefficient of Variation 0.662 0.485 0.477
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for another set of rainfall events and comparisons made. Both methods
fared nearly equally well in representing the dynamics of overland flow.
Statistics of hydrograph predictions are included in Table 6-9. Sample
predicted hydrographs are shown in Figs. 6-~4 & 6-5.

However, the situation peculiar to the watershed SW-17 may not
always hold on the same watershed or on others. To further investigate
the effect of infiltration methods watershed 2-H, Hastings, Nebraska,
was chosen. It was decided to include the length of flow Lo(l - r), and
degree of convergence r also as parameters besides the parameter a in
the model. A set of 10 rainfall events were selected for optimization.
In contrast to the watershed SW-17, Riesel (Waco), Texas, the parameters
were found to be extremely sensitive to the method of computing infiltra-
tion.

Using ¢ = Index, optimized parameter values were found to be
Lo(l - r) = 756 ft, r = 0.1954, o = 2.3223 and using Philip's equation,
optimized parameter values were Lo(l - r) = 480 ft, r = 0.005, and o =
3.7323. The objective function of Eq. (4-2) was utilized for parameter
optimization by the TVA optimization scheme based on differential algorithm
and principle component analysis. Another set of 10 events were selected
for hydrograph prediction on the same watershed 2-H, Hastings, Nebraska.
Utilizing the optimized values of the parameters obtained for both methods
hydrographs were predicted. The results and their statistics are shown
in Table 6-10. Philip's equation appears to be superior to the simple
¢ — Index on this watershed. On the basis of these results, Philip's
equation was considered to be superior to ¢ -~ Index.

As mentioned previously, hydrograph predictions were made for 10

rainfall events on Watershed 2-H, Hastings, Nebraska. The model geometry
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Table 6-9. Effect of infiltration on the model performance on Watershed
SW-17, Riesel (Waco), Texas.

Date of Observed Predicted hydrograph peak
Serial rainfall hydrograph (in/hr)
number ent peak
ev (in/hr) ¢ — Index Philip's Equation
1 4-24-1957 2.900 3.216 3.212
2 5-13-1957 1.740 2.268 2.185
3 6~ 9-1962 3.790 3.355 3.361
4 3-29-1965 2.440 2.282 3.258
Mean 2.717 3.030 2.642
Variance 0.739 0.262 1.200
Standard Deviation 0.860 0.512 1.095

Coefficient of Variation 0.717 0.169 0.415
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Table 6-10 Influence of infiltration on predictive performance of the
model on Watershed 2-H, Hastings, Nebraska.

Date of Observed
Serial N hydrograph Predicted peak (in/hr)
number rainfall peak
storm (in/hr) ¢ — Index Philip's equation
1 7-13-1952 1.860 1.630 1.959
2 5-22-1954 1.890 0.539 1.632
3 5-15-1960 1.550 1.175 2.124
4 6— 1-1951 1.170 0.599 1.354
5 6-26—-1952 0.849 0.472 1.232
6 8~23-1962 1.230 1.116 1.751
7 6~20-1942 0.572 0.192 0.491
8 8-23-1944 0.493 0.522 0.311
9 6-12-1958 0.849 0.330 0.804
Mean 1.163 0.731 1.295
Variance 0.271 0.221 0.414
Standard Deviation 0.520 0.470 0.644

Coefficient of Variation 0.447 0.644 0.497
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was determined from watershed physiography as indicated in the preceding
section, keeping r = 0.01 for each watershed. 1In Table 6-11 relative and
absolute prediction errors are given. TFigs. 6~6 through 6-9 display some
predicted hydrographs. From these figures, it is quite clear that the
predicted hydrographs compare well with the observed ones. This further
supports the earlier conclusion that matching the hydrograph peak is
sufficient to match the entire hydrograph — a remarkable characteristic
of the model. The average relative percentage error (ignoring the algebraic
sign) stays within the limit 30%. This, however, is for a small sample
considered in the study, and more exhaustive testing needs to be done.
Nevertheless, it does indicate that the model has the potential for ade-
quate representation of runoff dynamics.

To test the model on another watershed in a different geographical
region, some prediction runs were made on watershed SW-17, Riesel (Waco),
Texas. Prediction errors are listed in Table 6-12, and predicted hydro-
graphs are compared with observed ones in Figs. 6-10 through 6-12. The
predictive capability of the model is further demonstrated.

6.4 INVESTIGATION OF MODEL PARAMETER «

In investigating the significance of the parameter o three questions
naturally arise:

1. How does the parameter vary on a watershed from one rainfall

event to another?

2. What can be concluded with regard to the physical significance

of the parameter?

3. Can the parameter be related to what is ordinarily known a

priori about a watershed?
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To study the parameter variability on a watershed from rainfall
event to rainfall event, the parameter was estimated for a number of rain-
fall events on 16 watersheds in Riesel (Waco), Texas. For these water-—
sheds — small to medium to large size — the parameter is listed in Tables
M-1 through M-16 of appendix M. The parameter estimation was performed
by the method of linear interpolation of errors (see appendix H) utiliz-—
ing the objective function of Eq. (4-13). It is apparent from the tables
that the parameter does vary from one rainfall event to another, but not
violently. This suggests that the parameter o can be expressed for a
given rainfall event on a given watershed as follows:

a = a + Ao (6-2)
where the component o is the value of the parameter a that will be fixed
for a given watershed by its physiographic characteristics that are usually
known or readily obtainable. The value a will, henceforth, be called as
the fixed component of the parameter a. The variable component Ac may
take positive or negative values. Its negative value will be bounded by
the fixed component a; that is, the variable component Ac will always be
less than o. The variable component Aa will depend upon rainfall charac-
teristics and their interaction with watershed physiography and may reflect
errors in the infiltration model. 1In a statistical sense, should the
parameter o be regarded as a random variable, then its fixed component o
may be regarded as its expected value or mean to be obtainable from its
probability density function. The pursuance of a statistical approach lies
beyond the scope of present study.

At this point, it was considered worthwhile to examine the variability
of the parameter on a larger scale. So, it was estimated for a number of

rainfall events available on each of 16 watersheds near Riesel (Waco), Texas,
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The parameter statistics — average, variance, standard deviation, and
coefficient of variation — along with the number of rainfall events utilized
in their estimation are listed in Table 6-13. The table reflects re-
markably on relatively small variability in the parameter about its average
value for most of the watersheds. There is, in fact, only one watershed
Y-7 for which the coefficient of variation goes as high as 1.5583. For

two watersheds it gets to be about 0.91, but for the remaining 13 water-
sheds it stays around 0.5. The cause for its going so high for the other
three watersheds is unwieldly at the moment. One point that needs to be
brought out along this line is the size of the sample used in evaluating
the statistics. One bad data point might make a substantial difference in
the statistical results. Therefore, the cause of high coefficient of
variation of o may be attributable to small size of the sample, bad data,
the watershed itself, and a combination of them all.

Table 6-14 shows the variability in o on watershed SW-17 with its
length of flow. It is apparent that the parameter increases with an in-
crease in the length of flow, which is reasonable from physical considera-
tions. Statistics of a are also given there corresponding to each Lo(l - r).
It should be emphasized that the coefficient of variation in o is the least
for Lo(l - r) = 400', the length of flow measured from the topographic map
as indicated previously. This is a statistical confirmation of the propriety
of taking the longest horizontal projection as the length of flow. In
Tables 6~15 and 6-16 the effect of the degrees of convergence on the model
parameter is elucidated. It is interesting to note that the parameter o
is not very sensitive to the parameter r. It is, therefore, reasonable to
keep r fixed at a small value because in most natural watersheds r is small,

indeed.
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The answers to the second and third questions are related. There-
fore it was decided to optimize the parameter o on each of the 21 water-
sheds near Riesel (Waco), Texas and Hastings, Nebraska. A set of events
were selected on each watershed. Utilizing the objective function (Eq.
4-2), the parameter o was optimized by the parabolic interpolation scheme.
Optimized parameter values are listed in Table 6-17. It is notable that
in spite of a wide spectrum of conditions on the watersheds o does not
change drastically from one watershed to another. In order to relate o
to physically measurable quantities on a watershed, a simple regression
and correlation analysis was made. Weighted slope, area, and length of
flow were considered as independent variables. Slope alone afforded the
highest correlation coefficient for o. It was 0.5732. Next came area
which improved the correlation coefficient to 0.666. The remaining variable

did not add much to the correlation coefficient. It must be pointed out

e

here that slope was transformed to (slope)f, and area to log area before
running the analysis. The regression equation can be written as

o = 0.98165 + 2.27996 S'15 + 1.37141 log A - 1.36830 log (Lo(l - 1))

where A = area in acres, and S = weighted average slope.

The correlation coefficient was 0.6678 with standard error of estimate of
1.4351. An attempt was also made to relate a with various other combina-
tions of 8, A, and Lo(l -~ r), but the correlation coefficient did not im-
prove. Nevertheless, this suggests that the fixed component of a may be
determined for a watershed from its slope and area. The variable component
must be determined by consideration of rainfall characteristics and their

interaction with watershed surface characteristics.
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Even though slope and area are correlated with o with a correlation
coefficient of 0.666, this correlation may be improved by incorporating in
the analysis the watersheds having a wide range of slopes. In the present
analysis, the variability in slope is not much. Besides that, all water-
sheds could be clustered in two groups according to slope. Riesel (Waco),
Texas watersheds may form one group having slope from 1.7% to 3.3%; water-
sheds near Hastings, Nebraska may form another group having slope from 3.9%
to 7.22%. The former group contains the majority of the watersheds. The
small sample size coupled with low variability in slope of watersheds
might have contributed to the low correlation coefficient.

The above analysis indicates that the parameter o is a slopefriction
parameter as postulated in the beginning when developing the kinematic wave
theory. Relating o to Chezy's friction coefficient,

a = C/s
where C = Chezy's friction coefficient., Thus the parameter o is amendable

to physical interpretation.
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CHAPTER 7
APPLICATION OF DISTRIBUTED PARAMETER MODEL
TO NATURAL WATERSHEDS
7.1 GENERAL REMARKS

In the previous chapters we dealt with analytical mathematics of
nonlinear watershed runoff dynamics by the method of characteristic do-
mains in that conditions were pointed out regarding the feasibility of
explicit, anmalytical solutions. In this chapter our objective is to
apply the proposed distributed converging overland flow model to predict
surface runoff from natural agricultural watersheds, examine its per-
formance and reflect on its potential in simulating watershed surface
runoff response.

When analytical solutions are not feasible use is made of hybrid
solutions which combine advantages of numerical and analytical solutioms.
For a complete discussion on hybrid solutions see the reference by Singh
(1974, 1975a, 1976). We will only give numerical solutions here (see
appendix L for derivation and stability analysis). The coupling of
continuity equation and kinematic approximation to momentum equation

(Singh, 1974) yields:

2h + no(x) hn_l 2h + ht dalx)

ot ox Ix = alx,t) +

alx) h (7-1)

The Lax~Wendroff scheme (Houghton and Kasahara, 1960), which has been
successfully used in many investigations on kinematic wave modeling of
watershed runoff (Kibler and Woolhiser, 1970; Singh, 1974, 1975a, 1976)

is formulated to solve Eq. (7-1). We can write:

3h _ n-1 3h .1 da(x) o(x) h"
= ~a(x)nh o h % + q(x,t) + TIT::_;ES (7-2)
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Expanding h(x,t + At) by Taylor series,

2 .2

(7-4)

h(x,t + At) = h(x,t) + at o0 4 LB)7 3'h 0 (7-3)
at 2 2
at
where HOT denotes higher order terms. Differentiating Eq. (7-2) with
respect to t,
2 n-1
9 h _ —a(x) 9 nhn—l sh| _ da(x) hn—l ah ag (x,t) + a(x)nh 3h
12 % 3t) 8x 3t ot (T - x) ot
t o}
Inserting Eqs. (7-2) and (7-4) into Eq. (7-3) and neglecting HOT we
obtain:
hi(x,t + At) = h(x,t) + At {—na(x)hnnl %2 - 1" a%if) + q(x,t) +
aGon™ , o’ [ 0 2 [ann1 20} _ 0G0 n-10h
T - 7 R T ot x 3t
n-1
3q(x,t) + o (x)nh 3h (7-5)
at (L - x) 23t
o
Writing Eq.(7-5) in a compact form,
n
h(x,t + At) = h(x,t) + {~a(x) EEL a2 ey 4+ 2 R
x (LO - %)
At + (At) o, Sm(x) a(x) + (At)2
2 (L - X) 2
o
9q(x,t) _ 5 " o da(x)
{ 3t ) % [ (“(x) % 5% T
qx,t) + “‘X)_“ H (7-6)
Following the notation in Fig. 7-1 we can write Eq. (7-6) in finite dif-

ference form as:

.1 .0 . . .
i i i i i
. . . h, - h, .1 . - o, a, h
h%+l = h% + -a% S SO h% J+l j-1 + q, + J
i j 3 248x% j 248x 1L -
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J
A X
'i O —— S i+ 1
At
e Al i
j-1 j ji

Fig. 7-1. Notation for finite different scheme.
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2 n-l o -a ot 2
{At CI [— jvl _ §-1 J }} + {8t)
2 20% i 2
(L - x)
o J
i+l hi(n—l) . h.(n—-l) 5 .
43 9 [in [NjH i (a7 7
At OtJ Ax 2 2
1n o in in i i i
- - +
B T B TRy e T %) L (S T )
Ax 2 Ax 2
i i i i
[QJ“*‘]. + Otj} [hj-l'l + hj ] 9 ) ai o
2 2 _ i i j Ax
(2t = (eja + 23))
. (n-1) . (n~1) . n n
1 h 3 1 1
h + hj-l a, -+ aj—l hJ h -1 _
2 2 Ax
it i i i i i i
h + h o, o + o, + o,
(3 e [ T s AT 5 TS A IO -1
2 Ax 2 2
i i
hy kb g )
2 i i (7-7)
- +
lZLO (Xj Xj-l]J ‘

Assume that the depth of flow is to be determined at N nodal points.
Then the depth of flow at nodal points j = 1, 2, ... (N-1) will be com—

puted by the scheme in Eq. (7-7) in conjunction with the following boundary

conditions:
h{o,t) = 0
h(x,t) = 0 (7-8)

Equation (7-8) represents an initially dry surface. The finite-difference
scheme of Eq. (7-7) is explicit, second order, and single step. The depth
of flow at the downstream boundary (j = N) can be computed by the first

order scheme. That is,
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hix,t + At) = h(x,t) + At g—il (7-9)

Substituting Eq. (7-2) into Eq. (7-9),

(7-11)

_ ah™ n da(x) a(x)hn
h(x,t + At) = h(X,t) + At { o(x) ""é“}"(" h 3% + Q(X:t) + (Lo_x) (7-10)
Writing the difference form of Eq. (7-10),
TR i i i i"
B S0 N SR (1 by “hy1) S G e A I S iy
N N N Ax N Ax 4 I
Ly = %y

These numerical schemes can be combined with analytical solutions in an
appropriate manner to yield hybrid solutions (Singh, 1974, 1975b, 1975¢
1976) .
7+2 APPLICATION TO NATURAL WATERSHEDS

The distributed converging overland flow model was applied to

three natural agricultural watersheds near Riesel (Waco), Texas. They

include watershed W—-2 of 132 acres in area as shown in Fig. 7-2;
watershed W-6, 42.3 acres 1in area as shown in Fig. 7-3; and water-
shed G, 4380 acres in area as shown in Fig. 7-4. Deep, fine-

textured, granular, slowly permeable, alkaline throughout, and slow

internal drainage are typical characteristics of soils of these water-

14

sheds. The dominance of Houston black clay is notable. These soils are

also noted for the formation of large extensive cracks upon drying.

Surface drainage is usually good but no well-defined drainage-ways exist

on these watersheds. Normally, water is drained by rills and poorly
defined field gullies.

Most of the time these watersheds are covered with agricultural
crops. Because of low permeability of the soils, these watersheds re-
spond rapidly to rainfall, and produce quickly rising hydrographs. For

rainfall events, that were considered in this study, the major portion
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of rainfall was observed as surface runoff; and infiltration was only
minor. For a more complete discussion of these watersheds and rainfall-
runoff data thereon see the USDA publications entitled '"Hydrologic Data
for Experimental Agricultural Watersheds in the United States." These
publications appear almost every year and contain, on the average, one
event per watershed.

7.2.1 Determination of Rainfall-Excess.

Rainfall-excess forms input to the model. We do recognize that
the concept of rainfall-excess is more of an artifice than a reality.
The processes of rainfall, infiltratiom, and runoff occur concurrently
in nature. Simultaneous consideration of these distinct processes in-
jects dintractable complexity in runoff modeling. It is, therefore, not
surprising that despite this recognition, a great many investigators
have utilized this artificial notion of rainfall-excess in their investi-
gations on rainfall-runoff modeling, and a great many continue to do so
even today; in addition, very little attention has been paid to this
fundamental problem.

For simplicity we ourselves adhered to the traditional practice.
Infiltration was determined by Philip's equation (Philip, 1957). In a
recent study (Singh, 1974) the parameters of Philip's equation were
specified for all available events on these watersheds. We utilized
these regults in the present study.

7.2.2 Geometric Representation

The objective is to transform the geometry of a natural watershed
into a simpler geometry having a similar hydrologic response. The only
perfect representation of a watershed is, of course, the watershed itself.

In studies of the response characteristics of the linearly converging
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section (Woolhiser, 1969) it was suggested that such a geometry might be
a useful abstraction of a watershed regardless of its complexity. This
hypothesis was later incorporated in a study by Singh (1974, 1975a,
1975b, 1975c, 1976) and found promising. Therefore the linearly con-
verging section of a cone, as shown in Tig. 1-1, was utilized to repre-
sent the geometry of a natural watershed. From this figure, it is
apparent that the converging section geometry has four geometric param—
eters including Lo(l—r), r, 0 and So where Lo(l~r) is the length of flow,
SO is the slope, r the parameter related to the degree of convergence,
and 6 the interior angle. Because of the radial symmetry, 8 does not
affect the relative response characteristics. It is necessary only to
preserve the watershed area and is, therefore, dependent on Lo and r.
The converging section geometry possesses some interesting properties:

1. 1Its discrete analog is, from a systems viewpoint, a system
composed of a cascade of unequal nonlinear reservoirs.

2. 1Its response is similar to that of a cascade of planes of
decreasing size.

3. The convergence may account for the concentration of runoff
at the mouth of a natural watershed.

The converging section geometry has 3 geometric parameters Lo(l—r),
r, and 0 that need to be specified. With the area of a watershed usually
known only two parameters need to be estimated. The study (Singh, 1974)
showed that for a watershed under consideration, the parameter Lo(l—r)
could be taken to be equal to the longest horizontal projection from the
most remote portion of the watershed to the outlet, and the parameter r
to be equal to 0.01. Thus the topographic map of a watershed suffices

to transform the natural geometry into a simpler geometry.
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7.2.3 Choice of Objective Function

The objective function, based on hydrograph peak of Eq. (4-2)
was used in the present study. The choice of this objective function
is based on the finding of Kibler and Woolhiser (1970) and Singh (1974,
1975a, 1975b, 197S5c, 1975f, 1976). Besides its usefulness in flood
studies and some statistical properties that it possesses, it has an
advantage that it does not suffer from timing errors that result from
improper synchronization between rainfall and runoff observatioms.
7+2.4 Parameter Optimization.

A simple relation between the parameter o and topographic slope
was considered:

a(x) = Cl + CZVS(X) (7-12)

where S(x) = topographic slope varying in space, and Cl and 02 are pa-
rameters. These parameters will supposedly vary from one watershed to
another. At present we can only hope to obtain them by the technique of
optimization. The topographic slope varies in space and so does the pa-
rameter o correspondingly. The choice of this relation is based on re-
cent studies conducted by Singh (1974, 1975f, 1976).

For computational purposes the converging section geometry was
decomposed into several segments, for example, 10 segments for watershed
W-2, 10 segments for W-6 and 10 segments for watershed G as shown in Figs.
7-2 through 7-4 respectively. TFor each segment weighted slope is known
from the topographic map. Two sets of rainfall-runoff events were selected
on each of the three watersheds; one set was called as optimization set
implying that the events in this set were used for optimization only, and
the other set was named as the prediction set implying that the events

were used for hydrograph predictions only. These two sets were mutally



187

exclusive implying that they did not have any events in common. The
optimization sets consisted of a set of 5 events on watershed G, a set
of 5 events on watershed W-2, and a set of 5 events on watershed W-6.
The prediction sets consisted of a set of 3 events on watershed G, a
set of 3 events on watershed W-2, and a set of 3 events on watershed
W-6. The constants were obtained by optimization over the optimization
set for each watershed. The optimization was performed by the Rosinbrock-
Palmer algorithm (Rosenbrock, 1970; Himmelblau, 1972) utilizing the
objective function of Eq. (4-2) The optimized values of the constants
Cl and C2 were respectively 3.3 and 4.95 for watershed G, 3.6 and 5.0
for watershed W-2, and 1.5 and 2.94 for watershed W-6.
7.2.5 Hydrograph Prediction

Utilizing optimized values of the constants Cl and C2 hydrograph
predictions were made for the events in the prediction set of each water-
shed. Sample predicted hydrographs are shown in Figs. 7-5 through 7-~7
On comparing predicted runoff peaks with observed runoff peaks we found
that they were in reasonable agreement. Hydrograph time and shape char-
acteristics were predicted quite well by the model, especially for its
simplicity. However, a few points prompt discussion:

(1) 1In some cases the error in the prediction of hydrograph peak

was so high as about 50%; although in most cases it remained well below

o
o
=

There might be several reasons for high prediction error. Of all
the two appear to be most prominant:

(a) The size of the optimization set is very small and, there-
fore, we cannot hope to obtain representative values of the constants C1

and C2. This is even more true when we see that the rainfall-runoff

events for each watershed under consideration represent a long stretch
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of time, often 15 years or more. During this period of time several
changes in land management and cropping pattern must have taken place on
these watersheds. These changes can, in no way, be represented by such
small samples as we have considered.

(b) There is difficulty in determining rainfall-excess which, in
fact, generated observed runoff. The determination of true rainfall-
excess seems to be the major problem in most rainfall-runoff models, and
our model is no exception. Philip's equation, utilized in this study,
is too simple to accurately predict time-distribution of infiltration,
and then there is the difficulty of estimating its parameters. It was
used primarily for its simplicity.

(2) Figures 7-5 through 7-7 illustrate that the model predicts
time distribution of runoff quite well. We must note that the optimiza-

tion of parameters C, and C2 employed an objective function that was

1
based on hydrograph peak only. There was no consideration given explicitly
to the runoff timing, yet the hydrograph shape and time characteristics

are well predicted. It seems to us that if the model structure is sound

it might suffice to perform optimization of parameters on some prominent
characteristics of runoff hydrograph even for the prediction of the en-
tire hydrograph; and there is no need to consider the entire hydrograph
explicitly in the optimization.

For its simplicity the distributed converging overland flow model
appears to be a promising tool. There is, however, a need for an ex-
haustive testing of the proposed model and a number of natural watersheds
in a variety of physiographic and climatic settings. Another aspect would

be to investigate into the problem of determining the constants C1 and C2

from physically measurable watershed characteristics. If the problem of
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a priori estimation of the parameters C1 and C2 can be tackled the

utility of the proposed model will be greatly enhanced.
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APPENDIX A
DERIVATION OF EQUATIONS OF FLOW
FOR A CONVERGING SECTION

This derivation of flow equations requires the following simpli-

fying assumptions:

1. The slope of land surface is so small that the sine of the
slope angle may be taken to be equal to the tangent, and
the cosine equal to unity.

2. The friction slope for uniform steady flow may be applied to
nonuniform, unsteady flow of the same depth and average
velocity.

3. The streamlines of flow have negligible curvature, ensuring
hydrostatic vertical pressure distribution at all time.

4. The flow velocity in any cross-section is constant.

5. The flow is gradually varied so that vertical components of
velocity and acceleration are negligible in comparison with
the components along the direction of flow.

6. The energy and momentum coefficients, used as corrections to
nonuniform velocity distributions, are equal to one.

7. The channel geometry is prismatic.

8. The transverse water surface profile is horizontal.

9. Surface tension forces are negligible.

10. The x-component of momentum flux due to the distributed lateral
inflow is negligible.

Because of the radial symmetry, only a small element in one sector

of the flow region need be considered for deriving the flow equations.

The flow element is shown in Fig. A-1 (a).
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Fig, A-1(a). Sectional element of flow element.
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Fig. A~1(b). Plan sketch of flow element showing hydrostatic
forces.



199

Consider two points, 1 and 2, corresponding to the upstream and

downstream sections of the flow element with respect to the upstream

oh

boundary. The velocities and depths at the sections are u and (u + = dx),
and h and (h + %2 dx) as indicated in the Fig. A-1 (a). The lateral in-

flow, rainfall is denoted by q and has dimensions of volume per unit area
per unit time. The radius of the flow region is Lo(length).
A.1l CONTINUITY EQUATION

The continuity equation states that the net flow rate into the
element under consideration must equal the outflow from the element and
the rate of change in its storage. That is, the difference between in-
flow and outflow for a small time interval, dt, is equal to change in
storage during that time.

