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DISCLAIMER 
The purpose of the NM Water Resources Research Institute (NM WRRI) technical reports is to provide a 
timely outlet for research results obtained on projects supported in whole or in part by the institute. 
Through these reports the NM WRRI promotes the free exchange of information and ideas and hopes to 
stimulate thoughtful discussions and actions that may lead to resolution of water problems. The NM 
WRRI, through peer review of draft reports, attempts to substantiate the accuracy of information 
contained within its reports, but the views expressed are those of the authors and do not necessarily reflect 
those of the NM WRRI or its reviewers. Contents of this publication do not necessarily reflect the views 
and policies of the Department of the Interior, nor does the mention of trade names or commercial 
products constitute their endorsement by the United States government. 
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ABSTRACT 

Spatial patterns in soil properties such as particle size and soil depth significantly affect hydrological and 
ecological processes. Finely spatially resolved information about the spatial distribution of soil properties 
is needed for hydrological and ecohydrological modeling. This information is not currently provided by 
existing small-scale soil maps. This research uses geostatistical methods to interpolate soil depth as well 
as sand and clay concentrations at four harmonized depth increments (0-5, 5-15, 15-30, and 30-60 cm) 
within a single alluvial landform surrounding a small, heavily instrumented watershed at the Jornada 
Experimental Range in southern New Mexico. Soil depth and sand and clay concentration observations 
were obtained from two sampling campaigns. Each variable was analyzed for anisotropy and statistically 
significant relationships with nine terrain variables to account for non-stationarity. Spherical, circular, and 
exponential variogram models were fitted to all sand and clay concentrations and soil depth and compared 
using root-mean-square-error (RMSE) derived from leave-one-out cross validation. RMSE ranged 
between 4.8 and 5.9% for sand and between 1.3 and 1.9% for clay. RMSE for soil depth was 37.7 cm. In 
general, sand had a shorter range of spatial autocorrelation and a smaller nugget than did clay at all 
depths. The range of spatial autocorrelation for sand was between 150 and 225 m, while clay had a much 
more variable range of values between 90 and 3206 m. In general, nugget values were relatively low 
because of the sampling design that had a minimum distance of 3 m, which appears to have captured most 
of the small-scale variability. Spatial prediction was done using Kriging with External Drift. Uncertainty 
in sand and clay concentration predictions were low while the uncertainty of soil depth predictions was 
greater. Interpolated variables and the associated prediction uncertainty will be used to improve the 
parameterization of future ecohydrological modeling applications.  

Keywords: soils, ecohydrological models, soil maps, Jornada Experimental Range, spatial patterns
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INTRODUCTION 

Spatial patterns in soil properties such as soil particle size and soil depth significantly affect 
ecohydrological patterns and processes such as soil moisture, runoff generation, subsurface and 
groundwater flow (Freer et al., 2002; Stieglitz et al., 2003; Gribb et al., 2009) as well as vegetation 
community composition (English et al., 2005; Gremer et al., 2015). Finely spatially resolved information 
regarding the spatial distribution of soil properties is needed for improving ecohydrological models (Tesfa 
et al., 2009; Wood et al., 2011). Within the United States, the Natural Resource Conservation Service 
(NRCS) national soils database (SSURGO) has been the main source for soil property information used 
for ecohydrological modeling (Anderson et al., 2006). This information is provided in mapping units 
delineated with sharp boundaries. In arid western USA rangelands, these mapping units are often 
composed of multiple soil components, which often are not spatially represented. This representation of 
soils is discrete, highly generalized, and is often unsuited to work with other landscape data (Tesfa et al., 
2009). Although a soil survey is an excellent tool to optimize land use and management, it was designed 
for county-level land management and does not provide detailed information required for environmental 
modeling or site-specific management (Moore et al., 1993; Duffera et al., 2007).  

Spatially explicit soil information, specifically particle size and depth, at spatial resolutions finer than that 
provided by SSURGO, is needed to refine and constrain the parametrization of distributed 
ecohydrological models (Méndez-Barroso et al., 2016). The purpose of this study was to model soil 
particle size and soil depth for a small, heavily instrumented watershed with the ultimate goal of 
incorporating the resulting information into spatially distributed ecohydrological models. This study 
utilized geostatistics and Kriging with External Drift to produce this information.  

METHODS 

Site Information 

The study area was co-located with the Tromble Weir Watershed (TWW, 32°35'4.62" N, 
106°36'8.815 W) in the northern part of the Chihuahuan Desert, 37 km northeast of Las Cruces, New 
Mexico at the Jornada Experimental Range. The TWW is a small experimental watershed (4.7 ha) on the 
bajada of the San Andres Mountains (Templeton et al., 2014). Vegetation in the TWW is a mixed 
shrubland that has undergone historical changes in plant dominance throughout time. Throughout the 
TWW, hydrological instruments including an eddy covariance tower, flumes, and multiple soil moisture 
sensors were installed (Anderson and Vivoni, 2016). To capture soil spatial variability while avoiding 
excessive soil disturbance, soil sampling was performed across the entire ballena surrounding the TWW 
(Figure 1). A ballena (sp. whale) is a remnant of fan alluvium that is distinctly round-topped and occurs 
along mountain fronts as groups of semiparallel ridges that reflect the incision of parallel drainageways 
(Peterson, 1981). This ballena was identified by selecting the map unit delineation from an existing 
NRCS soil survey, which adequately captured the entire landform.  

Climate in this area is typical of the northern Chihuahuan Desert, with a mean annual precipitation of 247 
mm, 53% of which occurs between July 1 and September 30 (Gibbens and Beck, 1987; Wainwright, 
2006). Summer precipitation is mostly from short-duration high-intensity convective storms over small 
areas, while winter precipitation is mostly associated with low-intensity frontal storms over broad areas 
(Wainwright, 2006). Vegetative composition at the TWW includes four dominant plant communities 
being black grama grassland (Bouteloua eriopoda), creosotebush (Larrea tridentate), honey mesquite 
(Prosopis glandulosa), and tarbush (Flourensia cernua) (Anderson and Vivoni, 2016).  
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Figure 1. Study area. The solid white line outlines the landform (ballena) used to define the study area. The 
Tromble Weir Watershed (TWW) boundary is the black line inside the larger study area. The circles are 
sampling locations. The star on the inset map shows the location of the study area in southern NM.  

Typical soils within the Jornada basin consist of Entisols and Aridisols. Within the study area, Aridisols 
were the dominant soil order. The soil map unit delineation used to define the study area boundary was a 
Doña Ana-Chutman Complex, with 1 to 10% slopes (Soil Survey Staff, 2017). This complex is comprised 
of the Doña Ana (fine-loamy, mixed, superactive, thermic Typic Calciargids) and the Chutman (fine-
loamy, mixed, superactive, thermic Typic Haplocalcids) series (Soil Survey Staff, 2017). Doña Ana soils 
(65% of the map unit) occur on fan piedmonts with alluvium parent material. Typical textures are sandy 
loam and sandy clay loam. Chutman soil (35% of the map unit) occur in drainageways and toeslopes of 
fan piedmonts and also contains alluvial parent material (Soil Survey Staff, 2017). Textures range from 
silt loam to clay loam. Diagnostic features for the soil series include an ochric epipedon (A and Bw 
horizons), cambic (Bw horizon), and calcic (Bk1 and Bk2 horizons) horizons (Soil Survey Staff, 2017). 

Data Collection and Laboratory Analysis 

Sampling locations were generated using a modified balanced multi-stage sampling design 
(Webster et al., 2006). The concept behind this method is to hierarchically subdivide sampling distances 
using multiple stages to capture accurately enough observations to compute a semi-variogram with 
modest effort (Webster et al., 2006) This approach chooses several starting nodes and chooses subsequent 
nodes at set decreasing intervals in random directions (Figure 2). Soil sampling is then performed at the 
location of each sampling stage.  

Starting nodes were generated by extracting centroids of seven spatially compact clusters (Walvoort et al., 
2010) Seven levels of subsequent sampling locations were then chosen by decreasing distances by a 
factor of three from an initial sampling distance of 800 m. This resulted in sampling locations separated 
by the following distances: 800 m, 267 m, 89 m, 30 m, 10 m, and 3 m. An initial distance of 800 m was 
chosen as it was approximately one-half the length of the longest axis of the study area. This resulted in 
49 sampling locations (seven levels with seven samples at each level). Implementation of this balanced 
hierarchical sampling algorithm was done using a custom script written in R (R Core Team, 2018), which 
is included in Appendix A.  
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Figure 2. A schematic of the modified balanced nested sampling design used to identify sampling 
locations. Numbers indicate the physical distance between hierarchical stages. Adapted from Webster et 
al. (2006). 

All 49 sampling locations were visited and sampled in June 2017. Sampling locations were navigated to 
by GPS, and physical soil sampling was located within a 3-m radius of the generated point according to 
estimated GPS accuracy. All sampling was done in intershrub areas. At each sampling location, general 
site information including slope, aspect, surface ground cover, and slope shape were collected. Soil 
profiles were then excavated (30-50 cm wide) to a depth of either 150 cm or to a root restrictive 
petrocalcic horizon. If a root restrictive horizon was not reached after approximately 100 cm, an auger 
was used to excavate from 100-150 cm.  

After each sampling location was excavated, 100-200 g soil samples were collected by genetic horizons 
(~2-4 horizons per soil sampling location) and soil profiles were described according to Schoeneberger et 
al. (2012). Soil profile descriptions included horizon depth and designation, rock fragments (percent, type, 
size), structure (grade, size, type), carbonate development stage, hand texture (textural class and clay 
percentage), and ped and void surface features (percent, distinction, continuity, kind, location). Field data 
descriptions are included in Appendix B.  

After samples from each soil horizon were collected, air dried, and sieved to < 2 mm, soil particle size 
distribution (i.e., sand, silt, and clay concentration) was measured by the hydrometer method. Briefly, 100 
g of air-dry soil was mixed in a blender cup with 10 ml 5% Sodium Hexametaphosphate and deionized 
water for five minutes. The mixture was quantitatively transferred to a graduated cylinder and the cylinder 
was then filled to 1000 ml. A stirring plunger was used to mix the sample for ~30 strokes, the hydrometer 
was inserted, and readings taken at 40 seconds, and again after six hours. With each set of measurements, 
the temperature of the hydrometer samples was recorded, and a blank was used to adjust for any 
differences found between actual readings and the blank.  

In addition to the soil information collected at the 49 sampling locations, sand, silt, and clay 
concentrations from an exisiting dataset of 20 locations within the TWW were also included (Anderson, 
2013). These samples were collected in June 2013 during the installation of soil moisture and temperature 
probes from the depth ranges of 0-7, 7-17, and 17-27 cm using a split-tube corer (AMS, 2”x12” Signature 
Split Soil Core Sampler) except for the depth range of 17-27 cm at one location, where excessively rocky 
soil prevented deep sampling (Anderson, 2013). Sand, silt, and clay was determined for each depth 
increment using the hydrometer method (Anderson, 2013). Because of the relatively shallow sampling 
depth, these additional 20 samples were used only for sand and clay predictions from the top three depth 
increments and were not included in the analysis of the 30-60 cm increment or for predicting soil depth. 
All numerical data used for analysis are included in Appendix C.  
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Analysis 

Measurements of sand, silt, and clay concentrations at each sampling location were standardized to 
the following depth increments by depth weighted median to facilitate interpolation: 0-5 cm, 5-15 cm, 
15-30 cm, 30-60 cm (Beaudette et al., 2013; Science Committee, 2015). Observations at depths below 60 
cm were not included in the analysis because there were too few for robust analysis, and because soil 
moisture does not often infiltrate past this depth in this system (Schreiner-Mcgraw and Vivoni, 2018).   
Soil depth was defined as the distance to a root restricting horizon (e.g., petrocalcic or bedrock). If a root 
restricting horizon was not encountered before reaching the excavation depth of 150 cm, the soil depth was 
recorded as 150 cm.

Measured values at standardized depth increments were compared against estimated values of sand, silt, 
clay, and soil depth from the soil survey. Estimated values for the soil map unit delineation used to define 
the study area boundary were obtained from the Soil Survey Geographic (SSURGO) database for “White 
Sands Missile Range, New Mexico, Parts of Doña Ana, Lincoln, Otero, Sierra and Socorro Counties.” 
(Soil Survey Staff, 2017). This data is created during soil survey by estimating low, representative, and 
high values of texture values (and other physical and chemical properties) for each component. Multiple 
components often exist in a single map unit. Component horizon values were standardized by weighted 
median to the same depth intervals as the measured data and used to calculate a weighted average for each 
depth interval using the proportion of the components in the map unit (65% Doña Ana, 30% Chutum).  