The inflow consists of two components: the flow at section 1 and
the rainfall or lateral inflow, and is equal to:
uh(LO - x) d8dt + q(LO - x) dxdedt

The outflow comprises the flow at section 2, and is equal to:
Ju oh
(u + P dx) (h + = dx) (LO - x - dx) dedt

The change in storage equals the rate of change of the volume of

the element multiplied by dt, that is:
oh
3T (Lo ~ x) dedxdt

Upon combining these terms the continuity relation becomes:

ou ah
uh (LO x) dodt + q(L0 x) dxdédt - (u + P dx) (h + po dx)

. oh _
(Lo x ~ dx) dédt = 5t (Lo x) dédxdt

Upon simplification,

: Ju dh _ oh
uh(L0 - x) + q(L0 - x) dx - (u + Fp dx) (h + 3 dx) (LO - x - dx) = 3% (LO - x)

dx
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upon further simplification,

uh oh dh dx Ju Ju dx du dh

—_t e = ot @2 _ _p ZZ ou X S84
R A B = T h o Thx - =  Bx bx
(Lo - x - dx) _ 3

(LO - X) ot

Neglecting the terms of higher order and rearranging the remain-
ing terms yields:

uh
(L -x)
(o]

dh oh

du
e —— T A“l
i + h q + (A-1)

Y 3
This is the continuity equation for a converging surface.
A.2 MOMENTUM EQUATION

The momentum principle states that the rate of change of momentum
is equal to the sum of the forces acting on that element. The forces
are depicted in Fig. A-1 (b).
The hydrostatic force at section 1, acting downstream, is:

h2
f=yx 5 (LO - x) df

The hydrostatic force at Section 2, acting upstream,is:

£+ s fayh 0 - %) 2 dedx - YyhZded
x Y o ~ ¥ 3x dvdx — X

where vy = weight density of the fluid.
A further hydrostatic force acts on each of the converging sides

of the element as shown in Fig. A-1 (b). That is:

f] = %Yhzdx

The resultant component of side forces in the direction of flow
is:

Z%Yhzdx 9

h
[

le

[

%Yhzdxde
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acting in the direction opposing the motion. The force due to gravity,
acting downstream, is:
fG = yh(LO - x) dbdx sin ¢

where ¢ = bed slope.

The frictional force opposing the motion is:

. - L
fF = {h(LO x) dodx 7h

where { = shear stress. The force resulting from the momentum exchange
with the lateral inflow or rainfall is:

fq = pq(LO - x) dédx (u - v)

where p = mass density of the fluid, and v = component of lateral inflow
velocity in the direction of flow.

The force, fq’ tends to retard the flow. The rate of change of momentum

of the element of fluid is:

(mu) = oh(Lo ~ x) dxde du

4
dt dt

It can be written that:

Hence,

d _ B du , du
It (mu) = ph(L0 %) dxde[u 5 + atJ

The equation of motion can now be written as:

Y 4
f-[f‘l‘-é‘;{dx}—flc'l'fG“fF—fq—a'*E(mu)

Substitution of terms leads to the following:

£ - [f + yh(LO ~ X) %E dodx - %Yhzdﬂdx - %Yhzdﬁdx + yh(Lo - x) d8dx sin ¢

- - L - _ - - du , du
Yh(L - x) dédx = - pq(L = x) dédx (u - v) = ph(L_ - x) dxdo {“ 3 T at]
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Simplification and re—arrangement of the terms give:

R VU " SURR'S P _
s tug, Te85, =8 [51n Yh] R (w-w (A-2)

This is the equation of momentum for a converging section.
A.3 KINEMATIC MOMENTUM EQUATION

Consider that the inflow, free surface slope, and Inertia terms
of Eq. (A~2) are all negligible as compared with those of bottom slope
and friction. Equation (A-2) then reduces to:
¢ = vh sin ¢ (A-3)
This is a well-known relation for steady, uniform flow in a wide ree~

tangular channel.

Define
where Cf is a function of Reynolds Number and the relative surface
roughness.

From Eqs. (A-3) and(A-4), u can be written as

C

1

. 73

u = [2&2_2}2_2] = C(h sin ¢)lﬁ (A-5)
f

1
where C = (Zg/Cf)ﬁ, Chezy's coefficient. Assuming C to be constant (as

a first approximation), Eq. (A-5) can be used to write:

Q = yh = ah3/2
where
. %
a = C(sin ¢)% = [g&_%&&_ﬁ)
f

More accurately, of course, because of the variability of Cf

Q = ah” (A~6)

Hence
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u = ahnul (A-7)
Equations (A-6) and (A-7) are equations of motion for the kinematic

case.
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APPENDIX B

We will show that the curves t = t(x,to), o < to < T, fill out
all of S above t = t(x,0). For this purpose it is sufficient to prove
that, for fixed x > o, t(x,to) > oas t o> T. Together with our as-
sumption that the curves t = t(x,to) do not intersect in S for distinct
values of s this implies that h(x,t) is defined throughout S.

We make the following assumptions on q(x,t), a(x) and n:
n>1l;o0 <aox)<a ,a >0

1= - 2 1

0 < q(x,t) <q if t < T s q(x,t) = o df £t > T

From Eq. (2-10) we get:

1 1
X - L
1 b (ax)”
o < h(x,to) < [:L o I qLOdE:I = [rd ] (B-1)
L |
From Eq. (2-7)
,_[9:_1]
b}
c 1
X  na ro © o
2 1
where
1T
=1 |9
Cl T [ra ]
2 1
Integrating Eq. (B-2) between o and x
1
tlx,t ) > £+ C) X (B-3)

* x
Let x (to) be the solution of T = t(xc,to). Then, from Eq. (B-3),
T - ty"
)
o

1

*
x (to) < [
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We have, referring to Eq. (2-11),*

x (t)
o %* T“‘ton
J (L, - &) q(&,t (&) ) dE < I qL dE = qL x (t ) < qLD[ T ]
o) o 1
Then we have:
n-1 n-1
¥ n m | n
(L r) T-t C x
t(x,to) > to + T qL0 G dn = to + —
n o
o no.
2

It follows from Eq. (B-4) that t(x,to) + © asg tO + T for fixed x > o.
It follows from Eq. (B~1) that

1
n

0o < h(x,t) < {ﬁgi] (B~-5)

1

Equation (B-5) implies that h(o,t) = o for t > T.
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APPENDIX C

When q(x,t) = q the curves t = t(x,to) do not, for distinct values
of to’ intersect in S. This implies from Eqs. (2-11) and (2-53); the
curves of Eq. (2-53) are the prolongation beyond t = T of the curves (Eq. 2~
11). Equation (2~11) implies that t(x,to) is, for fixed x, an increas-
ing function of to’ and Eq. (2-53) implies that t(x,x:) is, fixed x, a
decreasing function of XZ'

To prove that the curves t = t(x,xo) do not intersect in domain
D3 we impose the condition that (Lo - x)/o(x) is a decreasing function
of x; we retain the condition q(x,t) = q. Under these conditions we
show that Eq. (2-34) is, for fixed x, a decreasing function of X
We write the integral in Eq. (2-34) as the difference of two integrals,
one from X, to LO and the other from x to Lo; we extend the definition
of a(x) to Lo < x < LO by a(x) = a(Lo(l—r)). The integral from x to LO
is an increasing function of X s 8O its negative is a decreasing function

X In the integral from %, to LO we introduce the change of variable

£ = (L0 - n)/(]_,0 - xo). Then it becomes

1 1 n-1
[ L0 - Xo n [ £ J n
dg (C-1)
oLy =& (L= %))
o

1 - g2

Now if x = LO - £ (LO - xo) = (1 - &) Lo + gxo

then

L -x L -~ x
o] 0 o)

oL = E @ - x) ) fa(®

It is clear from Eq. (C-1) that for fixed & the bracketed term is a de-

creasing function of L Thus Eq. (C-1) is a decreasing function of
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X, and, therefore, t(x,xo) is a decreasing function of X in domain D3.

To conclude the discussion we need to prove that the curves t =

%
t{x; Xg» XO) do not intersect in domain D We will show that t{x;

12°

*
xo,xo) is, for fixed x, a decreasing function of X In Eq. (2-97) we

introduce, as above, the change of variables:

1 1 n-1
J [ LO - XO ]n[ £ ] n i (c-2)
T=a -
L ol - & (L -=x)) 1 - 52
0 o
L - x
o} o]

The bracketed term in Eq. (C-2) is a decreasing function of R for
*
fixed £, so (L0 - xo)/(Lo - xo) is a decreasing function of X In-

troducing £ in Eq. (2-96) we get

*
- X
1-n 2
—_— - X
[g} n o o
1 2
t(x; x ,x ) =T+ = o1 j
2 n L0 - X
1 - Lo X L -x
I —x 0 o}
0 o)
1
L -x {ﬁ 2:}
o .__0 £ n
o, =@, x|~ a8
since
*
L - x L -x
1 . o o} o)
s - ] - —
Ry Lo X G(Lo £ (LO Xo) )
Lo T %
L- L -x
o 0

are decreasing functions of X and (LO - x)/(LO - xo) is an increasing

*
function of X t(x;xo, xo) is a decreasing function of X,.
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APPENDIX D
We investigate the behavior of h(x,t) for fixed x in domain DlZ'
We assume that q(x,t) = q and (LO - x)/a(x) is a decreasing function
of x. Tt is sufficient, from Eq. (2~99), to consider

2 * 2
(LO - xo) - (LO - xo) (D-1)

as a function of t for fixed x. We may write Eq. (D-1) as:

%
G(x ,2) = (L - x )2(1 - Zz) Z = wg;:—ig o< Z <1 (D-2)
o’ o) o ’ L - x ’
o o
where, by Eq. (C-2),
le.n 1 i n-1
1 [q]*ﬁ- J Lo B xo n [ £ ]_E— dE (D-3)
T == |2 -
n |2 ) a(LO - £ (L0 - xo) ) 1 - £2

We have

X
26 _ d6 dz_ o _
at 4z dxo ot (D-4)

where, on the left of Eq. (D-4), G is a function of x and t, and on the

right a function of Z. Since é%i < o and onlat < o it is clear from
0

Eq. (D-4) that the sign of 3G/dt, and therefore the sign of dh/st
agrees with the sign of dG/dZ.
We now specialize the hypothesis on a(x) still further: oa(x) = a
when x* < x £ Lo(l~r). Then Eq. (D-3) becomes
1

n ' n-l
nTao - J [ [ ] n de (D-5)

1-n

n
HIERES

1
n

Combining Eqs. (D-5) and D-2) we obtain:



209

2
_ 2] nT {2n 1 -2 -

G(XO,Z) g(Z) = a T-n 2n (D-6)

A\ 5 ! ot

[2] {[‘C’Z]“da

7z 1-8
Calculating g'(Z) we see that the sign of g'(Z) is determined by
111 n-1
2.n n g n
n(l-27) -2 R ~ dg (D-7)
2
z 1%

& ]T g < [é]ﬂrr all - )"
)™ e

and therefore Eq. (D-7) is greater than

1 1
= n-1 n
i@ - zHt - H%J (z - 22)} (D-8)

Because of
Ao bl a-b) @A . ...+

the sign of Eq. (D-8) is the same as that of

2 1 2, 1 _
l_Z_F—(Z—Z)“(l_Z) 1+(1—'2-5:?'L)Z] (D-9)

Since Eq. (D-9) is positive for o < Z < 1 we conclude that g'(Z) > o

for o < Z < 1, and finally that 9h/8t > o. Thus, on the hypothesis a(x)
*

= o when x < x ;:Lo(l—r), h(x,t) is, for fixed x, an increasing function

of t in domain D12'
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APPENDIX E
It follows from appendix C that the curves t = t(x,to) do not
intersect in domain D2 and, on the assumption of Eq. (3-24), that the
curves t = t(x,xo) do not intersect in domain D3. It follows from
Eq. (3~20) that tx*(x,xZ) < o, so the curves t = t(x,x:) do not inter-
sect in domain Dl(case A) or in domain D11 (cases B1 and BZ)' We now
prove, on the assumption of Eq. (3~24), that the curves t = t(X;XZ’xo)

do not intersect in domain D12' We introduce the change of variable

£ = (Lo - n)/(Lo - xo) in Eqs. (3-33) and (3-36):
S L. S Y S o
a a(Lo - £ (LO - xo) ) 1 - E2
1-n X 1
ol L -x =
LUX _ 1gq} n o 0 n
t(X’Xo’xo) =T n {2] [ [;(L -t (L -x) i]
o o o
L -x
o
L -x
o o
nl
{ — 2] Toae (E-2)
1-p-2" +0p&