Measured sand and clay were analyzed separately by depth interval. Silt was not analyzed as it could be 
calculated from the sum of sand + clay. Spatial non-stationarity, a key assumption of geostatistics, was 
evaluated by linear regression between soil texture fractions and soil depth and nine terrain variables. 
Terrain variables were derived from a 5-m digital elevation model using SAGA-GIS and are listed in 
Table 1 (Conrad et al., 2015). Each variable was regressed against sand, clay, and depth one at a time. 
Significant variables (p < 0.01) were included in the kriging equation to remove any trend. If multiple 
variables were significant, the variables were used in a multiple-linear regression. Any non-significant 
variables (p <0.01) in the multilple-linear regression were removed and the process repeated until all 
variables were significant. Multiple-liner regression was only used in the analysis of sand at the 30-60 cm. 
Anisotropy was found to exist and was included in each model at 120 degrees, which was approximately 
the longitudinal direction of the landform.   

Spherical, circular, and exponential variogram models were fit to sand and clay concentrations and soil 
depth and compared using root-mean-square-error (RMSE) derived from leave-one-out cross validation. 
The model that returned the lowest RMSE was selected for each variable. If variogram models did not 
converge, ‘bin’ sizes equal to the distances used in the sampling design were used over which average 
semivariance was calculated.  

Spatial prediction was done using Kriging with External Drift, which specifically accounts for 
correlations with auxiliary variables (i.e., terrain variables) (Hengl, 2007). Interpolated variables and the 
associated standard deviation (a measure of prediction uncertainty) were produced and are the digital soil 
mapping outputs that are intended for inclusion in future ecohydrological applications. Standard deviation 
was calculated as: 𝑘𝑟𝑖𝑔𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.  

All analysis was performed using RStudio (RStudio Team, 2016) and the following packages: aqp 
(Beaudette et al., 2013); car (Fox and Weisberg, 2011); dplyr (Wickham et al., 2018); e1071 (Meyer et 
al., 2019); ggplot2 (Wickham, 2016);  gstat (Pebesma, 2004);  openxlsx (Walker, 2018); plyr (Wickham, 
2011); raster (Hijmans, 2014); RColorBrewer (Neuwirth, 2014); and rgdal and sp (Bivand et al., 2018). R 
code used for the geostatistical analysis of sand and clay concentrations are included in Appendix D. R 
code use for the geostatistical analysis of depth are included in Appendix E.  
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Table 1. Terrain variables, unit, and interpretation of the variables.   

Terrain Variable units Interpretation 
Northness*    degrees Direction from north that the slope is facing 
Convergence Index unitless Flow convergence and divergence 
Cross-sectional Curvature unitless Flow convergence and divergence 
Elevation meters Vertical distance above mean sea level 
Flow Accumulation       m2 Size of upslope area 
Longitudinal Curvature unitless Flow convergence and divergence 
Slope      degrees Slope steepness 
Topographic Wetness Index unitless Potential wetness 
Valley Depth        meters Elevation below the nearest ridge 

* Northness calculated as: cosine(aspect)

RESULTS AND DISCUSSION 

Summary statistics of measured sand and clay concentrations by standardized depth increment 
and total soil depth are presented in Table 2. Sand concentrations ranged between 35% and 84%. Clay 
concentrations ranged between 3% and 19% (Table 3). Clay concentrations were about one-half as 
variable as were sand concentrations as quantified by the standard deviations of each harmonized horizon, 
but the variability was < 8% for both sand and clay. Average depth to restrictive horizon was 77 cm, but 
this is calculated including ten observations that stopped at 150 cm because of limitations in the depth of 
excavation, which results in biased summary statistics. Summary statistics of estimated sand and clay 
concentrations by standardized depth increment and total soil depth from soil survey are also presented in 
Table 2. Although soil survey underestimated sand and overestimated clay at all most all depth 
increments when compared with the measured values, both measured and estimated values are similar. 
The maximum absolute difference between measured and estimated values is 19% clay at the 30-60 cm 
depth increment. The minimum absolute difference between measured and estimated values is 2% sand at 
the 5-15 cm. However, total depth is poorly approximated by soil survey likely because of the spatial 
variability of total soil depth.  

Table 2. Summary statistics of sand and clay concentrations and soil depth for both measured values 
from field samplling and estimated values from soil survey. All values are in percent except for soil depth 
which is given in cm. SD = standard deviation. n = number of observations. 

Measured values from field sampling Estimated values from soil survey 
Depth n Min. Median Mean Max. SD Low RV High 

Sand 

0-5  67 35 64 64 80 6 39 58 75 
5-15 67 46 64 63 77 5 35 58 75 

15-30  67 46 63 64 84 6 36 58 75 
30-60  41 39 61 61 78 8 34 56 75 

Clay 

0-5 67 3 8 8 15 3 8 17 22 
5-15 67 4 8 8 16 3 8 19 23 

15-30 67 3 8 8 16 3 9 20 24 
30-60 41 3 9 9 19 3 21 28 35 

Depth - 47 22 58 77 150 44 - 150+ - 
Sand and clay values are in percent. Depth values are in cm 
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Statistically significant linear relationships between sand and clay concentrations by harmonized depth 
increment and total soil depth are presented in Table 3. Elevation, topographic wetness index, valley 
depth, and cross-sectional curvature were linearly related with sand and clay concentrations and soil 
depth. The relationships are generally weak (R2 <0.3 for most variables), which is expected given the 
relatively small size of the study area and the general uniformity of the soil in this single landform. The 
relatively weak linear relationships may also be a result of the 5-m resolution of the digital elevation 
model used to derive terrain parameters. It is possible that stronger relationships may have been found 
had terrain derivatives been calculated using a DEM with a finer resolution (e.g., <1 m) because such 
resolution could potentially capture variability in micro-relief between shrubs and inter-plant spaces that 
likely govern soil redistribution. The resolution of the DEM may also explain the generally increasing 
strength of the linear relationships between soil texture fractions with increasing depth. We assume that 
soil texture fractions become less related to surface features that redistribute soil particles, as the depth 
increases and internal pedological processes become more dominant. However, any interpretation of these 
relationships must be treated with caution as the range in sand and clay fractions was relatively narrow 
and the amount of variance explained by each variable was generally low.  

Table 3. Terrain variables with statistically significant linear relationships between sand and clay at 
standard soil depths and soil depth. Multiple linear regression used if multiple variables significant. 

 Depth Interval Terrain Variable p-value *Multiple-R2

Sand 0-5 Elevation 0.005 0.113 
5-15 Elevation 0.006 0.109 
15-30 Topographic Wetness Index 0.001 0.169 
30-60 Elevation 0.000 

0.555 
Longitudinal Curvature 0.002 

Clay 0-5 Valley Depth 0.001 0.165 
5-15 Valley Depth 0.000 0.279 
15-30 Valley Depth 0.000 0.272 
30-60 Cross-sectional Curvature 0.011 0.184 

Depth  - Elevation 0.008 0.145 
* R2 is the coefficient of determination and indicates the variance explained

Variogram parameters are reported in Table 4. The RMSE is a measure of model performance, with 
lower values indicating a better model fit. In general, the RMSE values for sand are larger than RMSE 
values for clay, which is likely because observed clay concentrations were less variable than sand 
concentrations (Table 2). However, the RMSE for both sand and clay was relatively low indicating a 
good model fit and was approximately within the estimated accuracy of the hydrometer method used to 
measure the soil texture fractions. The RMSE for both sand and clay was similar to the range of 
measured values for each horizon (compare tables 2 and 4).  



Table 4. Variogram model parameters for geostatistical modeling of sand and clay concentrations and soil 
depth. 

Depth Model RMSE Range Nugget Partial Sill Sill Nugget-to-Sill ratio 
cm % m C0 C C0 + C C0 / (C0 + C) 

Sand 

0-5 cm Cir 5.8 185.1 10.7 27.5 38.2 0.3 
5-15 cm Cir 4.8 152.0 18.7 7.7 26.4 0.7 
15-30 cm Cir 5.9 35.0 5.7 30.4 36.1 0.2 
30-60 cm Sph 5.1 225.6 15.8 8.9 24.6 0.6 

Clay 

0-5 cm Cir 1.9 3206.5 1.3 33.5 34.9 0.0 
5-15 cm Sph 1.3 521.7 0.6 4.0 4.6 0.1 
15-30 cm Cir 1.4 500.3 0.9 5.0 6.0 0.2 
30-60 cm Cir 1.5 90.4 0.3 1.7 2.0 0.1 

Depth - Sph 37.7* 50.9 610.6 1067.8 1678.4 0.4 
*Soil depth RMSE, nuggest and sill reported in cm

The RMSE for soil depth was 37.7 cm (Table 3). This RMSE value is very similar to the values reported 
by Tesfa et al. (2009) who modeled soil depth in a semi-arid environment using machine learning and  
Liu et al. (2013), who modeled soil depth in a humid area using an analytical terrain evolution model. 
Based on these results it may be that ~ 35 cm is the average error that can be expected in soil depth 
predictions. This suggests that soil depth is rather difficult to accurately model. This is most likely 
because soil depth is controlled by processes such as deposition and weathering that are currently not 
approximated with terrain derivatives. However, the difficulty in dealing with observations where the soil 
is deeper than the excavation depth (e.g., > 150 cm in this study) is a problem that needs to be resolved. 
One possible approach may be to use maximum likelihood regression combined with kriging (Knotters et 
al., 1995). However, if soil depth estimates are required with greater than about 30 cm precision, 
geophysical methods such as ground penetrating radar may be more suited to estimating soil depth (Sucre 
et al., 2011).   

In general, sand had a shorter range of spatial autocorrelation and a smaller nugget than did clay at all 
depths (Table 4). Semi-variogram ranges are interpreted as the range of spatial correlation. Samples 
separated by distances shorter than the range are spatially correlated and contribute to kriging predictions 
(Cambardella et al., 1994). Excluding the variogram models for sand 15-30 cm and clay 5-15 cm, which 
required separate bin sizes for stable model fit, the range of spatial autocorrelation for sand was between 
150 and 225 m, while clay had a much more variable range of values between 90 and 3206 m. The 
discrepancy in variogram ranges between sand and clay is a bit surprising, particularly the range of clay 
0-5 cm. We are unsure of the exact mechanism that would cause such differences, but it is likely related
to the general paucity of clay in this landform and the sparseness of the sampling design. The variogram
range of soil depth was much less than that of sand or clay and should be used to set the maximum
distance between nodes in any subsequent grid sampling of this area.

The nugget value is the semivariance at separation distance equal to zero and can be interpreted as 
variability that is undetectable at the resolution of mapping (Cambardella et al., 1994). In general, nugget 
values were relatively low because of the sampling design that had a minimum distance of 3 m, which 
appears to have captured most of the small-scale variability. The nugget-to-sill ratio is an indicator of the 
strength of spatial dependency (Cambardella et al., 1994). Smaller ratios indicate stronger spatial 
dependency while a ratio of one would indicate no spatial correlation. Following the spatial dependence 
structure of Cambardella et al. (1994), all soil properties had moderate to high spatial dependence. 
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Figures 3, 4, and 5 plot each variogram model. The wide dispersion of points around the lines in each 
figure is a result of the relatively few observations used to build the variograms. In general, 150-200 
observations are recommended for a robust variogram model, which is considerably more than were 
available in this study; and we acknowledge that if more observations were available for fitting each 
model, variograms would be more robust (Webster and Oliver, 2007). However, because this study 
occurred in an area that is part of ongoing hydrologic investigations, options for more intensive sampling 
may require the use of geophysical instruments that minimize sampling disturbance to produce enough 
observations for robust variogram modeling.

Figures 6, 7, and 8 show the kriging predictions and prediction uncertainty. The spatial patterns in Figs. 6E, 
6G, and 7G (sand 15-30 cm and 30-60 cm and clay 30-60 cm predictions) are a result of the correlation 
with the terrain variables. The linear patterns in these predictions generally show a decrease in sand and an 
increase in clay concentrations. These patterns can be explained by the presense of shallow gullies in these 
locations where erosion has removed the overlying coarser textured soils and lowered the land surface 
closer to the siltier formation that underlies this area (the whitebottom surface; Gile et al., 1981). The 
gradient of soil depth (Fig. 8A, shallower in the west and gradually deepening to the east) is a result of the 
relationship between elevation and soil depth. Soils are generally shallower in the west where decreasing 
elevation exposes the relatively planar petrocalcic horizons that run throughout the landform. The spotty 
nature of soil depth predictions and uncertainty (Fig. 8B in particular) is a result of the range of 
autocorrelation (~ 50 m). Although not as visually obvious, all predictions (Figs. 6, 7, and 8) show the 
effect of including elevation as a variable. 

Uncertainty in sand and clay concentration predictions were low, while the uncertainty of soil depth 
predictions was fairly large (compare areas of low vs. high uncertainty in Figures 6, 7, and 8). A sampling 
grid with nodes ~ 50 m apart (less than the range of the soil depth variogram) would be required to reduce 
the uncertainty in soil depth predictions. These outputs are in a GIS-ready format and could be used as 
input to future distributed ecohydrological modeling efforts on the Tromble Weir Watershed.  
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Figure 3. Variogram models of sand concentration. The variogram model for 15-30 cm is visually 
different than the other variogram models because stable model fit required established ‘bin’ sizes over 
which average semivariance values were calculated. Bin sizes were set to equal distances between the 
sampling levels as defined in the sample design. 
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Figure 4. Variogram models of clay concentration. The variogram model for 5-15 cm is visually different 
than the other variogram models because stable model fit required established ‘bin’ sizes over which 
average semivariance values were calculated. Bin sizes were set to equal distances between the sampling 
levels as defined in the sample design. 
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Figure 5. Variogram model of soil depth. 
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Figure 6. Sand concentration (%) predictions and prediction uncertainty. Left hand figures are the 
predictions of sand concentration at 0-5 cm (A), 5-15 cm (C), 15-30 cm (E), and 30-60 cm (G). Right 
hand figures are prediction uncertainty (SD = standard deviation of kriging variance) at 0-5 cm (B), 5-15 
cm (D), 15-30 cm (F), and 30-60 cm (H). Filled circles on right hand figures are the sampling locations.  
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Figure 7. Clay concentration (%) predictions and prediction uncertainty. Left hand figures are the 
predictions of sand concentration at 0-5 cm (A), 5-15 cm (C), 15-30 cm (E), and 30-60 cm (G). Right 
hand figures are prediction uncertainty (SD = standard deviation of kriging variance) at 0-5 cm (B), 5-15 
cm (D), 15-30 cm (F), and 30-60 cm (H). Filled circles on right hand figures are the sampling locations.  



Figure 8. Soil depth predictions and prediction uncertainty. Top figure (A) is prediction. Bottom figure 
(B) is prediction uncertainty (SD = standard deviation of the kriging variance). Filled circles on bottom
figure are the sampling locations.

CONCLUSIONS 
Sand and clay at four standardized depth intervals and soil depth were measured in the alluvial 

landform surrounding the Tromble Weir Watershed in southern New Mexico. Measured values were 
compared to estimated values from soil survey. Sand and clay were similar between measured and 
estimated values, while soil depth was overestimated by soil survey and much more variable in measured 
values. Geostatistical models were fit to observed data. In general, the accuracy of sand and clay 
concentration models were within the measurement accuracy and predictions are reliable. Soil depth 
models were less accurate than sand and clay models and had greater uncertainty. Denser observations of 
soil depth from a grid sampling effort or from geophysical methods are needed to reduce the uncertainty 
in soil depth predictions. Spatial predictions of sand, clay, and soil depth, and their accompanying 
uncertainty, may be used to test the effect of more finely resolved soil property values on distributed 
ecohydrological models and to explore patterns in vegetation density, structure, and distribution.  
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APPENDIX A CODE FOR NESTED SPATIAL SAMPLING 

The following can be copied and pasted into an R script 

# Nested Spatial Sampling  

# This code implements a modified version of nested sampling in Webster et al., 2006. This code is 
implemented as follows: first, a polygon representing the study area is loaded, second the user creates a 
vector of the desired decreasing distances between sample points, thirdly the nestsamp function generates 
a series of initial sample points (the first level of hierarchy) by extracting centroids of compact clusters. 
Compact geographic clusters are created using the spcosa packages. Subsequent hierarchical levels are then 
created from each centroid while being restricted to remain inside the study area boundary.  

# Required arguments for the nestsamp function: 

  # poly = polygon to sample in 

 # n = number of samples at each level 

 # dists = distances between each hierarchical level. Define before running function.   

  # cellSize = cellSize of grid used in spcosa. Start with 50 or greater (i.e., 50 meters) to quickly run, then 
set smaller to get a grid with higher fidelity to the original polygon.  

 # hlevels = number of hierarchical levels to be run. Should match the number of desired hierarchical levels. 
e.g., if you want 7 levels then this should be 7.

#The number of resulting points will be n*hlevels.

# Note, this code does not exactly follow the Webster et al. paper. Instead of choosing a random vector of 
length h-1, this code simply samples the point and chooses the next point.  

# Code written by:  

# Colby Brungard, PhD 

# Assistant Professor of Pedology 

# Department of Plant and Environmental Sciences 

# New Mexico State University 

# Las Cruces, NM 88003 

# cbrung@nmsu.edu 

# +1.575.646.1907 

#Citation 

#' @article{WEBSTER20061320, 
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#'   title = "Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis 
of variance and residual maximum likelihood", 

#'   journal = "Computers & Geosciences", 

#'   volume = "32", 

#'   number = "9", 

#'   pages = "1320 - 1333", 

#'   year = "2006", 

#'   note = "", 

#'   issn = "0098-3004", 

#'   doi = "http://dx.doi.org/10.1016/j.cageo.2005.12.002", 

#'   url = "http://www.sciencedirect.com/science/article/pii/S0098300405002761", 

#'   author = "R. Webster and S.J. Welham and J.M. Potts and M.A. Oliver", 

#'   keywords = "Nested sampling", 

#'   keywords = "Analysis of variance", 

#'   keywords = "Variance components", 

#'   keywords = "Variogram", 

#'   keywords = "Balance", 

#'   keywords = "" 

#' } 

#Begin 

# Load necessary packages 

library(sp) 

library(rgdal) 

library(spcosa) 

library(plyr) 

# Set working directory 

setwd(".") 

19 



20 

# 1. Read in polygon. It is easiest if this is in a projection with meters, e.g., UTM 

poly <- readOGR(dsn = ".", layer = "SoilMU26") 

# 2. Geographic distances between each subsequent hierarchy level. This should match the number of 
hierarchical levels you want minus one. e.g., if you want 7 levels then you should have six distances, 
because the first level is created using spcosa centroids. All subsequent hierarchical levels will be based off 
of this first level. 

# Inelegant way to get distances by decreasing factor of 3. One could also set these manually if a non-
exponential decrease was desired.  

# I chose 800 m because it seemed like a good idea and because it was approximatley 1/2 the length of the 
longest axis of the soil map unit that I was interested in.   

dists <- vector() 

dists[1] <- 800 

dists[2] <- dists[1]/3 

dists[3] <- dists[2]/3 

dists[4] <- dists[3]/3 

dists[5] <- dists[4]/3 

dists[6] <- dists[5]/3 

# To do an imbalanced sample I could just run the following balanced sampling for the number of desired 
balanced levels, then re-run for the following levels with 1/2 of the sample points selected randomly.  

# 3. Function to apply modified version of fully balanced nested spatial sampling based on Webster et al. 
2006 

nestsamp <- function(poly, n, dists, cellSize, hlevels) { 

 # poly = polygon to sample in 

 # n = number of samples at each level 

 # dists = distances between each hierarchical level. Define before running function.   

 # cellSize = cellSize of grid used in spcosa. Start with 50 (i.e., 50 meters) to quickly run, then set smaller 
to get a grid with higher fidelity to the original polygon.  

 # hlevels = number of hierarchical levels to be run. Should match the number of desired hierarchical levels. 
e.g., if you want 7 levels then this should be 7.

#The number of resulting points will be n*hlevels.



# Define initial sample points (first level of hierarchy) by extracting centroids of compact clusters using 
spcosa. One could also use spsample to generate random points in the polygon, but I like this idea of 
spreading the initial sample points across the area by compact clusters.  

poly2 <- SpatialPolygons(poly@polygons) 

strat <- stratify(poly2, nStrata = n, nTry = 5, cellSize = cellSize) 

# Centroids in dataframe format 

samp <- as(spsample(strat), "data.frame") 

names(samp) <- c('X1', 'X2') 

# Identify sampling lcoations for all hierarchical levels past the first level. 

hsamps <- list(samp) 

# -1 since the first hierarchical level is already done 

for(k in 1:(hlevels-1)){ 

# Generate samples with in each hierarchical level 

newSampX <- vector() 

newSampY <- vector() 

samps2 <- data.frame(matrix(ncol = 2, nrow = nrow(samp))) 

for (i in 1:nrow(samp)){ 

# Generation of random direction 

dir <- runif(1, min = 0, max = 360) 

# Generation of new point 

dx <- dists[k] * sin(dir) 

dy <- dists[k] * cos(dir) 

newSampX <- hsamps[[k]][i,1] + (dists[k] * sin(dir)) 
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newSampY <- hsamps[[k]][i,2] + (dists[k] * cos(dir)) 

# Convert new points to spatialpointsdataframe and assign projection to use the over function 

newSamp <- data.frame(cbind(newSampX, newSampY)) 

coordinates(newSamp) <- ~ newSampX + newSampY 

proj4string(newSamp) = proj4string(poly) 

# Is the new point in the boundaries of the polygon? If not, choose another point that is inside the boundaries.  

inPoly <- !is.na(over(newSamp, poly))[1,1] 

while(inPoly != TRUE) { 

    # Generation of random direction 

    dir <- runif(1, min = 0, max = 360) 

    # Generation of new point 

    dx <- dists[k] * sin(dir) 

 dy <- dists[k] * cos(dir) 

    newSampX <- hsamps[[k]][i,1] + (dists[k] * sin(dir)) 

    newSampY <- hsamps[[k]][i,2] + (dists[k] * cos(dir)) 

 # Convert new points to spatialpointsdataframe and assign projection to use the over function 

    newSamp <- data.frame(cbind(newSampX, newSampY)) 

    coordinates(newSamp) <- ~ newSampX + newSampY 

    proj4string(newSamp) = proj4string(poly) 

    # Is the new point in the boundaries of the polygon? 

    inPoly <- !is.na(over(newSamp, poly))[1,1] 

 } # end while 
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 samps2[i,] <- data.frame(newSamp) 

 }# end inner for loop 

# Join all samples into a list 

hsamps[[k+1]] <- samps2 

} # end outer for loop 

return(hsamps) 

} 

# 4. Run nested sampling  

try1 <- nestsamp(poly = poly, n = 7, dists = dists, cellSize = 5, hlevels = 7) 

plot(poly) 

points(try1[[1]], col = 'red', pch = 19) 

points(try1[[2]], col = 'blue', pch = 19) 

points(try1[[3]], col = 'black', pch = 19) 

points(try1[[4]], col = 'green', pch = 19) 

points(try1[[5]], col = 'orange', pch = 19) 

points(try1[[6]], col = 'purple', pch = 19) 

points(try1[[7]], col = 'grey', pch = 19) 

#Name each plot 

try1[[1]]$level <- rep('Level1', nrow(try1[[1]])) 

try1[[2]]$level <- rep('Level2', nrow(try1[[2]])) 

try1[[3]]$level <- rep('Level3', nrow(try1[[3]])) 
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try1[[4]]$level <- rep('Level4', nrow(try1[[4]])) 

try1[[5]]$level <- rep('Level5', nrow(try1[[5]])) 

try1[[6]]$level <- rep('Level6', nrow(try1[[6]])) 

try1[[7]]$level <- rep('Level7', nrow(try1[[7]])) 

# Collapse to dataframe, add unique identifier, and write to csv. 

dat <- ldply(try1, data.frame) 

dat$id <- paste0(0,seq(01,nrow(dat))) 

write.csv(dat, "./SamplingPoints.csv", row.names = FALSE) 

# Convert to other file formats as needed in qgis as it is easier. 

#I imported the .csv file, assigned the right projection (same as SOILMU26.shp - WGS84 UTM 13N), then 
saved as .gpx and .kml in WGS84 lat/long geographic coordinates. I also saved these in WGS 84 UTM13N 
projection as a shapefile 

#End 
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APPENDIX B SOIL PROFILE DESCRIPTIONS 
The following paired images are the field data sheets collected by Mikalya Allan during her field 
sampling campaign. Each image pair consists of the front and back of one field sheet.   