%
where Z = (LG - xo)/(LO - xo). As in appendix C, it follows from Eq.
(E-1) that dZ/dx0 < 0. We have, therefore, from Eq. (E-2), that

*
. < .
txo(x,xo(xo),xo) o
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APPENDIX F
In this appendix we discuss the behavior, when a(x) = a, of h(x,t) for
fixed x in domain Djp. The discussion is parallel to that of appendix D.
From Eq. (E~1) we have:

1 1 1 ‘=1

= ok Ta _ n £ n _
T Y*a (LO XO) 1—_(2'2 dg (F-1)
Z
From Eq. (3~35) it is clear that we need to be concerned only with

G(x ,2) = (I-p) (L, = x )2 = (1, = x)? A -p -2%) (F-2)

as a function of x and t. On eliminating e between Eqs. (F-1) and (F-2) we see

that Eq.(¥-2) is, except for a constant positive multiplier,

(F-3)

The relationship between (x,t) and (x,7) in domain D;, is obtained from Eq. (E-2):

ln _1 1z n-1
ST+l @y n B P £ "
t(x,L) =T+ = (2) o (Lo x.) JL . 1= o -72 + pgz] dg (F-4)
)
L -Xx
o O

Here 3 is a function of Z through Eq. (F-1). Since Z'(xo) < 0 and ts§x§xg (xo),xo)< 0,
o

tz(x,z) > 0. The correspondence between (x,t) and (x,Z) in domain Dj, is one to
one. The curve Z = ZO coincides with t = t(x; xo*, xo) where X, and xo* are deter-
— * — = —-—e
mined by (LO X )/(LO xo) Zo and Eq. (F-1).
A simple calculation shows that the sign of g'(2) and therefore also the sign

of ht(x,t) is determined by 1

n~1

1
K(Z) = n(l- p-22) - [2(1-2)"71 Iz [———‘5——5—1 T (F-5)
1-¢
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For a fixed x, T £t £ t(x, x¥*) in case B, , and also in case B, when
x < %3 when x > %, t 2t ;,to(x). Correspondingly

L -x
0

2z 22z (x (F-6)

where Zo(x) = (LO--x*)/L0 in case B; and also in case B, when x 5_33-{; when

X < x we determine Zo(x) from Eq. (F-4) by replacing the left side of Eq.
(F-4) by t*(x) and then solving Eqs. (F-4) and (F-1) for Z. Thus the problem
is to determine the sign of K(Z) in the interval of Eq. (r-6). If K(Zo) =0
and Zo is in the interval of Eq. (F-6) then the maximum occurs on Z = ZO; the
corresponding value of t is determined from Eq. (F-4). Since the locus Z = Z0
is one of the curves t = t(x; xg, xo), the maximum of h(x,t), for fixed x,

occurs on this curve when these maxima are interior to the t-interval corresponding

to the given x. Various possibilities are indicated in Figs. 3-7 to 3-9.
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APPENDIX G
DIMENSIONLESS EQUATIONS AND DERIVATION OF NORMALIZING QUANTITIES
There is an advantage in writing Egqs. (A-1), (A-6) and (A-7) in di-
mensionless form. Therefore, the following normalizing quantities are intro-
duced:

H

i

normal depth for a discharge equal to the total steadystate outflow

0
from the converging section divided by the mean width of the section.
X =1L (1-r)
> 9 n-1 Lo(l-—r);ll—
TO = @Q ) n F——~E~—~ 1" , the time required to traverse the distance X,
max
at the velocity Vo, corresponding to the normalizing depth.
V = ol n-1
o o
DU maximum spatially uniform lateral inflow
HV
q = -2 0
o Lo(l~r}
) HOVO(l+r)
Qo 2r

The parameter r defines the degree of convergence. The dimensionless variables,

designated with asterisks, are thus given by:

=-3_ . =Lt . = = = B . =
q H T ° s x U, v 3 Qe T
o

=
by =g 5 9%
o 0 o o

Q
Qo
The following equations are obtained when the dimensionless Vvariables are sub-

stituted into Eqs. (A-1), (A-6) and (A-7):

sh, ah) (1-r)hy

at,, %, =4yt [1-(1-1)x, (6-1)
Q, = by (6-2)
u, = h‘;'l (G-3)

These are dimensionless forms of Eqs. (A-1) and (A-6)-(A-7). Note that the
parameter o no longer appears in the equations. We will now present the deri-

vation of the above normalizing quantities.
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G. 1 DEFINITION OF q0
Write the equation of continuity in dimensionl form for a converging

section as

doh dh u uh
—+tu——+h =q + - (G-4)
(L, X)

ot 3% ox

All symbols retain their same meaning as explained in Chapter 2. Utilizing
the normalizing quantities, write the Eq. (G-4) in dimensionless form as

oh,, N oh,, i du, d, Lo (1o . (I~r)ugh,
. _* . 00y, .
5t, | * ax, % %, H_V_ U ¥ Tlx, (1-1) ]

(G-5)

One of the objectives of normalization is to reduce the number of parameters.
HV

From Eq. (G-5) if 4 is chosen as i"%ig¥T the normalizing quantities will be
o

eliminated.

G. 2 DEFINITION OF To

Area of the converging section,

o

A= 360

2 _ 272
(L0 X Lo)

Area
Length of flow

Mean width

(L% - r2L2)
o) (o]
360(1-r)L_

n9L0(1+r)
360
6'\’2 — 2
" L'O(l * )qmax/360
2n6rLo/360

|l 05
2

r qmax

= flow/unit width at x, = 1.
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Note Q_ # BV

5 ZﬂGrLO
L (1-x9) —
_ o 360 _ ~
Hovo T 2r qmaxﬂ6L0(1+r) B Lo(l r)qm:ax
360
Vv = oH n-1
o o
1/ (n-1)
H (Vo/u)
. - L0(1~r)
(o} \Y
o
Combine Eqs. (G-6) and (G-7) to give
~ (o 1/n _ (n-1) /n
v (@)™ 7L (1 r)qmax}

Substitute Eq. (G-9) into Eq. (G-8) to obtain
B l (n-l) /n Lo(l—'r) 1/n
T, = — Rv—
q

max

o

G. 3 DEFINITION OF Upax

HV
)

Since , and

q =22
° 1 (1-1)
o
HOVO = Lo(l—r)qmax

These two terms can be combined to yield

_ 5.V - Lo(lwr)qmax _
9 Lo(l-r) Lo(l-r) Qpax

Hence q = q

(G~6)

(G-7)

(6-8)

(6-9)

(G-10)

(G-11)
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G. 4 DEFINITION OF Q0

Since Q =

Also, Qo # Hovo

Hence

(G-12)
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APPENDIX H

PARAMETER ESTIMATION AND OPTIMIZATION TECHNIQUES

This appendix briefly discusses those techniques of parameter estima-
tion and optimization that were specifically developed for this study and

may have limited applicability in other cases.

H. 1 PARAMETER ESTIMATION TECHNIQUES
H. 1. 1 Linear Interpolation of Errors

This scheme was utilized to estimate the watershed parameter o such
that the observed and computed peak flow rates were equal for a complex
rainstorm.

The method is based on linear interpolation of errors. Two initial approxi-~
mations are chosen and corresponding errors! are computed. The directdional deri-
vative of error with respect to the approximation is determined, and the next
iteration 1s enumerated accordingly. The algorithm is structured as follows:

Let Y,

1-1° ?i be the initial approximations, and Ei-l’ E, be the cor-

i
responding errors. Then successive iteration is computed from the following

(1) If (Ei—lEi) < 0 then

|Ei_l|\11i + [E, | ¥

i-1
Y., = (H-1)
i+l Eivl + Ei
(2) IfE <0, E_, <0, [Ei | > E, ; |, and ¥, >v¥, . or
B
Ei > 0, i1 > 0, Ei > Ei—l’ and Wi > wi—l then

lError E was defined as E = (@ ~ Q )/Q corresponding to a given «.
P Pe Py
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y =y, -l g (1-2)

Y. = V¥, + =———0— E (5-3)

i~-1
0 i
El > 0, Ei~1 > 0, Ei > 0, Ei > Ei-l’ and Wi > Y -1 then
vy, - ¥, )
i i-1
Y., =¥, + =— &, (H~4)
i+l i (Ei~l Ei) i

(5) Tf B, <0, E,_, <0, IEil <|Ei_1], and ¥, < ¥, 4, or

El > 0, Ei—l > 0, Ei > Ei—l’ and Wi < Wi_l
Then
v, . ~¥,)
_ i-1 i _
wi+l = Wi — Ei (H-5)
E, - B,
i-1 i
The convergence criterion was
|E.| < €
1=

where ¢ was chosen to be 0.01. The scheme was found to converge invariably and
the rate of convergence was almost quadratic. It must be noted here that the

scheme is constrained by the fact that the parameter o cannot be negative. The
starting values a

= 2.50 and oy 1.1 a, were found to be good initial guesses.

i +1 i
H. 1. 2 Analytical Method

The analytical method was developed to estimate the parameter such that
observed and estimated hydrograph peaks would be exactly the same due to a given

pulsed rainstorm. The method was specifically useful on rainfall-rumoff experi-

mental facility. The recession hydrograph in dimensionless form can be written
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as (from Chapter 2):

x*{2m(1~r)x*]
U= D

(H-6)

Equation (H-6) will give the hydrograph peak also. Writing Eq. (H-6) for the
hydrograph peak Qp* as,

x*[Z—(l—r)x*}

Qp* B (1+r) (H-7)
Writing Eq. (H-7) for x, as
(l~r)x§ - 2x, + (1 + r)Qp* = 0 (H~8)
Equation (H-8) is quadratic x,3 solving for x,yields

L (1-(1-r2)Qp,) 7
Xy T (1-1) (H-9)
Noting the fact that %, ¢(0, 1); x, must be given by

1 - (1-(-r2)q )0
Xe T (-0 (H-10)

This suggests that the hydrograph peak due to a given rainfall episode must
uniquely correspond to x, of Eq. (H~10). From Chapter 2, the recession time

can be expressed as:

t, = £(x,) (H-11)
But
_D
t, = o (H-12)
[s]

where D = duration of rainfall.

Therefore,

- (H-13)
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From the expression for To’ the normalizing time, the parameter , can be found
to be
1 |1 (Lo(l~r)

Unax nn

(H-14)

Equation (H-14) gives an explicit, analytic way of computinga . An interesting

and a rather important implication of this procedure is that it can be used in
detecting some of the errors in the rainfall-runoff observations. Assume, for
example, that Eq. (H-10) is not satisfled, that is, the term under square root comes
out to be imaginary. This suggests that the observed hydrograph peak does not,

in fact, correspond to the rainfall event responsible for its generatlon. This
1

(1-1r?
1 because of the partial equilibrium situation.

will happen only when QP* > when Qp*, indeed, must always be less than

H. 1. 3 Graphical Procedure
A quick graphical procedure was devised for an exact estimation of the
parameters n and @ by matching the hydrograph peak (QP*) and its time (tp*).
It can be described in the following steps:
1. Generate theoretical equilibrium hydrographs for various values of n
(i.e., n =1, 1.25, .... 3.0), and plot them separately. See Fig. H-l.
2. Reduce the equilibrium hydrographs to partial equilibrium hydrographs
for various values of d, = D/TO (i.e., dg= 0.1, 0.2, ..... L.0).
The reduction procedure is explained in ensuing section. From the
partial equilibrium hydrographs find out tp*, Qp*, and tp*/d*. A
graphical display is provided in Fig. H~1.
3. Plot tp*|d* versus d,for various values of n as shown in Fig. H-2.
4, Plot Qp* versus d, for various values of n as shown in Fig. H-3.
5. Computer (tp*/d*) = TP/D) from the observed data, where TP corresponds

to the dimensional hydrograph peak time.
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n=1.5
Rainfall

Equilibrium Hydrograph - -~

Partial Hydrograph

\\
\

T —] o

NN

32

20 24 28

XS

Equilibrium and partial equilibrium hydrographs for

n = 1.5 corresponding to various values of d,.

Fig. H-~1.
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Fig. H-2. Relationship between tp */d* and d.
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09
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N\ N=1.5
O—O N=2.5

@— N=3.0
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N N
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A

Fig. H-3.
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Relationship between Qp*and d,.
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Obtain a set of d, for various values of n from Step (3) corres-
ponding to the quantity in Step (5).

Computer Qp* = Qp/qmax from the observed data, where Qp = observed
hydrograph peak.

Obtain a set of d, for various values of n from Step (4) corres-
ponding to the quantity in Step (7).

Plot d, (obtained in Step (6)) versus n, and d, (obtained in Step (8))
versus n on one and the same graph. The intersection of the two plots
must give n and d,, as shown in Fig. H~4.