26 



27 



28 



29 



30 



31 



32 



33 



34 



35 



36 



37 



38 



39 



40 



41 



42 



43 



44 



45 



46 



47 



48 



49 



50 



51 



52 



53 



54 



55 



56 



57 



58 



59 



60 



61 



62 



63 



64 



65 



66 



67 



68 



69 



70 



71 



72 



73 



74 



75 



76 



77 



78 



79 



80 



81 



82 



83 



84 



85 



86 



87 



88 



89 



90 



91 



92 



93 



 94 



 95 



96 



 97 



 98 



 99 



100 



101 



102 



103 



104 



105 



106 



107 



108 



109 



110 



111 



112 



113 



114 



115 



116 



117 



118 



119 



120 



121 



122 



123 



124 

APPENDIX C DATA USED FOR GEOSTATISTICAL ANALYSIS 
Soil observations used for analysis. Table C.1 is sand, silt, and clay concentrations (measured by 
hydrometer) as sampled from 49 sample locations by genetic horizon. Table C.2 is the location of each of 
the 49 pedons in Table C.1. Table C.3 is the sand, silt, and clay concentrations (measured by hydrometer) 
as sampled at 20 locations by standardized depth increment. Table C.4 is the location of each of the 20 
observations in Table C.3. Data in tables C.3 and C.4 extracted from Cody Anderson’s thesis.  

Table C.1. Data used for analysis. PedonID is a unique identifier for each distinct sampling location. 
Designation is the horizon master and suffix designations used to describe each horizon. A combination 
of PedonID and Designation can be used as a unique identifier for each horizon. HZ top is the top of the 
horizon in cm. HZ Bottom is the bottom of the horizon in cm. Sand, Silt, and Clay are concentrations by 
genetic horizon in percent.   

Pedon 
ID Designation HZ Top 

HZ 
Bottom Sand Silt Clay 

1 AB 0 6 76 17 7 
1 Bk 6 32 73 20 6 
1 Bkk 32 52 78 17 6 
2 A 0 6 77 15 9 
2 Bk1 6 53 77 13 10 
2 Bk2 53 82 76 14 10 
2 Bkk 82 105 74 14 13 
3 AB 0 7 82 9 9 
3 Bk 7 22 78 15 7 
3 Bkk 22 47 81 11 9 
4 AB 0 6 75 15 10 
4 Bk 6 22 70 22 9 
4 Bkk 22 38 63 28 9 
5 AB 0 7 65 28 8 
5 Bk 7 27 65 25 10 
5 Bkkm 27 36 74 15 11 
6 AB 0 5 68 21 11 
6 Bkk 5 29 68 24 8 
6 Bkkm 29 65 67 26 7 
7 AB 0 4 66 25 9 
7 Bkk 4 24 65 27 8 
7 Bkkm 24 52 65 26 9 
8 AB 0 7 72 21 7 
8 Bk 7 17 71 20 9 
8 Bkk 17 32 70 21 9 
9 AB 0 8 68 22 10 
9 Bkk1 8 29 65 26 9 
9 Bkk2 29 47 63 29 8 
10 AB 0 4 66 24 10 
10 Bk 4 28 62 30 8 
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10 Bkk1 28 62 64 26 10 
10 Bkk2 62 89 59 31 10 
11 A 0 8 62 28 10 
11 Bk1 8 30 69 23 8 
11 Bk2 30 48 72 19 9 
11 Btk 48 150 61 28 11 
12 A 0 7 61 30 9 
12 Btkk 7 32 60 33 7 
12 Bkkm 32 50 60 31 9 
13 AB 0 9 59 31 10 
13 Bk 9 32 61 32 7 
13 Bkk 32 75 65 32 3 
14 AB 0 5 64 22 14 
14 Bkk1 5 26 66 24 10 
14 Bkk2 26 70 59 22 19 
14 Bkkm 70 98 56 31 13 
15 AB 0 7 67 22 12 
15 Bk 7 32 66 23 11 
15 Bwk1 32 60 49 47 4 
15 Bwk2 60 150 39 58 3 
16 AB 0 9 64 24 12 
16 Bk 9 50 46 50 4 
16 Btk 50 150 61 28 11 
17 AB 0 6 61 25 14 
17 Btk 6 44 63 25 12 
17 Bt 44 150 39 58 3 
18 A 0 6 60 26 14 
18 Btkk 6 36 58 26 16 
18 Bt1 36 74 48 49 3 
18 Bt2 74 150 39 58 3 
19 AB 0 5 60 25 15 
19 Btk 5 27 57 28 15 
19 Bt1 27 64 52 45 3 
19 Bt2 64 150 39 57 4 
20 AB 0 9 80 13 7 
20 Bw1 9 52 61 30 9 
20 Bw2 52 90 62 26 12 
20 Bwk 90 150 51 31 18 
21 AB 0 8 64 28 8 
21 Bk1 8 25 64 29 7 
21 Bkk 25 64 62 29 9 
21 Bk2 64 117 64 30 7 
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22 AB 0 6 63 27 11 
22 Bk 6 48 64 29 8 
22 Bkk 48 117 63 33 5 
23 AB 0 5 65 28 8 
23 Bk 5 27 65 29 6 
23 Bkk 27 96 61 33 7 
24 AB 0 7 64 28 9 
24 Bkk 7 30 62 30 8 
24 Bkkm 30 48 57 32 11 
25 AB 0 7 70 22 8 
25 Bkk 7 27 57 32 11 
25 Bkkm 37 58 56 34 10 
26 AB 0 7 64 28 8 
26 Bkk 7 28 58 33 9 
26 Bkkm 28 50 55 34 11 
27 AB 0 6 65 26 9 
27 Bk 6 30 61 31 8 
27 Btkk 30 69 57 29 14 
28 AB 0 9 61 28 11 
28 Bkk 9 28 59 32 9 
29 AB 0 6 61 30 9 
29 Bk 6 32 58 34 8 
29 Bkk 32 57 57 33 10 
30 AB 0 7 57 33 10 
30 Bk 7 28 57 35 8 
30 Bkk 28 46 56 35 9 
31 AB 0 5 61 30 9 
31 Bk 5 22 58 34 8 
31 Bkkm 22 43 61 29 10 
31 Btkk 43 70 56 32 12 
32 A 0 6 64 25 11 
32  Btk 6 26 63 29 8 
32 Bkk 26 44 63 29 8 
33 A 0 10 64 28 8 
33 Bk 10 27 61 30 9 
33 Bkk 27 37 61 31 8 
34 AB 0 8 58 32 10 
34 Bk 8 20 65 25 10 
34 Bkkm 20 30 62 30 8 
35 AB 0 9 61 30 9 
35 Bk 9 28 62 27 11 
35 Bkkm 28 47 60 32 8 
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36 AB 0 9 61 29 10 
36 Bkk 9 22 62 28 10 
37 AB 0 6 58 33 9 
37 Bt1 6 44 52 38 10 
37 Bt2 44 115 55 35 10 
37 Btk 115 150 54 34 12 
38 AB 0 17 53 28 19 
38 Bt1 17 44 35 51 14 
38 Bt2 44 73 39 37 24 
38 Btk 73 150 56 28 16 
39 AB 0 8 61 31 8 
39 Btk 8 37 62 30 8 
39 Bkk1 37 72 60 33 7 
39 Bkk2 72 105 61 31 8 
40 AB 0 6 53 43 4 
40 Bk 6 34 65 26 9 
40 Bkk 34 87 64 29 7 
41 AB 0 7 62 26 12 
41 Bk 7 20 62 25 13 
41 Bkk 20 39 61 30 9 
42 AB 0 6 57 33 10 
42 Bk 6 24 63 28 9 
43 AB 0 5 64 29 7 
43 Bk 5 27 60 28 12 
43 Bkk 27 75 62 29 9 
43 Bt 75 150 52 44 4 
44 AB 0 7 35 61 4 
44 Bwk 7 28 59 27 14 
45 AB 0 8 58 33 9 
45 Bkk 8 62 59 31 10 
45 Bkkm 62 90 60 30 10 
46 AB 0 6 61 36 3 
46 Bk 6 22 62 29 9 
46 Bkk 22 42 59 33 8 
47 AB 0 7 77 18 5 
47 Bw 7 24 69 24 7 
48 AB 0 7 63 26 11 
48 Bk 7 26 64 29 7 
48 Bkk 26 50 63 27 10 
49 AB 0 5 64 28 8 
49 Bk1 5 47 61 30 9 
49 Bk2 47 84 52 35 13 
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Table C.2. PedonID is a unique identifier for each sampling location and can be used to link sampling 
locations with horizon level data contained in Table C.1. Latitude and Longitude are GPS coordinates for 
each location. Coordinates are in WGS84 decimal degrees. 

Pedon 
ID Latitude Longitude 
1 32.5870910 -106.6096710
2 32.5845890 -106.6078140
3 32.5884608 -106.6079170
4 32.5845820 -106.6079340
5 32.5850240 -106.6057790
6 32.5848680 -106.6060360
7 32.5847900 -106.6059400
8 32.5844060 -106.6051760
9 32.5848400 -106.6060240
10 32.5864240 -106.6069420
11 32.5856800 -106.6068600
12 32.5845080 -106.5993850
13 32.5844800 -106.5993800
14 32.5825330 -106.5950810
15 32.5827400 -106.5960000
16 32.5828400 -106.5964900
17 32.5829000 -106.5962230
18 32.5829000 -106.5961900
19 32.5828300 -106.5962900
20 32.5840000 -106.6060200
21 32.5859300 -106.6070100
22 32.5859200 -106.6069800
23 32.5858400 -106.6069200
24 32.5833000 -106.6044900
25 32.5833900 -106.6045200
26 32.5833800 -106.6045500
27 32.5829700 -106.6050100
28 32.5848400 -106.6077200
29 32.5846700 -106.5994100
30 32.5844100 -106.5994400
31 32.5855800 -106.6013400
32 32.5853400 -106.6107900
33 32.5869900 -106.6051600
34 32.5856400 -106.6067100
35 32.5859700 -106.6073300
36 32.5856200 -106.6079600
37 32.5835400 -106.6043500
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38 32.5809500 -106.6021600
39 32.5823200 -106.6022700
40 32.5825800 -106.6029100
41 32.5826200 -106.6031500
42 32.5819600 -106.5978400
43 32.5817800 -106.5992600
44 32.5829300 -106.5996000
45 32.5840900 -106.6000600
46 32.5828000 -106.6039800
47 32.5828100 -106.6032300
48 32.5828400 -106.6032400
49 32.5828400 -106.6031600
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Table C.4. Location information for the texture fraction measurments in table C.3. Northing and Easting 
are given in UTM Zone 13N NAD83. ProfileID is a unique identifier that can be used to link tables C.3 
and C.4. Data extracted from Cody Anderson’s thesi available at: https://repository.asu.edu/items/21017. 

JER UTM Zone 13 
Location Vegetation cover 

Profile 
ID Northing Easting 

Primary cover Secondary 
cover 

Coverage 
class 

JER1 3606481.0 349470.1 BA BA 

JER2 3606454.7 349467.3 BM BA GR 
JER3 3606426.7 349467.8 BA BA 
JER4 3606396.8 349452.7 BA CR BA 
JER5 3606372.7 349448.5 TB BA OS 
JER6 3606478.3 349502.3 CR/BM BA CR 
JER7 3606451.0 349498.6 CR BA CR 
JER8 3606426.8 349492.7 MQ BA,BM/CR MQ 
JER9 3606392.4 349484.1 BM/CR BA GR 
JER10 3606366.8 349474.9 BA BA 
JER11 3606472.7 349530.2 BM/TB BA GR 
JER12 3606447.3 349522.7 BA TB,MQ,CR BA 
JER13 3606420.2 349517.9 CR BA CR 
JER14 3606389.4 349508.8 TB/BM BA,MQ OS 
JER15 3606362.6 349506.1 MQ/BM BA MQ 
JER16 3606469.5 349558.7 MA/BM/CR BA OS 
JER17 3606444.6 349550.9 MQ/TB BM,BA MQ 
JER18 3606418.4 349543.2 BA BA 
JER19 3606383.5 349538.8 CR/PP BA CR 
JER20 3606357.9 349535.0 MA TB,BA OS 
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APPENDIX D CODE USED FOR GEOSTATISTICAL MODELING OF SAND AND CLAY 
R code used for geostatistical modeling of texture fraction (i.e., sand and clay).  