Now compute the normalizing time from

T - o (H"‘lS)

Compute o from the expression for TO. That is

L (1-1)
o = (—ytle (1-16)
qmax Tz

This method of computing n and o can be carried out for each rainfall event

under consideration.

H. 1. 4

Partial Equilibrium Hydrograph

A partial equilibrium hydrograph can be obtained from an equilibrium

hydrograph in a simple graphical way which is illustrated in the following steps:

1.

Plot the equilibrium hydrograph for a given rainfall intensity as
shown in Fig. H-3(a).

Construct the graphs t versus X and tRe Versus Xp for a given value
of n as shown in Fig. H-5(c) and (d), where t_, = recession time and

Re

Xp = space parameter for recession.
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1.0 Equilibrium Hydrograph

¢
Recession Limb of Equilibrium
Hydrograph
e/
(b)
o
t

Fig. H-5. Graphical derivation of partial equilibrium
hydrograph.
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For a given rainfall duration compute X and tRe from the above

graphs (Fig. H-5(c¢) and (d)), where X, = the value of x when

t = d, rainfall duration.

Trace the recession limb of the equilibrium hydrograph on a separate

sheet as shown in Fig. H-5(b).

Superimpose the recession limb on the equilibrium hydrograph from
the point of rainfall ending as shown in Fig. H-5(e).

Compute tp, time to hydrograph peak.

Draw a vertical line at tp to mark the point B where it intersects
the superimposed recession limb.

Draw a vertical line at D, and call the point A where it casts the
equilibrium rising limb.

Join the points A and B with a straight line. Point B will give
the dimensionless peak discharge as well as dimensionless time to

the peak. The partial equilibrium hydrograph is completely defined.
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H.2  LEAST SQUARES PROCEDURES FOR PARAMETER OPTIMIZATION
H. 2. 1 Two-Parameter Optimization

The parameters to be optimized in the two~parameter model include n and
¢. The optimization is performed on the objective function wich is derived
from the expression for the normalizing time. As pointed out earlier, the

objective function set forth is

N
Min 5 [in T - {(((-1)/n)iaG—— ) + (I/n)in(L_(1-1)/a)}]2 (8-17)
i=] i qmax.
KR
subject to the constraints:
T0 > 03 Loy = 0; n > 0; and ¢ > O.

Minimization of the sum of squares of deviations of estimated normalizing

time from observed normalizing time would be accomplished by differentia-
ting Eq. (H~17) with respect to the parameters and equating it to zero. This
is the essence of the least squares procedure. The process of differentiation
leads to two simultaneous equations which can be solved for the parameters

to be optimized. Hence Eq. (H~17) can be written as:

N
= g%- Il T+ (@-D/n)in Ina, " (1/m)%n L_(1-r) + (1/n)na]? = 0 (8-18)

i=]1 i
Writing Eq. (H-18) as

N
9 _ _ _ 2 - -
I [nfn To + (n-1)2n Qax. n Lo(l r) + fnal® =0 (H~19)

3
b

o’ da i=1 i i

Differentiating Eq. (H-19) with respect to (w.r.t.) n leads to
N

2 iil [n 2n Toi + (n-1) n qmaxi - 2%n Lo(l—r) + fna]{n TOi + n qmaxi]=0 (H-20)

Equation (H-20) can be rearranged and be written as
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N N N
2 X 2
nf & (n To.) + 2 T &n To n Uax + E (&n DUax )]
i=1 i i=1 i i i=1
N N N
+2nae [ I T + I 2ngq 1= I ngqg ¢n T
. o, . max . max o,
i=1 i i=1 i=1 i i
N N N
2 2
+ . — - —
L 4n Lo(l r) %n To + 'Z (&n qmax.) + ‘Z ¢ Lo(l r) fn qmax,) (H-21)
i=1 i i=1 i=1 i
N N N )
= 2
Let nl _Z (4n To.) + 2 ‘Z n To, n qmax. + 'E (2n qmax_)
i=1 i i=1 i i i=1 i
N N
n, = ‘Z n IO. + .E n qmax
i=1 i i=1
N N
ng= % fmq . ST, + I fnL(l-r) T
i=1 i i i=1 i
N N
2 -
+ .Z (fn qmax.) + 'Z n Lo(l r) n 9ax.
i=1 i i=1
Equation (H-21) can then be written as
+ = -
n r122na Ny (H=-22)
Differentiating Eq. (H~19) w.r.t.o leads to:
N
2 ‘Z In 2n To. + (n-1) fn Uax. n Lo(l—r) + fnalll/al = 0 (H-23)
i=1 i i
Equation (H-23) can be written as
N N N N
nfZ T + ¥ 2 Q ]+ Ne¢noe = £ 2n g + I fn L (1-1)
. o, . ax, max . o
i=1 i i=1 i=] i=1
N N
Let gl = .Z n TO. + ‘Z n QUrax
i=1 i i=1 i
g, = N
}*Ef N
Eq = nq + -
3 1=1 AL 151 n Lo(l T)
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Equation (H-22)can then be written as

gn t oy tno = Eg (H-24)

The system of Eqs. (H-23) and (H-24) can be solved for n and a.

The solution yields

53 EZ [nSEl - E3n1]

n= - - T (8-25)
. N, _ EqN
and ftn = 53 L 53 L (H-26)
1M2 - 22N

Equation (H-26) then follows

<£ N, = &40 (8-27)

_ 712 271
o=e
H. 2. 2 One-Parameter Optimization
The parameter to be optimized is a. The objective function is
N Lo(l—r)
min £ {an T - [((n-1)/n)n(l/q Y + (1/n)fn 2 ]} (H-28)
i=1 oy max, a
s. t. the constraints
T >0 ¢q >0; a >0; and n > 0.
o) max

Differentiate Eq. (H-28) w.r.t. o to obtain
d N 2
T ‘E [ng n T0 + (n—l)!l,nqmax - anO(l-r) + fnalc =0

i=1 i i

N
2 izl [nin Toi + (n--l)ﬂ,nqmaxi - RnLO(l—r) + fnaj[1l/al = 0 (H-29)

Upon rearranging the terms in Eq. (B-29) we obtain:
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N N N

[ £ L (1~r) ~ T (n~-1)n g -~ Z ntnT ]
i=1 © 1=1 maXy 4= %
N N N

[ 2L @) - T (n-1) ngq - £ nin T ] (H-30)
i=1 ° i=1 maxy  q=1 o4
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APPENDIX I
GEOMETRIC AND PHYSICAL CHARACTERISTICS

OF CSU R-R FACILITY
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Geometric and physical characteristics of surface configurations of
Rainfall-Runoff Experimental Facility at Colorado State University,

Fort Collins, Colorado

Length of Degree of Interior |Area of

arial Configuration |section (L ) |[convergence |angle (8) |section Surface

amber ‘number (ft) (r) (degrees) (ft£)2 composition

11 110 0.0106 120 12,670  |Butyl

2 ' 2 72 0.0162 120 5,428 Butyl

3 L3 36 0.0325 120 1,356  |Butyl

A 110 0.0106 120 12,670  |Butyl;triangular board

i ridges covered with
butyl flap; openings
in artificial ridges to
allow flow

5 5 110 0.0106 120 12,670 Butyl; plastic flaps
for ridges laid down.

6 6 110 0.0106 30 3,167 Butyl

7 7 110 0.0106 30 3,167 Butyl

8 8 110 0.0106 30 3,167 Upper 70' covered with

! gravel of 10 1bs/yd?,
[ lower 40' convered with
butyl

9 . 9 110 0.0106 30 3,167 Upper 106' covered with

| gravel of 10 1bs/yd?2,
lower 4' with butyl

10 10 110 0.0106 30 3,167 Alternate strips of
gravel and butyl; each

l strip being 10' wide;
gravel 20 1bs/yd?

1l 11 110 0.0106 30 3,167 Checker board pattern
of gravel, 20 1bs/yd?;
alternate patches of

; butyl

12 % 12 110 0.0106 30 3,167 Random gravel patches
! of 20 1bs/yd?, 10° sec-
| tor of 30° sector

13 13 110 0.0106 30 3,167 Random gravel patches,
20 1bs/yad?, 10° sector
of 30° sector

14 14 110 0.0106 30 3,167 Gravel, 20 lbs/yd2

L5 15 110 0.0106 30 3,167 Gravel, 20 le/ydz,
with stream pattern

i cleared in

16 i 16 110 0.0106 113 11,931 Gravel, 10 lbs/ydz, on
i one sector, butyl on
i the other (30°:83°)
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Table I~ 1. (ontinued)

{
i Length of Degree of Interior | Area of
rial | Configuration] section (L )| convergence | angle (8) | sectlon Surface
nber | number ‘ (ft) © (x) (degrees) (ft)? composition
17 17 z 110 0.0106 84 8,869 Butyl
g b 18 110 0.0106 113 11,931 Butyl and gravel in
' two sectors; 1.5"
! gravel 20 1bs/yd?;
83°:30°)
19 19
20 20 110 0.0106 30 3,167 Gravel, 30 1lbs/yd?
21 21 110 0.0106 30 3,167 Gravel, 40 1lbs/yd?,
1.5"
22 22 110 0.0106 30 3,167 Gravel, 50 lbs/yd?
23 23 110 0.0106 30 3,167 Gravel, 50 1bs/y&3;
streamlines carved in
gravel surface
24 24 110 0.0106 30 3,167  |Gravel, 50 1bs/yd?;
channels carved in
gravel surface
25 25 110 0.0106 30 3,167 Upper 55’ butyl,
lower 55' gravel of
50 1bs/yd?
26 26 116 0.0101 104 12,211 Butyl rubber; a por-

tion of complex
watershed configura~-
tion

27 27 116 0.0101 104 12,211 Butyl rubber; a por-
. tion of complex
watershed surface

configuration

28 28 116 0.0%01 104 12,211 Butyl; a part of com-
plex configuration.

29 29 116 v 0.0101 104 12,211 Butyl

30 30 116 0.0101 104 12,211 Butyl

31 31 116 0.0101 104 12,211 Butyl

32 32 116 0.0101 60 7,067

33 33 116 0.0101 44 5,166 Butyl

34 34 116 0.0101 44 . 5,166 Butyl plus brick lines

in a portion of the
converging section

35 35 116 0.0101 44 5,166 Butyl + bricks put on
at the spacing of one
brick length

36 36 116 0.0101 44 5,166 Brick layout upto
i 102", bricks turned
45° by dice throw
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|
i Length of

section (L )
(ft) °

‘urface| Configuration
umber number

Degree of
convergence

(r) ;

Interior

(degrees)

angle (6)|

Area of

section
(£Ft)?

Surface
composition

!_
37 % 37 116

38 38 116

i
|

5

i

!
39 39 | 116

40 | . 40 116

41 41 116

42 42 116

43 43 116

b4 &4 116

45 45 116

0.0101

0.0101

0.0101

0.0101

0.0101

0.0101

0.0101

0.0101

0.0101

60

60

44

60

44

60

44

44

44

7,045

7,045

5,166

7,045

5,166

7,045

5,166

5,166

5,166

Alternate strips of
gravel in each sec-
tor of 20° each

Alternate strips of
gravel of 20 lbs/yd?;
each strip being 20
wide

Bricks oriented at
45° from center line
to converge flow;
bricks upto 102° from
the mouth

Random plots of gravel,
20 1bs/ yd?