#Geostatistical modeling of sand and clay by global maps standardized depth in the Tromble Weir 
Watershed 

# Colby Brungard, PhD 

# Load libraries 

 library(aqp) 

 library(sp) 

 library(rgdal) 

 library(raster) 

 library(gstat) 

 library(ggplot2) 

 library(openxlsx) 

 library(plyr) 

 library(dplyr) 

 library(reshape2) 

 library(RColorBrewer) 

 library(e1071) 

 library(ggpubr) 

# set working directory 

setwd("D:/Tromble Weir") 

#1. Data preprocessing 

#1.1  Mikayla's sampling 

mdat <- read.csv("./Mikayla Data/R_Pit_Data_cwb.csv") 

mloc <- read.csv("./Mikayla Data/R_Pit_Site_Data.csv") 

# Reproject coordinates to UTM Zone 13N 

coordinates(mloc) <- ~ Longitude + Latitude 



proj4string(mloc) <- '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0' 

mloc <- spTransform(mloc, CRS('+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs'))

mloc <- as.data.frame(mloc)

names(mloc)[2:3] <- c('Easting', 'Northing')

# Points 3 and 38 were located outside of the study area in a different parent material. Remove them. 
Because they are far away they are unlikely to have much impact. Points 20 & 37 may also be in a different 
landform, but are likely not in different enough parent material to affect matters. Interesingly though, when 
I tested removing these two points I did get slighly better X-validation fits.  

mdat <- mdat[mdat$Pedon.ID != 3 & mdat$Pedon.ID != 38,] 

mloc <- mloc[mloc$Pedon.ID != 3 & mloc$Pedon.ID != 38,] 

#1.2 Sampling by Cody Anderson 

# Tables from his thesis 

adat <- readWorkbook("./Enriques Data/Anderson_asu_Thesis_TableB2.xlsx") 

# Get horizon top and bottom depths 

adat$HZ.Top <- sapply(strsplit(adat$`Depth.[cm]`,"-"), `[`, 1) 

adat$HZ.Bottom <- sapply(strsplit(adat$`Depth.[cm]`,"-"), `[`, 2) 

# Combine all gravel and sand percentages into only sand. Unfortunately it appears that Cody somehow 
divided gravel and sand values instead of dividing the coarse fraction from the fine earth fraction. I have 
decided to combine the gravel and sand values into a single 'Sand' column based on the following 
observations. 1) (Gravel+Sand)+Clay exactly equals Silt values. Since silt is calculated as 100 -(sand+clay) 
I'm reasonably confident that these values are correct. 2) The summary statistics of Gravel+Sand almost 
exactly match the summary statistics of sand values for the rest of the observation made by Mikayla. 3) The 
clay values appear correct. This assumption negates the use of the course fraction in any subsequent 
analysis. I have contacted Enrique about this data but have not gotten a response.   

adat$Sand <- apply(adat[,c(3:10)], 1, sum) 

adat$Silt <- adat$`%.silt.2-53µm` # Give silt a better name 

adat$Clay <- adat$`%.clay.<2µm` #Give clay a better name 

# Create psuedo horizon names (needed for AQP) and make factor 

adat1 <- ddply(adat, .(Profile), mutate, Designation = seq_along(HZ.Top)) 

adat1$Designation <- as.factor(as.character(adat1$Designation)) 

# Subset for relevant variables and name columns to match Mikayla's data 
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adat2 <- adat1[,c(1,18,13:17)] 

names(adat2)[1] <- 'Pedon.ID' 

# Location information 

aloc <- readWorkbook("./Enriques Data/Anderson_asu_Thesis-Table2.xlsx", rows=c(25:45), cols = c(1:3))  

names(aloc)[1] <- 'Pedon.ID' 

aloc2 <- aloc[,c(1,3,2)] 

# 1.3 Join both datasets and format as needed 

# Pedon data 

dat <- rbind(mdat, adat2) 

dat$HZ.Bottom <- as.numeric(dat$HZ.Bottom) 

dat$HZ.Top <- as.numeric(dat$HZ.Top) 

# Site data 

sdat <- rbind(mloc, aloc2) 

#2. Convert to SPC and convert to standard depth intervals.   

depths(dat) <- Pedon.ID ~ HZ.Top + HZ.Bottom 

# Global soil map standard depth intervals: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100, & 100-200 cm. 
The following code modified from: https://ncss-tech.github.io/AQP/aqp/aqp-intro.html. However, many of 
these soils are < 100 cm deep. Because I have so few samples I am only going to map soil texture to 60 cm. 

# Use the slice and slab functions in AQP to average over these depths 

s1 <- aqp::slice(dat, fm=0:100 ~Sand + Silt + Clay) 

# Subset to GSM depths and calculate weighted mean values (I'm pretty sure that this does a weighted 
mean).  

gsm.depths <- c(0, 5, 15, 30, 60, 100) 

d.gsm <- slab(s1, fm=Pedon.ID ~ Sand + Silt + Clay, slab.structure = gsm.depths, slab.fun = median, 
na.rm=TRUE)
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# reshape to wide format, convert to SPC, and make new hz names 

gsmpedons <- dcast(d.gsm, Pedon.ID + top + bottom ~ variable, value.var = 'value') 

depths(gsmpedons) <- Pedon.ID ~ top + bottom 

gsmpedons$hzname <- profileApply(gsmpedons, function(i) {paste0('GSM-', 1:nrow(i))}) 

# Note: Use new gsmpedons with caution. It is very likely that values > 60 cm were calculated with very 
few observtions. 

# 2 Prepare for exploratory data analysis 

# Convert to SpatialPointsDataframe, and reproject 

site(gsmpedons) <- sdat #This automatically joins by id (cool!) 

coordinates(gsmpedons) <- ~ Easting + Northing 

proj4string(gsmpedons) <- '+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m +no_defs' 

# Subset by GSM depth interval,  

d1 <- gsmpedons[, 1] 

d2 <- gsmpedons[, 2] 

d3 <- gsmpedons[, 3] 

d4 <- gsmpedons[, 4] 

# Remove missing values (no data) from lower horizons 

 d4 <- as.data.frame(d4) 

 d4 <- d4[complete.cases(d4),] 

 coordinates(d4) <- ~ Easting + Northing 

 proj4string(d4) <- '+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m +no_defs' 

# Load all rasters. Rasters created from 5m ifsar DEM using geoprocess_by_area.bat. See readme file in tw 
folder. 

brk <- do.call(brick, lapply(list.files(path = "./Terrain_derivatives/TD_5m", pattern = ".*tif", full.names = 
TRUE), raster)) 

# Reproject rasters to points (if needed) 
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brk2 <- projectRaster(brk, crs="+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m +no_defs 
+towgs84=0,0,0")

# Mask to study area, then crop extent (significantly reduces processing time). 

studyarea <- readOGR("./NestedSampllingExample", "SoilMU26") 

brk3 <- mask(brk2, mask = studyarea) 

brk4 <- crop(brk3, studyarea) 

# Extract covariate values 

ec <- raster::extract(brk4, y = d1) 

ec4<- raster::extract(brk4, y = d4) 

# Join covariate values to soil depth data 

de1 <- cbind(d1, ec) 

de2 <- cbind(d2, ec) 

de3 <- cbind(d3, ec) 

de4 <- cbind(d4, ec4) 

# Kriging and gaussian simulation requires a very fine underlying grid on which to predict. 

# Use rasters to create prediction grid 

sgdf <- as(brk4, 'SpatialGridDataFrame')  

# 3 Sand.  

# 3.1 0-5 cm.  

# Summary stats. Webster and Oliver suggest the transformation be applied if the skewness is > 0.5. 

summary(d1$Sand) # Median is close to mean so appears normally distributed. 

skewness(d1$Sand) # -0.87  

# Histograms. This appears quite 'normal' 

hist(d1$Sand, col = "lightblue", border = "red") 

rug(d1$Sand) 

137 



# Check for obvious spatial patterns 

spplot(d1, zcol = 'Sand', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers  

# s1.sel = plot(variogram(Sand ~ 1, d1, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(s1.sel, d1) 

# Fit linear models between Sand and covariates 

# Significance only shows that the relationship is not-zero. 

# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

summary(lm(Sand ~ Aspect                 , de1)) 

summary(lm(Sand ~ ConvergenceIndex       , de1)) 

summary(lm(Sand ~ CrossSectionalCurvature, de1)) 

summary(lm(Sand ~ DEM_5_utm             , de1)) #** Adj. R2:  0.099 

summary(lm(Sand ~ FlowAccumulation       , de1)) 

summary(lm(Sand ~ LongitudinalCurvature  , de1)) 

summary(lm(Sand ~ LSfactor  , de1)) 

summary(lm(Sand ~ Slope  , de1)) 

summary(lm(Sand ~ TopographicWetnessIndex, de1)) 

summary(lm(Sand ~ ValleyDepth            , de1)) 

# Only elevation is significant 

plot(Sand ~ DEM_5_utm, data = de1) 

#There isn't a very strong relationship, but it do need to account for this trend. 

# Check for Anisotropy.  120 seems best 

plot(variogram(Sand ~ 1, d1, alpha = c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 155, 180))) 

# h-scatterplots. These are plots of z(x) against z(x+h) for each lag interval and show the distribution of 
pairs of points for that interval. The closer the points lie to the diagional line, the stronger the correlation 
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and the smaller the semivariance. These distances were chosen because these are the distances that I used 
for the nested sampling.  

hscat(Sand ~ 1, data = de1, c(3, 9, 29, 88, 266, 800), variogram.alpha=120)  

# Most correlated (has the lowest semivariance) below ~ 30 m 

# Empirical (experimental or sample) variogram. It makes sense to use the distances over which I designed 
the sampling [boundaries = c(3, 9, 29, 88, 266, 800)], but when I do this I have a great deal of trouble fiting 
a variogram model (most of the time I get a singular model or no convergence), so I decided not to 
implement this.  

svg1 <- variogram(Sand ~ DEM_5_utm, de1, alpha=120) 

plot(svg1, plot.nu = FALSE) 

svg1 

# Variogram modeling 

# The experimental variogram is basically just two columns of numbers: distance and semivariance. To use 
this for predictions, we need to fit a model (like a regression line) to the variogram. Because the variogram 
modeling is a numerical optimization we need to provide starting values. psill is the partial sill which is the 
sill-nugget. 

svgm1.s <- fit.variogram(object=svg1, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Sph')) 

svgm1.c <- fit.variogram(object=svg1, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Cir')) 

svgm1.e <- fit.variogram(object=svg1, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Exp')) 

svgm1.s 

svgm1.c 

svgm1.e 

plot(svg1, svgm1.s, pch = 19) 

plot(svg1, svgm1.c, pch = 19) 

plot(svg1, svgm1.e, pch = 19) 

# Leave-one-out cross validation 

scv1.s = krige.cv(Sand ~ DEM_5_utm, de1, model = svgm1.s) 

scv1.c = krige.cv(Sand ~ DEM_5_utm, de1, model = svgm1.c) 

scv1.e = krige.cv(Sand ~ DEM_5_utm, de1, model = svgm1.e) 
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# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(scv1.s$residual) # -0.10 

mean(scv1.c$residual) # -0.19 

mean(scv1.e$residual) # -0.07 

# MSE. Mean squared error measures on average how different predictions are from observations. 

# The MSE will be small if the predicted responses are very close to the true responses, and will be large if 
for some of the observations, the predicted and true responses differ substantially (ISL sixth printing). 

mean(scv1.s$residual^2) # 34.0 

mean(scv1.c$residual^2) # 33.2 

mean(scv1.e$residual^2) # 34.1 

# RMSE (take the square root to get units in original units) 

sqrt(mean(scv1.s$residual^2)) # 5.8 % 

sqrt(mean(scv1.c$residual^2)) # 5.8 

sqrt(mean(scv1.e$residual^2)) # 5.8 

# What is the spatial distribution of the residuals? 

bubble(scv1.s, "residual", main = "Sand 0-5 cm Spherical") 

bubble(scv1.c, "residual", main = "Sand 0-5 cm Circular") 

bubble(scv1.e, "residual", main = "Sand 0-5 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

sk1.s <- krige(Sand ~ DEM_5_utm, de1, model = svgm1.s, newdata = sgdf) 

sk1.c <- krige(Sand ~ DEM_5_utm, de1, model = svgm1.c, newdata = sgdf) 

sk1.e <- krige(Sand ~ DEM_5_utm, de1, model = svgm1.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

sk1.s %>% as.data.frame %>% 



 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,8)) + ggtitle('Spherical') + theme_bw() 

sk1.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,8)) + ggtitle('Circular') + theme_bw() 

sk1.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,8)) + ggtitle('Exponential') + theme_bw() 

# None of these models seemed to have much different prediction patterns or much different uncertainty 
than another, so I choose Circular because it had slightly lower MSE. Publication quality plotting and 
writing to raster are done below.  

# 3.2 5-15 cm 

# Summary stats. Appear fairly normal, no need to transform based on skewness 

summary(d2$Sand) 

skewness(d2$Sand) # -0.115 

# Histograms. Very normally distributed 

hist(d2$Sand, col = "lightblue", border = "red") 

rug(d2$Sand) 

# Plots to check for obvious spatial patterns 

spplot(d2, zcol = 'Sand', col.regions=brewer.pal(5, "Set1")) 

# # Look for spatial outliers. Nothing obvious 

# s2.sel = plot(variogram(Sand ~ 1, d2, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(s2.sel, d1) 
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# Fit linear models 

summary(lm(Sand ~ Aspect                 , de2)) 

summary(lm(Sand ~ ConvergenceIndex       , de2)) #* Adj. R2 0.06 

summary(lm(Sand ~ CrossSectionalCurvature, de2)) #* Adj. R2 0.08 

summary(lm(Sand ~ DEM_5_utm              , de2)) #** Adj. R2 0.09 

summary(lm(Sand ~ FlowAccumulation       , de2)) #* Adj. R2 0.05 

summary(lm(Sand ~ LongitudinalCurvature  , de2)) #** Adj. R2 0.004 

summary(lm(Sand ~ LSfactor  , de2)) 

summary(lm(Sand ~ Slope  , de2)) 

summary(lm(Sand ~ TopographicWetnessIndex, de2)) #** Adj. R2 0.14 

summary(lm(Sand ~ ValleyDepth            , de2)) 

plot(Sand ~ TopographicWetnessIndex, de2) 

plot(Sand ~ DEM_5_utm, de2) 

plot(Sand ~ LongitudinalCurvature, data = de2) 

# Hmmm, only TWI and elevation seem to have a strong relationship with Sand. I suspect that the strength 
(if it can be considered strong) of the relationship between sand and TWI is due to the few points located 
in areas with higher TWI values and that the relationship may not be as 'strong' if these points were removed. 
I'm still going to go with elevation as it seems less spurious.  

# Check for Anisotropy. 120 seems best and agreed with the direction of the landform.  

plot(variogram(Sand ~ 1, d2, alpha = c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 155, 180))) 

# h-scatterplots. Strongest correlation at < 30 m.  

hscat(Sand ~ 1, data = de2, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

# Empirical (experimental or sample) variogram. When I include boundaries = c(3, 9, 29, 88, 266, 800) I 
am able to still get a model to fit, but it strongly reduces the range thus the prediction uncertainity is only 
concentrated around the sample locations and RMSE slightly increased, so I am not taking this approach.  

svg2 <- variogram(Sand ~ DEM_5_utm, de2, alpha=120) 

plot(svg2, plot.nu = FALSE) 

svg2 
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# Variogram modeling 

svgm2.s <- fit.variogram(object=svg2, model = vgm(nugget = 20, psill = 1, range= 100, model = 'Sph')) 

svgm2.c <- fit.variogram(object=svg2, model = vgm(nugget = 20, psill = 1, range= 100, model = 'Cir')) 

svgm2.e <- fit.variogram(object=svg2, model = vgm(nugget = 20, psill = 1, range= 100, model = 'Exp')) 

svgm2.s 

svgm2.c 

svgm2.e 

plot(svg2, svgm2.s, pch = 19) 

plot(svg2, svgm2.c, pch = 19) 

plot(svg2, svgm2.e, pch = 19) 

# Leave-one-out cross validation 

scv2.s = krige.cv(Sand ~ DEM_5_utm, de2, model = svgm2.s) 

scv2.c = krige.cv(Sand ~ DEM_5_utm, de2, model = svgm2.c) 

scv2.e = krige.cv(Sand ~ DEM_5_utm, de2, model = svgm2.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(scv2.s$residual) # -0.02 

mean(scv2.c$residual) # -0.02 

mean(scv2.e$residual) # -0.02 

# MSE. Mean squared error  

mean(scv2.s$residual^2) # 23.0 

mean(scv2.c$residual^2) # 23.2 

mean(scv2.e$residual^2) # 23.5 

# RMSE (take the square root to get units in original units) 
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sqrt(mean(scv2.s$residual^2)) # 4.79 

sqrt(mean(scv2.c$residual^2)) # 4.82 

sqrt(mean(scv2.e$residual^2)) # 4.84 

# What is the spatial distribution of the residuals? 

bubble(scv2.s, "residual", main = "Sand 5-15 cm Spherical") 

bubble(scv2.c, "residual", main = "Sand 5-15 cm Circular") 

bubble(scv2.e, "residual", main = "Sand 5-15 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate, then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

sk2.s <- krige(Sand ~ DEM_5_utm, de2, model = svgm2.s, newdata = sgdf) 

sk2.c <- krige(Sand ~ DEM_5_utm, de2, model = svgm2.c, newdata = sgdf) 

sk2.e <- krige(Sand ~ DEM_5_utm, de2, model = svgm2.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

sk2.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(4,6)) + ggtitle('Spherical') + theme_bw() 

sk2.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(4,6)) + ggtitle('Circular') + theme_bw() 

sk2.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(4,6)) + ggtitle('Exponential') + theme_bw() 

# Little difference between the models. Chose to use a circular model to be consistent with the 0-5 cm layer 
and had slightly larger areas of lower uncertainty   



# 3.3 15-30 cm 

# Summary stats. Not much variability. Maybe I could just assume a mean value for this depth. 

summary(d3$Sand) 

skewness(d3$Sand) # 0.763 

# Log transform makes < 0.5; skewness(log(d3$Sand)); but based on my attempts at back transform this 
doesn't make much difference and only complicates analysis.  

# Histograms. Not quite as 'normal' as the first two depths, but still pretty close.  

hist(log(d3$Sand), col = "lightblue", border = "red") 

rug(log(d3$Sand)) 

# Plots to check for obvious spatial patterns 

spplot(d3, zcol = 'Sand', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers. Nothing obvious 

# s3.sel = plot(variogram(Sand ~ 1, d3, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# Fit linear models 

summary(lm(Sand ~ Aspect                 , de3)) 

summary(lm(Sand ~ ConvergenceIndex       , de3)) #*   Adj. R2 0.05 

summary(lm(Sand ~ CrossSectionalCurvature, de3)) #**  Adj. R2 0.09 

summary(lm(Sand ~ DEM_5_utm              , de3))  

summary(lm(Sand ~ FlowAccumulation       , de3)) #*   Adj. R2 0.05 

summary(lm(Sand ~ LongitudinalCurvature  , de3)) #**  Adj. R2 0.14 

summary(lm(Sand ~ LSfactor               , de3)) 

summary(lm(Sand ~ Slope                  , de3)) #*   Adj. R2 0.05 

summary(lm(Sand ~ TopographicWetnessIndex, de3)) #*** Adj. R2 0.16 

summary(lm(Sand ~ ValleyDepth            , de3)) 

plot(Sand ~ LongitudinalCurvature, de3) 

plot(Sand ~ TopographicWetnessIndex, de3) 
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# #Hmmm, I suspect that the 'strength' of these relationships is due to the few points located in areas with 
higher LongCurv and TWI values and that the relationship may not be as 'strong' if these points were 
removed. I tried removing what I thought were these points (Points 20 & 37 see data cleaning notes in 
section 1), but this didn't fully remove these points or change the relationships.  

summary(lm(Sand ~ LongitudinalCurvature+TopographicWetnessIndex, de3)) # only TWI significant 
when run together. I'm going to use topographic wetness as the 'trend' 

# Check for Anisotropy. Again 120 seems appropriate.  

plot(variogram(Sand ~ 1, d3, alpha = c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 155, 180))) 

# h-scatterplots. Not much correlation beyond ~ 30 m.  

hscat(Sand ~ 1, data = de3, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

# Empirical (experimental or sample) variogram. 

# For this depth interval I included the distances over which I designed the sampling [boundaries = c(3, 9, 
29, 88, 266, 800)], because I got singular variogram models if I didn't.   

svg3 <- variogram(Sand ~ TopographicWetnessIndex, de3, boundaries = c(3, 9, 29, 88, 266, 800), 
alpha=120) # 

plot(svg3, plot.nu = FALSE) 

svg3 

# Variogram modeling 

svgm3.s <- fit.variogram(object=svg3, model = vgm(nugget = 5, psill = 30, range= 50, model = 'Sph')) 

svgm3.c <- fit.variogram(object=svg3, model = vgm(nugget = 5, psill = 30, range= 50, model = 'Cir')) 

svgm3.e <- fit.variogram(object=svg3, model = vgm(nugget = 5, psill = 30, range= 50, model = 'Exp')) 

svgm3.s 

svgm3.c 

svgm3.e 

plot(svg3, svgm3.s, pch = 19) 

plot(svg3, svgm3.c, pch = 19) 



plot(svg3, svgm3.e, pch = 19) 

# Leave-one-out cross validation 

scv3.s = krige.cv(Sand ~ TopographicWetnessIndex, de3, model = svgm3.s) 

scv3.c = krige.cv(Sand ~ TopographicWetnessIndex, de3, model = svgm3.c) 

scv3.e = krige.cv(Sand ~ TopographicWetnessIndex, de3, model = svgm3.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(scv3.s$residual) # -0.07 

mean(scv3.c$residual) # -0.05 

mean(scv3.e$residual) # -0.11 

# MSE. Mean squared error  

mean(scv3.s$residual^2) # 34.1 

mean(scv3.c$residual^2) # 34.7 

mean(scv3.e$residual^2) # 32.2 

# RMSE. Removing topographicwetnessindex as a covariate results in an ~0.5% RMSE increase. 

sqrt(mean(scv3.s$residual^2)) # 5.84 

sqrt(mean(scv3.c$residual^2)) # 5.90 

sqrt(mean(scv3.e$residual^2)) # 5.67 

# What is the spatial distribution of the residuals? 

bubble(scv3.s, "residual", main = "Sand 15-30 cm Spherical") 

bubble(scv3.c, "residual", main = "Sand 15-30 cm Circular") 

bubble(scv3.e, "residual", main = "Sand 15-30 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

sk3.s <- krige(Sand ~ TopographicWetnessIndex, de3, model = svgm3.s, newdata = sgdf) 

sk3.c <- krige(Sand ~ TopographicWetnessIndex, de3, model = svgm3.c, newdata = sgdf) 
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sk3.e <- krige(Sand ~ TopographicWetnessIndex, de3, model = svgm3.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

sk3.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Spherical') + theme_bw() 

sk3.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Circular') + theme_bw() 

sk3.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Exponential') + theme_bw() 

# I choose a circular model because it was the only model that returned a non-zero nugget. 

# 3.4 30-60 cm 

# Summary stats. Appears normally distributed and no need to transform. 

summary(d4$Sand) 

skewness(d4$Sand) # -0.14 

# Histograms 

hist(d4$Sand, col = "lightblue", border = "red") 

rug(d4$Sand) 

# Plots to check for obvious spatial patterns 

spplot(d4, zcol = 'Sand', col.regions=brewer.pal(5, "Set1")) 

# It appears that the values around the Tromble Weir itself are a bit sandier 



# Fit Linear models 

summary(lm(Sand ~ Aspect                 , de4)) 

summary(lm(Sand ~ ConvergenceIndex       , de4)) #*   Adj. R2 = 0.12 

summary(lm(Sand ~ CrossSectionalCurvature, de4)) #**  Adj. R2 = 0.15 

summary(lm(Sand ~ DEM_5_utm              , de4)) #*** Adj. R2 = 0.42 

summary(lm(Sand ~ FlowAccumulation       , de4))  

summary(lm(Sand ~ LongitudinalCurvature  , de4)) #**  Adj. R2 = 0.22 

summary(lm(Sand ~ LSfactor               , de4)) #**  Adj. R2 = 0.14 

summary(lm(Sand ~ Slope                  , de4)) #*** Adj. R2 = 0.25 

summary(lm(Sand ~ TopographicWetnessIndex, de4)) #*   Adj. R2 = 0.13 

summary(lm(Sand ~ ValleyDepth            , de4)) 

# This is rather interesting. Perhaps the significance with more variables as depth increases suggests that 
the surface is affected by other variables that control erosion and deposition, and that these covariates don't 
become important until below the surface. The surface horizon of most pedons was ~ 6 cm. In any case, I 
believe that this shows a trend in the data that I will need to account for. However, I am uncertain of the 
physical significance of these since I am using weighted average values. 

summary(lm(Sand ~ 
DEM_5_utm+Slope+LongitudinalCurvature+CrossSectionalCurvature+LSfactor+TopographicWetnessIn 
dex, de4)) # This reveals that only elevation (DEM_5_utm) is significant (***) when taken together. 