Three tiers of bricks
simulating terraces;
bricks tightly packed,
but not sealed to the
surface; water does
leak through in places;
soil is placed at cor-
ners to prevent flow
along borders

Random plots of gravel
with approximately the
same total quantity as
in configuration 3;
each strip being 20°'

Three tiers of bricks
simulating terraces;
bricks are tightly
packed, but not sealed
to the surface; water
does leak through in
places; soill placed at
corners to prevent flow
along borders; terraces
have formed a fairly
good seal with the rub~
ber because in most
places soill has washed
us against the bricks

Bricks terraces with

vwide channels

Terraces are 4 bricks
wide, 20' apart and
have grade 0.5%
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Table I-1. (continued)
Length of Degree of Interior | Axea of
serial |Configuration| section (L )| convergence| angle ()| section Surface
yumber |number (ft) (r) (degrees) (£t)? composition
46 46 116 0.0101 A 5,166 Brick terraces
47 47 116 0.0101 44 5,166 Terraces are 4 bricks
wide, closely spaced
with fairly good ad-
hesion to the surface,
grade 2%, spacing 20'
48 48 116 0.0101 104 12,211 1/3 covered by gravel,
20 1bs/yd?
49 49 116 0.0101 104 12,211 1/3 gravel covered,
20 1bs/yd?
50 50 116 0.0101 104 12,211 Butyl surface; gravel
dam 6" high, 3' wide
51 51 116 0.0101 104 12,211 Butyl surface; gravel
dam 6' high, 3' wide
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APPENDIX J

ESTIMATION OF PARAMETERS BY HYDROGRAPH PEAK MATCHING



240

and o obtalned by matching peak discharge and 1ts time for

rable J ~1. Parameters n
different events on butyl surface of CSU Rainfall-Runoff Facility, Fort
Collins, Colorado.
i‘ Rainfall Rainfall Peak Time to peak
Code duration intensity discharge discharge ' n o
i (sec) {(In/hr) (In/hr) (Sec) i

~1~8A2 33.95 4,189 1.556 90.8 % 1.504 11.92
'~1~118 85.09 1.075 0.590 139.9 ‘ 1.952 138.26
1-2-188 ' 60.69 1.032 0.405 151.9 | 1.915 77.94
4~2-19B % 51.68 2.130 0.803 103.9 i 1.948 84.51
-2-208 | 45.21 3.358 1.516 91.4 | 1.816 39.98
4-3-218B E 65.59 0.898 0.354 140.5 i 1.952 63.82
7-3-22B ! 66.00 2.135 1.073 110.3 2.141 105.31
4~3-23B 52.98 4.389 2.006 93.8 2.200 89.48
i-4=24B 352.33 0.976 0.863 463.6 1.236 0.607
1-5=-278B" 80.78 1.088 0.472 159.9 | 1.956 121.85
~5-28B 77.64 2.321 1.614 102.9 ‘ 2.139 292.02
.~6-30B 77.79 1.038 0.418 143.3 1.948 107.10
-6-318 70.75 2.390 1.307 121.0 1.835 49,29
4=6-328 32.69 4.420 1.057 94.1 2.044 159.02
5~17-118 102.49 0.890 0.575 147.3 2.005 195.86
4=17~120 88.80 1.860 1.401 110.3 2.200 439.99
(17124 68.80 3.690 3.123 97.8 1.208 2.703
-26-326 134.72 0.390 0.238 194.8 2.029 304.082
¥-26-326A 126.60 0.415 0.238 188.5 2.049 337.67
-26-327 55.05 0.800 0.215 179.1 1.765 57.794
1~26-327A 54.10 0.814 0.215 178.1 1.787 67.14
~26-328 113.28 0.800 0.543 155.8 2.036 241.05
-26~330 94.68 2.035 1.796 124.,2 1.249 2.92
41~26-332 53.30 4,135 3.149 87.5 1.335 5.66
5-26~333 80.50 4,050 3.615 86.1 2.520 1,339.59
~26-333A 78.65 4,135 3.615 84.3 2.579 1,763.20
F~27-311 49.92 4,039 2.591 78.7 1.687 34.95
4=27-312 58.18 4.039 3.133 86.7 1.342 5.93
3-27-318 45.59 0.799 0.152 182.4 1.976 247.64
¥3~27~319 116.30 0.814 0.612 163.7 1.580 16.47
1-27-322 71.40 0.390 0.109 217.6 1.809 93.03
7-27-323 117.60 0.390 0.202 193.6 1.975 228.68
3-27-323A 110.51 0.415 0.202 186.5 1.974 227.49
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Table J- 1. (éontinued)

7 r
Rainfall Rainfall [Time to peak
Code duration intensity discharge discharge n o
(sec) (In/hr) (In/hr) (Sec)
34—28~341 144.25 0.415 0.287 181.1 2.243 1,147.87
35-28-342 252.45 0.415 0.409 269.2 1.206 1.25%
36~28~343 65.58 0.814 0.245 165.9 1.980 197.07
37-28-345 120.10 0.814 0.665 140.3 2.223 797.57
39-28-347 81.47 2.035 1.522 111.3 1.702 32.43
39-28-348 128.06 2.035 1.919 142.4 1.570 10.97
40~28-349 30.57 4.135 1.282 73.1 2.187 636.21
41--28~350 - 53.19 4,135 2.845 88.8 1.357 6.11
42-29-353 134,53 0.814 0.729 157.2 1.640 23,67
43~29~355 94.87 0.814 0.502 136.0 2.039 310.28
44-29-360 63.29 4.135 3.560 85.2 1.267 4.23
45-30-364 77.61 0.814 0.339 144.0 1.957 179.95
46~30~365 141.36 0.814 0.788 162.8 1.135 1.42
47-31-368 69.45 0.814 0.307 169.4 1.745 48.35
48-33-378 65.20 3.642 2.698 83.5 2.079 215.03
49-33-379 103.29 3.642 3.568 ‘ 111.8 1.287 3.38
50-33-382 146.98 0.772 0.609 i 195.2 1.624 15.91
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Table J -2. Parameters n and o obtained by matching peak discharge and its time for
different events on butyl plus dam surface of CSU Rainfall-Runoff Experimental
Facility, Fort Collins, Colorado.
Rainfall Rainfall Peak Time to peak
Code duration intensity discharge discharge n o
(Sec) (In/hr) (In/bir) (Sec)
1-50—631E 163,70 0.515 0.233 326.9 1.820 29.78
2-50-632 229.21 0.515 0.386 325.1 1.567 6.78
3-50-633 | 295.58 0.515 9.480 374.6 1.106 0.51
4-50-635 88.66 1.082 0.310 233.7 2.102 166.42
5-50-636 162.70 1.082 0.759 264.2 1.396 2.74
6-50-637 234.02 1.082 0.96 319.2 1.153 0.69
7-50-638 294.62 1.082 1.032 363.6 1.045 0.375
8-50-641 193.96 2.086 1.976 217.1 1.471 3.70
9-51~645 273.34 0.512 0.444 343.8 1.463 3.50
10~51-647 83.24 1.026 0.277 230.5 1.928 66.64
11-51-648 259.15 1.026 0.863 350.3 1.229 0.873
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Table J - 3. Parameters and o obtained by matching peak discharge and its time for
different events on gravel (20 1bs/yd?) surface of CSU Rainfall-Runoff Experi-
mental Facility, Fort Collins, Colorado.

= T,

Rainfall Rainfall Peak Time to peak
Code duration ;| intensity discharge discharge n a
{Sec) | (In/hx) (In/hx) (Sec)
1-14-61B 138.67 | 0.458 0.153 384.6 1.707 14.35
2-14~62B 132.71 1.099 0.428 338.0 1.636 6.47
3-14~63B 100.97 2.311 0.887 294.6 1.418 2.03
4-14-643 86.97 4.490 1.702 310.7 1.205 0.70
5~-14-149A 246.82 0.807 0.721 319.0 1.238 1.02
.6—14—149A 246.82 0.807 0.718 319.0 1.238 1.02
7-14-150 ‘ 67.73 0.807 0.166 284.9 1.747 25.50
8-14-151 215.49 1.871 1.562 264.3 1.760 3.51

9-14-151 225.13 1.871 1.592 287.7 1.481 2.56

10-14~152 57.53 1.871 0.481 270.3 1.330 1.89

11-14-152 56.48 1.871 0.479 254.8 1.379 2.58

12-14-153 207.48 2.886 2.330 252.,5 2.003 17.89

13-14-153 57.64 2.686 0.718 270.7 1.292 1.40

14-14-155 204.58 3.782 3.486 219.5 2.268 52.18

15-14-156 53.72 3.782 0.989 236.0 1.386 2.24

16-~15~65B 130.16 0.468 0.139 390.4 1.756 19.25

17-15~668 123.56 1.127 0.418 219.1 1.947 40.49

i8—15~67B 84.02 2.385 0.730 236.8 1.828 18.19
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Table J-4. Parameters n and o obtained by matching peak discharge and its time for
different events on gravel surface (50 1bs/yd?) of CSU Rainfall-Runoff
Experimental Facility, Fort Collins, Colorado.

|
Rainfall Rainfall | Peak Time to Peak
Code duration intensity discharge discharge n o
(Sec) (In/hr) (In/hr) (Sec)
1-20-169 258.51 0.860 0.635 374.5 1.550 3.55
2-20~170 67.83 1.850 0.440 334.8 1.358 1.65
3-20~171 254.54 1.850 1.446 309.5 2.166 39.31
4-20-172 51.41 3.85 0.766 301.4 1.365 1.58
5-20-173 210.09 3.88 3.053 250.4 2.322 46,69
6-20-1734; 209.01 3.88 2.778 299.0 1.700 3.50
7-20-175A] 250.30 2.70 2.402 291.3 1.715 5.05
8-20-176A 67.26 0.86 0.177 335.3 1.510 5.12
9-22-179B| 110.46 2.91 0.877 309.5 1.483 1.78

10-22-180B| 187.18 2.91 1.478 328.2 1.936 10 .05

11-22~182B} 115.32 1.99 0.567 455.3 1.413 1.20

12-22~183 190.08 1.99 0.961 450.1 1.402 1.05

13~-22-184 310.26 1.99 1.563 359.3 2,530 108.16

14~22-~186 83.32 3.90 0.939 341.1 1.570 2.723

15-22-187 105.03 3.90 1.098 335.7 1.726 4.64

16-22-188 153.45 3.91 1.743 285.4 2.075 17.76

17-22-189 298.83 3.91 3.712 308.8 2.481 46.13

18-22-192 227.13 0.916 0.386 371.9 2.456 255.10

19~-23-193 344,20 0.916 0.964 400.6 2.361 116.32

20-23-197 207.20 4.413 2.904 247.3 2.377 49,02

21-24-202 575.56 0.840 0.826 605.5 1.480 1.23

22-24-206 217.00 3.840 3.075 257.0 2.263 35.52




245

Table J-5. Parameters n and © obtained by matching peak discharge and its time for
different events on butyl plus gravel surface of CSU Rainfall-Runoff Experi-
mental Facility, Fort Collins, Colorado.

Rainfall Rainfall Peak Time to peak
Code duration intensity discharge discharge n o

s (Sec) (In/hr) (In/hr) (Sec)

1-8-38B 136.02 1.089 0.583 216.5 2.149 165.54
2-8-38B 78.98 2.387 1.012 181.4 1.663 11.92
3~-8~40B 51.76 4.287 1.463 149.2 1.602 9.39
4-9-413B 86.21 0.461 0.129 261.8 1.811 55.07
5-9-42B 111.07 1.148 0.486 232.0 1.871 36.96
6-9-43B 81.51 2.383 1.027 194.7 1.562 6.72
7-9-44B 53.98 4,394 1.452 180.3 1.441 3.60
8-10-45D 79.17 2.374 0.919 200.9 1.631 3.06
9-10-46B 69.12 4,094 1.660 152.1 1.823 22.22

10-10-47B 124,63 1.130 0.552 246.0 1.697 13.16

11-10-48B 161.36 0.487 0.217 324.9 1.855 37.09

12-11-50B 134.17 0.510 0.175 358.4 1.713 15.16

13~11-51B 122,18 1.074 0.560 241.0 1.564 7.06

14-11-52B 74.74 4,442 2.144 i74.6 1.425 3.17

15-12-~54B 128.63 1.094 0.612 211.3 1.908 49,22

16-12-55B 93.91 2.207 1.089 175.1 1.844 28.95

17-12-568 63.91 4.28 1.667 148.3 1.791 20.04

18-13-57B 130.74 0.489 0.153 317.1 2.108 191.29

19-13-58B 145.03 1.069 0.589 265.9 1.649 9.17

20-18-134 100.50 2.100 1.400 123.6 2.268 305.47

21-18~135 90.86 3.83 2.53 110.9 2.317 271.60

22-18-136 223.69 0.96 0.853 248.7 2.120 105.22

23-18-137 144.62 2.10 1.637 186.0 2.368 312.61

24-18-138 131.25 3.83 3.166 143.3 2.553 417.47

25-25-215 87.04 3.61 1.52 206.0 1.623 6.28




246

Table J— 6. Parametets n and o obtained by matching peak discharge and its time for
different events on bricks, random plots of gravel and butyl surface of CSU
Rainfall-Runoff Experimental Facility, Fort Collins, Colorado.