# Only the three variables with largest Adj. R2 values 
summary(lm(Sand ~ DEM_5_utm+Slope+LongitudinalCurvature, de4)) # Only elevation and 
longCurvature is significant 

# Elevation and slope 

summary(lm(Sand ~ DEM_5_utm+Slope, de4))# Both significant Adj. R2 = 0.46 

# Elevation and LongCurvature 

summary(lm(Sand ~ DEM_5_utm+LongitudinalCurvature, de4)) # Both significant Adj. R2 = 0.53 

# I am going to use elevation and longitudinal curvature.  

# Check for Anisotropy. 120 is probably best, but 135 could also work 

plot(variogram(Sand ~ 1, d4, alpha = c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 155, 180))) 
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# h-scatterplots. These show equivalent correlations between 120 and 135. So I chose 120 to be consistent. 

hscat(Sand ~ 1, data = de4, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

hscat(Sand ~ 1, data = de4, c(3, 9, 29, 88, 266, 800), variogram.alpha=135) 

# Empirical (experimental or sample) variogram. Leaving out longitudinalCurvature increases RMSE by ~ 
0.4 so I left it in.   

svg4 <- variogram(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, alpha=120) 

plot(svg4, plot.nu = FALSE) 

svg4 

# Variogram modeling. The exponential model doesn't converge, but the values are realistic and stable 
(even with different values) so I will include the model.  

svgm4.s <- fit.variogram(object=svg4, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Sph')) 

svgm4.c <- fit.variogram(object=svg4, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Cir')) 

svgm4.e <- fit.variogram(object=svg4, model = vgm(nugget = 10, psill = 20, range= 300, model = 'Exp')) 

svgm4.s 

svgm4.c 

svgm4.e 

plot(svg4, svgm4.s, pch = 19) 

plot(svg4, svgm4.c, pch = 19) 

plot(svg4, svgm4.e, pch = 19) 

# Leave-one-out cross validation 

scv4.s = krige.cv(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.s) 

scv4.c = krige.cv(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.c) 

scv4.e = krige.cv(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  
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mean(scv4.s$residual) # 0.19 

mean(scv4.c$residual) # 0.19 

mean(scv4.e$residual) # 0.19 

# MSE. Mean squared error  

mean(scv4.s$residual^2) # 26.25 

mean(scv4.c$residual^2) # 26.42 

mean(scv4.e$residual^2) # 27.70 

# RMSE (take the square root to get units in original units) 

sqrt(mean(scv4.s$residual^2)) # 5.12 

sqrt(mean(scv4.c$residual^2)) # 5.14 

sqrt(mean(scv4.e$residual^2)) # 5.26 

# What is the spatial distribution of the residuals? 

bubble(scv4.s, "residual", main = "Sand 30-60 cm Spherical") 

bubble(scv4.c, "residual", main = "Sand 30-60 cm Circular") 

bubble(scv4.e, "residual", main = "Sand 30-60 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

sk4.s <- krige(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.s, newdata = sgdf) 

sk4.c <- krige(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.c, newdata = sgdf) 

sk4.e <- krige(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

sk4.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Spherical') + theme_bw() 

sk4.c %>% as.data.frame %>% 
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 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Circular') + theme_bw() 

sk4.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,12)) + ggtitle('Exponential') + theme_bw() 

# Based on RMSE and review of spatial predictions I choose the spherical model 

#----------------------------------------------------------------------- 

#4. Clay 

# Remove PedonID's 14:19 and 41. (possibly 48) 

d1s <- d1[!(d1$Pedon.ID %in% c(14:19,41)),] 

de1s <- de1[!(de1$Pedon.ID %in% c(14:19,41)),] 

# 4.1 0-5 cm.  

# Summary stats. Webster and Oliver suggest the transformation be applied if the skewness is > 0.5. 

summary(d1s$Clay) # Median is close to mean so appears normally distributed. 

skewness(d1s$Clay) # -0.19  

# Histograms. This appears quite 'normal' 

hist(d1s$Clay, col = "lightblue", border = "red") 

rug(d1s$Clay) 

# Check for obvious spatial patterns. Cody's values appear a bit low compared to Mikayla's sampling. 
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spplot(d1s, zcol = 'Clay', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers. Maybe a few outliers. 

# c1.sel = plot(variogram(Clay ~ 1, de1s, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(c1.sel, d1s) 

# Fit linear models between Clay and covariates 

# Significance only shows that the relationship is not-zero. 

# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

summary(lm(Clay ~ Aspect                 , de1s)) 

summary(lm(Clay ~ ConvergenceIndex       , de1s))  

summary(lm(Clay ~ CrossSectionalCurvature, de1s)) 

summary(lm(Clay ~ DEM_5_utm            , de1s)) #*  Adj. R2 0.07 

summary(lm(Clay ~ FlowAccumulation       , de1s)) 

summary(lm(Clay ~ LongitudinalCurvature  , de1s)) 

summary(lm(Clay ~ LSfactor  , de1s)) 

summary(lm(Clay ~ Slope  , de1s)) 

summary(lm(Clay ~ TopographicWetnessIndex, de1s)) 

summary(lm(Clay ~ ValleyDepth  , de1s)) #** Adj. R2 0.15 

# Only Convergence index is significant 

plot(Clay ~ ValleyDepth, data = de1s) 

 abline(lm(Clay ~ ValleyDepth, de1s)) 

# Check for Anisotropy.  120 seems best 

plot(variogram(Clay ~ ValleyDepth, de1s, alpha = c(105, 120, 135, 155, 180))) 

# h-scatterplots. Correlation out to ~ 270 m.  

hscat(Clay ~ ValleyDepth, data = de1, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

# Empirical (experimental or sample) variogram. Including boundaries does not help with model fitting. 
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cvg1 <- variogram(Clay ~ ValleyDepth, de1s, alpha=155) 

plot(cvg1) 

cvg1 

# Variogram modeling (also tried Pentaspherical and Matern, but they didn't fit either didn't work) 

cvgm1.s <- fit.variogram(object=cvg1, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Sph')) 

cvgm1.c <- fit.variogram(object=cvg1, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Cir')) 

cvgm1.e <- fit.variogram(object=cvg1, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Exp')) 

plot(cvg1, cvgm1.s, pch = 19) 

plot(cvg1, cvgm1.c, pch = 19) 

plot(cvg1, cvgm1.e, pch = 19) 

cvgm1.s 

cvgm1.c 

cvgm1.e 

# Leave-one-out cross validation 

ccv1.s = krige.cv(Clay ~ ValleyDepth, de1s, model = cvgm1.s) 

ccv1.c = krige.cv(Clay ~ ValleyDepth, de1s, model = cvgm1.c) 

ccv1.e = krige.cv(Clay ~ ValleyDepth, de1s, model = cvgm1.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(ccv1.s$residual) # -0.03 

mean(ccv1.c$residual) # -0.03 

mean(ccv1.e$residual) # -0.03 

# MSE. Mean squared error measures on average how different predictions are from observations. 

# The MSE will be small if the predicted responses are very close to the true responses, and will be large if 
for some of the observations, the predicted and true responses differ substantially (ISL sixth printing). 

mean(ccv1.s$residual^2) # 3.45 
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mean(ccv1.c$residual^2) # 3.45 

mean(ccv1.e$residual^2) # 3.44 

# RMSE (take the square root to get units in original units) 

sqrt(mean(ccv1.s$residual^2)) #  1.86 

sqrt(mean(ccv1.c$residual^2)) #  1.87 

sqrt(mean(ccv1.e$residual^2)) #  1.85 

# What is the spatial distribution of the residuals? 

bubble(ccv1.s, "residual", main = "Clay 0-5 cm Spherical") 

bubble(ccv1.c, "residual", main = "Clay 0-5 cm Circular") 

bubble(ccv1.e, "residual", main = "Clay 0-5 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

ck1.s <- krige(Clay ~ ValleyDepth, de1s, model = cvgm1.s, newdata = sgdf) 

ck1.c <- krige(Clay ~ ValleyDepth, de1s, model = cvgm1.c, newdata = sgdf) 

ck1.e <- krige(Clay ~ ValleyDepth, de1s, model = cvgm1.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

ck1.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,4)) + ggtitle('Spherical') + theme_bw() 

ck1.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(1,3)) + ggtitle('Circular') + theme_bw() 

ck1.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(1,3)) + ggtitle('Exponential') + theme_bw() 



# I choose circular model because the model appeared to fit the data slightly better than the other models. 
Still, I'm not very happy with this data.   

# 3.2 5-15 cm 

# Remove PedonID's 14:19. Also remove 41 as it is an outlier and keeping it results in models that do not 
converge.  

d2s <- d2[!(d2$Pedon.ID %in% c(14:19,41)),] 

de2s <- de2[!(de2$Pedon.ID %in% c(14:19,41)),] 

# Summary stats. Appear fairly normal, skewness suggests some need to transform, but not a lot 

summary(d2s$Clay) 

skewness(d2s$Clay) # 0.21 

# Histograms. Very normally distributed 

hist(d2s$Clay, col = "lightblue", border = "red") 

rug(d2s$Clay) 

# Plots to check for obvious spatial patterns 

spplot(d2s, zcol = 'Clay', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers. Nothing obvious.  

# c2.sel = plot(variogram(Clay ~ 1, d2s, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(c2.sel, d2) 

# Fit linear models 

summary(lm(Clay ~ Aspect                 , de2s)) 

summary(lm(Clay ~ ConvergenceIndex       , de2s)) #*  Adj. R2 0.08  

summary(lm(Clay ~ CrossSectionalCurvature, de2s)) #*  Adj. R2 0.07 

summary(lm(Clay ~ DEM_5_utm              , de2s))   

summary(lm(Clay ~ FlowAccumulation       , de2s)) #*  Adj. R2 0.06 
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summary(lm(Clay ~ LongitudinalCurvature  , de2s)) 

summary(lm(Clay ~ LSfactor  , de2s)) 

summary(lm(Clay ~ Slope  , de2s)) 

summary(lm(Clay ~ TopographicWetnessIndex, de2s)) 

summary(lm(Clay ~ ValleyDepth  , de2s)) #*** Adj. R2 0.21 

summary(lm(Clay ~ CrossSectionalCurvature+ConvergenceIndex+ValleyDepth, de2s)) #ValleyDepth 
significant 

summary(lm(Clay ~ ConvergenceIndex+ValleyDepth, de2s)) # ValleyDepth significant 

summary(lm(Clay ~ CrossSectionalCurvature+ValleyDepth, de2s)) # ValleyDepty significant 

plot(Clay ~ ConvergenceIndex, de2s) 

 abline(lm(Clay ~ ConvergenceIndex, de2s)) 

plot(Clay ~ CrossSectionalCurvature, de2s) 

 abline(lm(Clay ~ CrossSectionalCurvature, de2s)) 

plot(Clay ~ ValleyDepth, de2s) 

 abline(lm(Clay ~ ValleyDepth, de2s)) 

# I'm choosing valley depth because it has the strongest correlation and because it makes sense to me. 

# Check for Anisotropy. 135 seems best and agreed with the direction of the landform. 

plot(variogram(Clay ~ ValleyDepth, de2s, alpha = c(105, 120, 135, 155, 180))) 

# h-scatterplots. Not much correlation beyone 90 m. 

hscat(Clay ~ ValleyDepth, data = de2, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