Rainfall Rainfall Peak Time to peak
Code duration intensity discharge discharge n o
(Sec) (In/hrx) (In/hx) (Sec)

1-35-389 103.62 1.886 1.293 173.6 1.369 3.477
2-35-390 177.32 1.886 1.822 216.2 0.989 0.508
3~35-391 48.30 0.790 0.181 197.5 1.638 25.76
4-35-392 105.80 0.790 0.447 191.8 1.625 17.48
5-35-394 38.52 4,003 1.183 142.0 1.418 5.264
6-35-396 139.55 4,003 3.659 166.0 1.415 3.24
7-36-400 63.90 0.867 0.243 172.3 1.915 124,35
8-36-401 90.02 0.867 0.381 163.6 2.091 309.79
9—36~402- 128.71 0.867 0.537 195.1 1.898 67.92

10-36-403 22.33 3.699 0.639 120.6 1.598 20.02

11-36-404 65.38 3.699 1.955 120.4 1.718 22.04

12-37-~410 53.64 3.555 1.118 162.8 1.646 12.10

13-37-411 52.99 3.555 1.033 165.9 1.703 15.58

14-37-412 121.55 3.555 2.835 176.4 1.331 2.266

15-37-414 51.24 1.686 0.404 185.4 1.775 34,88

16-37-415 121.45 1.686 1.110 199.6 1.512 5.91

17-37-418 123.87 0.770 0.428 229.8 1.594 11.29

18-37~419 177.62 0.771 0.625 238.2 1.493 5.84

19-37-421 134.35 0.396 0.165 272.1 1.990 143.49

20-37-422 206.53 0.396 0.295 329.5 1.297 1.72

21-38-428 35.56 4.073 0.855 145.5 1.743 25.33

22-38-429 38.51 4.073 0.967 148.7 1.665 15.95

23-28-430 80.12 4.073 2.205 130.9 2.016 63.30

24-38-431 123.79 4.073 3,253 137.8 2.496 334.65

25-38-432 151.89 1.807 1.457 222.0 1.270 1.60

26~38-434 99.57 1.807 0.940 175.1 1.882 42,75

27-38-435 117.57 0.824 0.447 245.6 1.417 3.93

28-39~441 58.47 3.717 2.121 119.9 1.358 4,42

29-39-443 57.95 0.892 0.221 190.3 1.893 105.51

30-39~-444 82.80 0.892 0.399 179.1 1.675 25.66
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Table J-- 6. (continued)
Rainféll gainfa}l % .Peak i Time to peak
Code duration intensity | discharge ; discharge n o

‘ (Sec) (In/hr) i (In/hr) % (Sec)

31-39-444A 92.36 3.720 é 2.929 ; 144.6 1.209 1.79
32-40-427 44,14 4,242 ; 0.912 ; 169.1 1.844 29.09
33-40-460 176.08 0.480 [ 0.263 | 297.1 1.883 50.14
34-40-461 287.69 0.501 0.477 349.2 1.098 0.53
35-40-466 108.85 0.970 0.371 ‘ 253.6 1.815 29.91
36~-40-467 152.58 0.970 ’ 0.678 { 231.9 1.571 8.19
37-40-473 111.25 1.930 0.918 265.0 1.416 2,54
38-40-4734A 146.69 1.930 1.435 206.5 1.628 8.95
39-40-474 46.71 1.930 0.320 237.5 1.74 21.58
40-40~480 137.84 4,242 3.596 181.2 1.399 2.65
41-40-481 182.14 4,242 4.073 216.0 1.105 0.74
42~41-488 179.65 0.479 0.277 245.5 2.184 248.13
43-41-489 247.93 0.439 0.390 302.1 1.474 4,84
44-41-495 184.41 0.995 0.813 243.1 1.517 5.59
45~41-496 251.88 0.995 0.965 271.5 1.480 3.92
46-41-503 159.78 2.034 1.700 189.3 1.986 46.45
47-41-507 50.65 4,052 1.158 135.6 2.068 104.13
48-41-508 99.06 4,052 2.721 146.9 1.751 15.64
49-41-509 148.76 4.052 3.471 168.8 2.228 78.24
50-41-510 189.14 4,052 3.562 206.2 2.589 197.24
51-42-~512 424,71 0.468 0.432 510.9 1.308 0.95
52-42-515 68.95 0.456 0.079 297.9 1.837 66.47
53-42-516 148.74 0.456 0.238 278.5 1.672 17.74
54-42-518 318.60 0.456 0.406 373.7 1.848 26.43
55~42-521 103.79 0.878 0.376 234.7 1.676 16.96
56-42-522 165.50 0.878 0.643 261.3 1.360 2.50
57-42-523 232.62 0.878 0.768 294.0 1.402 2.54
58-42-530 183.27 1.886 1.732 244.3 1.065 0.61
59-42-532 27.28 4.189 0.546 186.2 1.629 11.50
60-42-533 68.42 4,189 1.765 147.6 1.803 22.02
61-42-534 97.30 4,189 2.762 140.2 1.928 34,30
62~42~535 127.57 4.189 3.258 183.7 1.415 2.81
63~42-536 27.99 4.189 0.519 192.1 1.723 19.27




Table J-6.(continued)
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i Rainfall Rainfall Peak Time to peak
Code ! duration intensity discharge discharge n )

! (Sec) (In/hx) (In/hr) (Sec)
64~43-540 E 287.35 0.450 0.271 389.5 2.166 126.03
65-43~541 | 234.01 0.450 0.316 268.1 2.485 1,597.78
66-43-547 | 343.20 1.084 0.997 360.9 2.559 311.15
67-43-551 . 217.09 2,024 1.720 244.7 2.266 88.96
68-43-555 | 132.89 4.206 2.803 198.1 1.713 7.70
69-43-556 | 194.84 4.206 3.709 211.3 2.583 168.33
70-43~557 | 262.40 4,206 4,104 292.9 1.167 0.647
71-44-564 1 135.81 0.468 0.144 358.2 1.955 70.65
72-44-565 | 209.16 0.468 0.261 332.4 2.038 98.88
73-44-566 | 283.01 0.468 0.371 317.6 2,444 788.02
74-44-570 { 103.71 4,219 2.386 153.0 2.331 160.77
75~44-571 | 148.84 4.219 3.252 172.3 2.375 120.62
76-44-572 | 196.58 4,219 3.816 234.8 1.460 2.269
77-44-575 | 151.22 2.107 1.364 227.1 1.815 15.86
78~-45-578 | 184.48 1.112 0.777 252.7 1.929 37.43
79-45-581 | 121.38 4.171 3.729 142.7 2.288 136.22
80-46-587 | 200.19 1.072 0.849 244.5 2.031 66.32
81-46-590 | 111.68 4,351 3.756 148.5 1.289 2,25
82~-47-599 | 179.88 1.039 0.861 227.7 1.633 10.74
83-47-602 99.5 4.166 3.656 138.6 1.140 1.40
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APPENDIX K

VARIABILITY OF PARAMETER o WITH PARAMETER n
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APPENDIX L

FORMULATION OF SINGLE~STEP LAX-WENDROFF

FINITE DIFFERENCE SCHEME

L. 1 DERIVATION OF THE SCHEME

The dimensionless equation of continuity for the converging section

follows:
8h oh du _ h(l - r)u
b T g T Mo * [L- (1 - 1r)x]
Using u = hn_l, Eq. (L-1) can be written as
n n
dh , 3h" {q + =L =Dh 1= 0
_ ot ox [1~ (1~ 1)x]

From the Taylor Series expansion we can write

2 a2
hGx, t+88) = hix,t) +accl + BB 3% 400 0s
3t 2 3t2
Write Eq. (1-2) as
n n
3t 9% [ - (1 - 1)x]
Differentiation of Eq. (L-4) with respect to t gives
Pho_ byl obg 2 (1-ppt
3t2 It" Bx ot ot [1 - (1 - r)x]
or
3%h _ 3 (on” ] 4 , _-om™'
5¢2 9 X 3t ot [1 - (1~-r1x)x] ot

Substitution of Eqs. (L-4) and (1L-5) into Eq. (L-3) yields

(1-1)

(L-2)

(L-3)

(L-4)

(L-5)

o3 n
hix, t +At) = h(x, t) + At {- %E; + T flzi)E = } +
Wo [ a3 L aq , (1= rym o
2 [- ox ( at >+ st T [1- (1 - r)x] x4
(L ~ )"
¥ [1-(1—r>xJH
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oh" (1 - r)h"
= h(x, t) + At{ i +q + i1~ (l-0)%] } +
5 [.n-1 oh" 1 - r)hn\ 3q
(At)z {_ —8'; [nh - ﬁ + q + [1 — (1 — r)x] } + It
-1 n n
(1L - r)nh" 3h" (L - r)h
T - - oxl 1“ L {l—(lur)x]}

It

oh"” (1 - )"
h(x, t)‘{"a';“ “q“[1-<1-r>x1} {A”

(At) (1 - r)nhn_l }

2 [1 - (1 - v)x]

( n
w? [ o -1 [an" (1 - oHh }:[
T I_ax{“h [ax {q+{l—(l~r)x]
L

4+ 29 1 (L-6)

Equation (L-6) gives a second order approximation for h(x, t + At), and is the
basis of the finite difference formulation.
Using notations of Fig. 7-1, Eq. (L-6) can be written as

. . - e ™M . a-oaht
nith - nt - { I+ n L — bt +
_ * Joon-a- r)x,]

i.n—-1 i i -1 i n in
(at)2 (1 - r)n(hj) (At)z N {h 41 + hj } {(hj+l) - (hj)
2

+
S - A
2 [1- (L- r)x;] 2 Ax X

) s hi,, +h r . ; .ol
1 —
qj+l + qj (1-r) ‘—;L—Tzﬂ*dl } o { hj + hj-l }
- ] }

2 i
'x.+1+ .
1- (1 - r){_-"————l
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iin i n i i h% + h% -1 'n
()" - (hy ) o +tq;,; (1-1 =

N | |
Ax 2 i i
x, + X‘—l
1-( - 1) {_l_i__l_m }
i+1 i
q. - q,
+ “l-gg*—l (L-7)

L. 2 DERIVATION OF STABILITY CRITERIA

Stability is essential for the convergence of a difference scheme.
In an unstable scheme small numerical errors introduced in the computational
method are amplified and dominate the solution. A linear stability analysis
for the above difference scheme is given. Although the method is not rigorous
for nonlinear equations it does serve to identify the unsuitability of the
difference scheme, and determine appropriate step length for conditional
stability.

In a linear stability analysis it is assumed that instabilities first
appear in a very small region of space so that if the coefficients of the
derivatives are smooth functions, they can be approximated as constants in

this region. Write the Eq. (1-2) as

-1
3h n-1 5 _ _(1-oh h _
5¢ T b ax 1-a-ox 4 (1-8)
Linearize Eq. (L-8) and write as

n-1 _n~-1
3h = h _ _(1-vh h _ -
5 © "M % T Ti-a-ox o ¢ (=9

Now at any point, (j,k), the numerical solution h? equals the true solution

h(kdt, jAx) plus an error term e? .

Then h? = h(kAt, jAx) e? (1-10)

|

here At = time increment, and

Ax

space increment.
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Since the system of Egs. (L-9) - (L-10) is linear, it may suffice to consider

only one term of the Fourier Series expression for the error term.

€ = g Expl[i(MoAx + NyAt)]

]

where %) constant,

¢ = wave number in space,
Y = wave number in time, and
i = V=1

That is,

(L~11)

It is assumed that the errors are perturbations added to the solution of the

linear system. If the linearized finite difference equation is writtenm in terms

.of the correct solution plus the error term (Eq. L-10) and then the exact solu~

tion is subtracted, a differential equation in the error terms can be obtained.

That is
3 s _ be
5t T 9x 1= - 0xl 0
where

n-1
a = nh

n~1

b= (1l - 1r)h

The differential Eq. (L-12) is then written in finite-difference form.

(L-12)

For the

stability of a scheme the ratio of successive error terms must be smaller than

wity, e.g.,

. k41
-] <1

k
€

3

which establishes a stability criterion.

From Eq. (L-12),

de  _ be _ o€
ot [1 - (1 - r)x] 3%

(L-13)

(L-14)
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be e

9
(1 - r)x] T o 3x [ t ]

I
d st "1 -

_ b be e\ _ . B be _ ,2e
[1-(l-r)x] | 1-(l-1)x 2 3% a2 3%l I-(I-px 3%
- b%e ab de oLy 2 e + 32 3%¢
[1-(1-r)x]% [1-(l-r)x] 09x ax t 1-(1l-1r)x ax2
b2e _ ab e _ .y 1 e
[1-(1-r)x]? [1-(1-r)x] 9x [1-(1-1)x] X

(l-r)e 32¢
[l~(l—r)x]2} ta? 7

-+

From the Taylor Series expansion,

de (bt)2  32e

; } s ,
e(x, t + At) e(x, t) + At T + 2 Fywa + 0(At®)
Substituting Eqs. (L-14) and (L-15) into Eq. (L-16) leads to
- be _ ase (at)?
e(x,t + 4t) = e(x,t) +'At{[1~(1-r)x] Py } + >
b2e ____ab e ab de
L [1-(1-r)x1? [I-(1-x)x] 9x [1-(1-r)x] 3%
abe (1-1) (At)? 2 3%¢
B s A A
[1-Q-0)x] } R R

Write Eq. (L-17) in the finite difference form as:

k k
el kL bey ST, (o?
k| j [1-(1~r)x] 2A% 2
5 k kK k ko,
bce. Zab(ej+l Ei—l) ) abaj (1-1)
[1-(1-r)x]* [1-(1-r)x]2Ax [1-(1-r)x]*°
k k k
N a?_ (At)2 €j+l - 281 + €j~l
2 (ax)©

Let M =N = 0 for the point j, k in Eq. (L-18), then

(L~15)

(L-16)

(1.-17)

(1L-18)
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™
it
™
-
(U]
il

k e+l ok .k
3 o p €, exp(iyvAt); €j+1 = g, exp (10Ax); Ej—

e exp (-1i0Ax)

Substituting these expressions into Eq. (L-18) and dividing by €, leads to:

k+1 ) ,
€, iybt b elOAX _ e—chx
ko B B TGS S 2%
3
N (At)z b2 _ ab(eioAx - e—ich)
2 [1-(1-1)x]? [1-(1-r)x]2A%
ioAx -i0AX
_ __ab(l-xr) 2 (At)2 e0PF _ 9 4 e ~
[1-(1-r x]z} et BZ (1-19)

Utilizing the appropriate trignometric identities, Eq. (L-19) can be written

as.:
ivat _ b _ .. sinoAx (at)?
e 1+ At {TE:?E:;FQT al ——XE——~} + T
b2  _ _ab2i sinodx _ __ab(l-r)
[1-{1-r)x]? [1-(1-r)x]Ax [1-(1-r)x]?
+ (ae)? 22 2 cosohx - 2
2 (AX) (L~20)
oY
elYAt =] - ai %ﬁ-sinoA x + (a %5)2 {(cosoAx - 1)
Atb (At)? b2 _(Ap)?
Y maos T T2 [Saeox2 T
2i sinoAx _ _(At)?(l-r) _
-(i-0x] ~ 20-(1-D=Z 2 (1-21)
For stability, the quantity eiYAt

must be within the unit circle on the complex

plane. The real part of Eq. (L-21) follows
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aht 2 bAt 1 bAt
4+ (== — _bov . - 2
L+ (o) (eosobx - 1) + oy + 5 { oy !
_ At 42 3b 4
T 2 4
or
Aty _ bAt 1 bAt 1
1+ {a Ax} (cosoAx - 1) + 1= (D% {1 + > Tic(1-0)%] (1~a(l-v)}
and the imaginary part,
SRS _(a)? i sinoAx _ __ . At . ]
al = sinoAx > ab TEZ?EZZTET = a i A singAx 11
Atb
T =G-0=
Squaring the real and imaginary parts leads to:
Atqo bAt bAt
+ _ = — e —— e ——— e ———
[l {a AX} (cosoAx - a) + [I=(i-0)=] {1 + = (-0 %)
2oy 1+Atb
t . +At
(1-a(1l-1)) } ] + l-a 2L sinodx (1 + 3ot } <1 (1-22)

which gives the stability criterionm.
Consider now the most critical conditions when the left hand side of Eq. (L-22)
is evaluated at various values of oAx. See Table D~1. Terms of smaller

magnitudes will be dropped; specifically terms involving 0(At) will be ignored.

Table D-1. Stability criterion.

cAX singAx cosohx Criterion

0 0 0 1]<1
w/2 1 0 1 - (a 2524 @ 25 ‘1 1

m 0 -1 1- 42852+ 4@a gDt <1
3/2 -1 0 1- 3352+ @Hr | <1
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From the above analysis, it is clear that the criterion stated above is

satisfied when

Atyo
(@D < 1
At
a Ax =
At 1
Ax = - =1
n(h) (L-23)

Equation (L-28) shows that the point (k+l, j) must lie within the zone
of determinacy of the line from (k, j-1) to (k, j+1). The Lax~Wendroff

scheme is linearly stable subject to the condition Eq. (L-23).
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APPENDIX M

PARAMETER VARIABILITY ON AGRICULTURAL WATERSHEDS
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Table M-1. Variability of parameter o on Watershed C, Riesel (Waco, Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 6-10~1941 0.882 3.118
2 6-23-1959 0.625 1.834
3 7-9~1961 0.050 6.849
4 5-13-1957 0.566 2.788
5 7-16~1961 0.149 3.705
6 6-4-1962 0.314 3.159
7 5-9-1957 0.112 7.823

Statistics of Parameter o

Mean 4,182
Variance 5.03%9
Standard Deviation 2.245

Coefficient of Variation 0.537
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Table M~2. Variability of parameter o on Watershed D, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 5-6-1955 0.273 26.400
2 5-3-1957 0.670 8.800
3 6~23-1959 0.604 8.800
4 12~-31-1959 0.070 9.600
5 7-16-1961 0.164 4,600
6 7-23-1961 0.046 10.345
7 6-4-1962 0.223 3.484
8 5-~10-1965 0.894 3.914

Statistics of Parameter o

Mean 9.589
Variance 75.625
Standard Deviation 8.696

Coefficient of Variation 0.967
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Table M-3. Variability of parameter o on Watershed G, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
numbexr event peak o
(in/hr)
1 7-14-1941 0.091 3.739
2 2-14~1959 0.384 3.974
3 6-23~1959 0.049 3.445
4 11-4-1959 0.074 4,406
5 12-31~1959 0.052 5.344
6 7-16-1961 0.068 3.663
7 7-23-1961 0.021 6.119
8 3-29-1965 0.950 1.695

Statistics of Parameter «

Mean 4.048
Variance 1.750
Standard Deviation 1.323

Coefficient of Variation 0.327
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Table M-4. Variability of paramcter o on Watershed W-1, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 3-12~1953 1.130 5.213
2 5~13-1957 1.640 3.373
3 6~4~1957 1.090 5.123
4 6-23~1959 1.890 16.117
5 6-15-1961 0.270 12.100
6 7-16-1961 0.132 4.900
7 6-9-1962 2.180 6.825
8 3-29-1965 2.313 2.063

Statistics of Parameter o

Mean 6.953
Variance 22.414
Standard Deviation 4,734

Coefficient of Variation 0.681
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Table M-5. Variability of parameter o on Watershed W-2, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
event event peak o
(in/hr)
1 5-22-1951 0.046 3.587
2 3-12-1958 6.760 2.363
3 4-24~1957 2.040 1.612
4 5-13-1957 1.540 1.773
5 6-23-1957 1.420 2.192
6 6-25-1961 0.201 1.946
7 6-9-1962 0.943 2.337
8 3-29-1965 1.832 1.357

Statistics of Parameter o

Mean 2.199
Variance 0.515
Standard Deviation 0.718

Coefficient of Variation 0.325
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Table M-6. Variability of parameter o on Watershed W-6, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter

number event peak o
(in/hr)

1 4~27-1949 0.438 0.580

2 4~24~1957 2.200 1.246

3 5-13-1957 1.640 1.102

4 6-23-1957 1.600 1.690

5 6-18~1961 0.230 0.601

Statistics of Parameter «

Mean 1.044
Variance 0.218
Standard Deviation 0.467

Coefficient of Variation 0.448
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Table M-7. Variability of parameter o on Watershed W-10, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o.
(in/hr)
1 3-12-1953 1.070 2.687
2 4-24~1957 2.790 1.467
3 4-24~1957 2.79 3.306
4 6-4-1957 0.853 3.182
5 6-23-1959 1.960 1.224
6 5-23-1961 0.422 2.939
7 6-25-1961 0.334 3.004
8 6-9-1962 0.824 1.282
9 3-29-1965 1.770 1.363

Statistics of Parameter o

Mean 2.298
Variance 0.873
Standard Deviation 0.934

Coefficient of Variation 0.407
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Table M-8. Variability of parameter o on Watershed Y, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 3-31-1957 0.150 4.071
2 4-24-1957 1.810 4,556
3 6-4-1957 1.430 4.446
4 6-23-1959 0.661 3.359
5 7-16-1961 0.060 0.615
6 6-25-1961 0.205 3.984
7 6-9-1962 0.711 4.201
8 3-29-1965 2.047 3.017

Statistices of Parameter o

Mean 3.53
Variance 1.662
Standard Deviation 1.289

Coefficient of Variation 0.365
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Table M-9. Variability of parameter o on Watershed Y-2, Riesel, (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter

number event peak o
(in/hr)

1 3-26-1946 0.50 2.536

2 4-24-1957 1.68 2.644

3 5-13-1957 1.24 2.192

4 6-4-1957 1.79 3.031

5 6~23-1959 0.796 2.284

6 7-16-1961 0.072 2.772

7 6~25~1961 0.253 4.026

8 6~9-1962 0.899 3.360

9 3-29-1965 2,352 2.184

Statistics of Parameter o

Mean 2.781
Variance 0.373
Standard Deviation 0.610

Coefficient of Variation 0.219
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Table M-10. Variability of parameter o on Watershed Y-4, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 3-12-1953 0.558 1.673
2 4-24-1957 1.610 1.300
3 6-13-1957 1.140 1.319
4 6-4-1957 1.590 1.701
5 6-23-1959 0.789 5.282
6 6-25-1961 0.325 4.557
7 7-16-1961 0.062 2.400
8 6-9-1962 0.663 1.754
9 3-29-1965 2,500 3.471

Statistics of Parameter o

Mean 2.607
Variance 2.184
Standard Deviation 1.478

Coefficient of Variation 0.566
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Table M~11l. Variability of parameter « on Watershed Y-6, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 5-6-1955 0.373 5.595
2 6-4-1957 0.931 0.694
3 6-23-1959 1.030 7.390
4 5-25-1961 0.211 5.157
5 6-15-1961 0.815 15.001
6 5-13-1957 0.803 0.520
7 6~9~1962 1.000 3.700
8 3~29-1965 2.692 1.784
9 4-24~1957 1.050 1.14

Statistics of Parameter «

Mean 5.164
Variance 22.125
Standard Deviation 4.704

Coefficient of Variation 0.911
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Table M-12. Variability of parameter o on Watershed Y-7, Riesel (Waco),

Texas.
Date of Observed
Serial rainfall hydrograph Parameter
number event peak o
(in/hr)
1 5-6-1955 0.590 18.74
2 5~24-1957 2.360 2.002
3 5-13-1957 2.030 2.581
4 6-~4-1957 1.370 2.315
5 6--23-1959 1.760 29.459
6 5~-22-1961 0.152 64.281
7 7-16-1961 0.069 1.689
8 6~9-1962 0.953 1.528
9 3~29-1965 2.275 1.146
Statistics of Parameter o
Mean 13.749
Variance 459.032
Standard Deviation 21.425

Coefficient of Variation 1.558
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Table M-13. Variability of parameter o on Watershed Y-8, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter

number event peak o
(in/hr)

1 3-12-1953 0.639 0.846

2 4~24-1957 2.710 1.355

3 5-13-1957 2.230 1.736

4 6-4-1957 2.150 2.300

5 6-23-1959 1.680 3.790

6 6-8-1961 0.078 1.000

7 6-9-1962 1.860 1.672

8 3-29-1965 2,249 2.123

Statistics of Parameter o

Mean 2.005
Variance 1.278
Standard Deviation ’ 1.130

Coefficient of Variation 0.564
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Table M-14. Variability of parameter o on Watershed Y-10, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter

number event peak o
(in/hr)

1 5-6-1955 0.595 3.821

2 4-24~1957 2.700 1.371

3 5~13-1957 1.910 1.508

4 6-4-1957 2.400 1.333

5 6-23-1959 0.703 1.333

6 5-25-1961 0.366 4,382

7 6-15-1961 0.338 5.000

8 6~-9-1962 0.394 1.152

9 3-29-1965 2.726 5.000

Statistics of Parameter o

Mean 2.487
Variance 2.619
Standard Deviation 1.618

Coefficient of Variation 0.651
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Table M-15. Variability of parameter o on Watershed SW-12, Riesel (Waco), Texas.

Date of Observed
Serial rainfall hydrograph Parameter

number event peak o
(in/hr)

1 3-12-1953 2.170 2.750

2 6-4-1957 0.610 1.339

3 6-23-1959 0.714 1.232

4 6-9-1962 0.468 2.674

5 3-29-1965 4.005 1.891

Statistics of Parameter o

Mean 1.977
Variance 0.513
Standard Deviation 0.716

Coefficient of Variation 0.362
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Table M-16. Variability of parameter o on Watershed SW-17, Riesel (Waco),

Texas.
Date of Observed
Serial rainfall hydrograph Parameter
number event peak o.
(in/hr)
1 3-12-1953 1.610 0.858
2 3-31-1957 0.441 0.962
3 4-24-1957 2.900 0.709
4 5-12-1957 1.740 0.529
5 6-24-1959 2.170 0.928
6 6-25-1961 0.604 1.727
7 7-16-1961 0.348 0.640
8 6-9-1962 3.790 1.381
9 3-29-1965 2.440 0.342
Statistics of Parameter o
Mean 0.897
Variance 0.184
Standard Deviation 429

Coefficient of Variation 0.479