# Empirical (experimental or sample) variogram. When I include boundaries = c(3, 9, 29, 88, 266, 800) I 
am able to still get a model to fit, but it strongly reduces the range thus the prediction uncertainity is only 
concentrated around the sample locations and RMSE slightly increased, so I am not taking this approach. 
ConvergenceIndex+ValleyDepth 

cvg2 <- variogram(Clay ~ ValleyDepth, boundaries = c(29, 88, 266, 800), de2s, alpha = 135) 

plot(cvg2) 
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cvg2 

# Variogram modeling. Gaussian, Power, Log, Matern, none fit. 

cvgm2.s <- fit.variogram(object=cvg2, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Sph')) 

cvgm2.c <- fit.variogram(object=cvg2, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Cir')) 

cvgm2.e <- fit.variogram(object=cvg2, model = vgm(nugget = 1, psill = 5, range= 300, model = 'Exp')) 

plot(cvg2, cvgm2.s, pch = 19) 

plot(cvg2, cvgm2.c, pch = 19) 

plot(cvg2, cvgm2.e, pch = 19) 

cvgm2.s 

cvgm2.c 

cvgm2.e 

# Leave-one-out cross validation 

ccv2.s = krige.cv(Clay ~ ValleyDepth, de2s, model = cvgm2.s) 

ccv2.c = krige.cv(Clay ~ ValleyDepth, de2s, model = cvgm2.c) 

ccv2.e = krige.cv(Clay ~ ValleyDepth, de2s, model = cvgm2.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(ccv2.s$residual) # 0.02 

mean(ccv2.c$residual) # 0.03 

mean(ccv2.e$residual) # 0.03 

# MSE. Mean squared error  

mean(ccv2.s$residual^2) # 1.81 

mean(ccv2.c$residual^2) # 1.88 

mean(ccv2.e$residual^2) # 1.88 
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# RMSE (take the square root to get units in original units) 

sqrt(mean(ccv2.s$residual^2)) # 1.35 

sqrt(mean(ccv2.c$residual^2)) # 1.37 

sqrt(mean(ccv2.e$residual^2)) # 1.37 

# What is the spatial distribution of the residuals? 

bubble(ccv2.s, "residual", main = "Clay 5-15 cm Spherical") 

bubble(ccv2.c, "residual", main = "Clay 5-15 cm Circular") 

bubble(ccv2.e, "residual", main = "Clay 5-15 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

ck2.s <- krige(Clay ~ ValleyDepth, de2s, model = cvgm2.s, newdata = sgdf) 

ck2.c <- krige(Clay ~ ValleyDepth, de2s, model = cvgm2.c, newdata = sgdf) 

ck2.e <- krige(Clay ~ ValleyDepth, de2s, model = cvgm2.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

ck2.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Spherical') + theme_bw() 

ck2.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Circular') + theme_bw() 

ck2.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Exponential') + theme_bw() 

# Little difference between the models. Chose to use a spherical model as it had slighly lower RMSE 



# 3.3 15-30 cm 

# Remove pedons 13:19. See explanation for 0-5 cm. 

d3s <- d3[!(d3$Pedon.ID %in% c(14:19)),] 

de3s <- de3[!(de3$Pedon.ID %in% c(14:19)),] 

# Summary stats. Not much variability. No need to transform. 

summary(d3s$Clay) 

skewness(d3s$Clay) # -0.0007 

# Histograms. Not quite as 'normal' as the first two depths, but still pretty close.  

hist(d3s$Clay, col = "lightblue", border = "red") 

rug(d3s$Clay) 

# Plots to check for obvious spatial patterns 

spplot(d3s, zcol = 'Clay', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers. No outliers  

# c3.sel = plot(variogram(Clay ~ 1, d3, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(c3.sel, d3) 

# Fit linear models 

summary(lm(Clay ~ Aspect                 , de3s)) 

summary(lm(Clay ~ ConvergenceIndex       , de3s)) #*  Adj. R2 0.06  

summary(lm(Clay ~ CrossSectionalCurvature, de3s)) #*  Adj. R2 0.07 

summary(lm(Clay ~ DEM_5_utm              , de3s)) #*  Adj. R2 0.07 

summary(lm(Clay ~ FlowAccumulation       , de3s)) #*  Adj. R2 0.06 

summary(lm(Clay ~ LongitudinalCurvature  , de3s)) #*  Adj. R2 0.08  

summary(lm(Clay ~ LSfactor  , de3s)) 

summary(lm(Clay ~ Slope  , de3s)) 

summary(lm(Clay ~ TopographicWetnessIndex, de3s))
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summary(lm(Clay ~ ValleyDepth  , de3s)) #*** Adj. R2 0.26 

plot(Clay ~ ConvergenceIndex, de3s) 

 abline(lm(Clay ~ ConvergenceIndex, de3s)) 

plot(Clay ~ CrossSectionalCurvature, de3s) 

 abline(lm(Clay ~ CrossSectionalCurvature, de3s)) 

plot(Clay ~ LongitudinalCurvature, de3s) 

 abline(lm(Clay ~ LongitudinalCurvature, de3s))  

plot(Clay ~ ValleyDepth, de3s) 

 abline(lm(Clay ~ ValleyDepth, de3s)) 

# Only valley depth is significant 

summary(lm(Clay ~ ValleyDepth+ConvergenceIndex+CrossSectionalCurvature+LongitudinalCurvature, 
de3s))  

summary(lm(Clay ~ ValleyDepth+ConvergenceIndex+CrossSectionalCurvature, de3s)) 

summary(lm(Clay ~ ValleyDepth+ConvergenceIndex, de3s)) 

# Check for Anisotropy. 135 seems best as it has the most consistent variance 

plot(variogram(Clay ~ ValleyDepth, de3s, alpha = c(105, 120, 135, 155, 180))) 

# h-scatterplots. Not much correlation beyond ~ 88 m.  

hscat(Clay ~ ValleyDepth, data = de3s, c(3, 9, 29, 88, 266, 800), variogram.alpha=135) 

# Empirical (experimental or sample) variogram.  

cvg3 <- variogram(Clay ~ ValleyDepth, de3s, alpha=135) 

plot(cvg3, plot.nu = FALSE) 

cvg3 

# Variogram modeling 

cvgm3.s <- fit.variogram(object=cvg3, model = vgm(nugget = 1, psill = 4, range= 350, model = 'Sph')) 

cvgm3.c <- fit.variogram(object=cvg3, model = vgm(nugget = 1, psill = 4, range= 350, model = 'Cir')) 
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cvgm3.e <- fit.variogram(object=cvg3, model = vgm(nugget = 1, psill = 4, range= 350, model = 'Exp')) 

plot(cvg3, cvgm3.s, pch = 19) 

plot(cvg3, cvgm3.c, pch = 19) 

plot(cvg3, cvgm3.e, pch = 19) 

cvgm3.s 

cvgm3.c 

cvgm3.e 

# Leave-one-out cross validation 

ccv3.s = krige.cv(Clay ~ ValleyDepth, de3s, model = cvgm3.s) 

ccv3.c = krige.cv(Clay ~ ValleyDepth, de3s, model = cvgm3.c) 

ccv3.e = krige.cv(Clay ~ ValleyDepth, de3s, model = cvgm3.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(ccv3.s$residual) # 0.036 

mean(ccv3.c$residual) # 0.039 

mean(ccv3.e$residual) # 0.033 

# MSE. Mean squared error  

mean(ccv3.s$residual^2) # 2.22 

mean(ccv3.c$residual^2) # 2.10 

mean(ccv3.e$residual^2) # 2.25 

# RMSE (take the square root to get units in original units) 

sqrt(mean(ccv3.s$residual^2)) # 1.50 

sqrt(mean(ccv3.c$residual^2)) # 1.45 

sqrt(mean(ccv3.e$residual^2)) # 1.50 
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# What is the spatial distribution of the residuals? 

bubble(ccv3.s, "residual", main = "Clay 15-30 cm Spherical") 

bubble(ccv3.c, "residual", main = "Clay 15-30 cm Circular") 

bubble(ccv3.e, "residual", main = "Clay 15-30 cm Exponential") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

ck3.s <- krige(Clay ~ ValleyDepth, de3s, model = cvgm3.s, newdata = sgdf) 

ck3.c <- krige(Clay ~ ValleyDepth, de3s, model = cvgm3.c, newdata = sgdf) 

ck3.e <- krige(Clay ~ ValleyDepth, de3s, model = cvgm3.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

ck3.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(1,3)) + ggtitle('Spherical') + theme_bw() 

ck3.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(1,3)) + ggtitle('Circular') + theme_bw() 

ck3.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(1,3)) + ggtitle('Exponential') + theme_bw() 

# I'm going with circular as it has the lowest RMES, a reasonable and low partial sill, and a reasonable 
range.  

# 3.4 30-60 cm 

# Try 13-19. Wow, removing these totally changes which variables are significantly. It also makes 
variograms 'fit' the data better so that I got the models to converge.... it is suspicious to me that removing 
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this contigious 'batch' of pedon ids make the models fit. Also remove Pedon.ID 13. Including 13 (identified 
as an outlier) makes the models not converge and increases RMSE by 0.3%.        

d4s <- subset(d4, Pedon.ID <13 | Pedon.ID > 19) 

de4s <- subset(de4, Pedon.ID <13 | Pedon.ID > 19) 

# Summary stats.  

summary(d4s$Clay) 

skewness(d4s$Clay) # -0.33 

# Histograms 

hist(d4s$Clay, col = "lightblue", border = "red") 

rug(d4s$Clay) 

# Plots to check for obvious spatial patterns 

spplot(d4s, zcol = 'Clay', col.regions=brewer.pal(5, "Set1")) 

# Look for spatial outliers. 16 is probably an outlier.  

# c4.sel = plot(variogram(Clay ~ 1, d4s, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(c4.sel, d4s) 

# Fit Linear models 

summary(lm(Clay ~ Aspect                 , de4s)) # Adj. R2 0.09 

summary(lm(Clay ~ ConvergenceIndex       , de4s)) # Adj. R2 0.11 

summary(lm(Clay ~ CrossSectionalCurvature, de4s)) # Adj. R2 0.16 

summary(lm(Clay ~ DEM_5_utm              , de4s))  

summary(lm(Clay ~ FlowAccumulation       , de4s))  

summary(lm(Clay ~ LongitudinalCurvature  , de4s))  

summary(lm(Clay ~ LSfactor  , de4s)) 

summary(lm(Clay ~ Slope  , de4s)) 

summary(lm(Clay ~ TopographicWetnessIndex, de4s)) 

summary(lm(Clay ~ ValleyDepth            , de4s)) 
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plot(Clay ~ CrossSectionalCurvature, de4s) 

 abline(lm(Clay ~ CrossSectionalCurvature, de4s)) 

plot(Clay ~ Aspect, de4s) 

 abline(lm(Clay ~ Aspect, de4s)) # land only faces west and north. I'm not sure that I can explain this so 
I'm not going to include it.  

plot(Clay ~ ConvergenceIndex, de4s) 

 abline(lm(Clay ~ ConvergenceIndex, de4s)) 

# Together neither are significant. I'm going to use CrossSectionalCurvature as it has highest R2 value. 

summary(lm(Clay ~ CrossSectionalCurvature+ConvergenceIndex, de4s)) 

# Check for Anisotropy. 120 seems best 

plot(variogram(Clay ~ CrossSectionalCurvature, de4s, alpha = c(105, 120, 135, 155, 180))) 

# h-scatterplots. Strongly correlated to ~ 90 m.  

hscat(Clay ~ CrossSectionalCurvature, data = de4s, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) 

# Empirical (experimental or sample) variogram. Leaving out longitudinalCurvature increases RMSE by ~ 
0.4 so I left it in.   

cvg4 <- variogram(Clay ~ CrossSectionalCurvature, de4s, alpha=135) 

plot(cvg4, plot.nu = FALSE) 

cvg4 

# Variogram modeling. The exponential model doesn't converge, but the values are realistic and stable 
(even with different values) so I will include the model.  

cvgm4.s <- fit.variogram(object=cvg4, model = vgm(nugget = 0.5, psill = 1, range= 100, model = 'Sph')) 

cvgm4.c <- fit.variogram(object=cvg4, model = vgm(nugget = 0.5, psill = 1, range= 100, model = 'Cir')) 

cvgm4.e <- fit.variogram(object=cvg4, model = vgm(nugget = 0.5, psill = 1, range= 100, model = 'Exp')) 

plot(cvg4, cvgm4.s, pch = 19) 

plot(cvg4, cvgm4.c, pch = 19) 
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plot(cvg4, cvgm4.e, pch = 19) 

cvgm4.s 

cvgm4.c 

cvgm4.e 

# Leave-one-out cross validation 

ccv4.s = krige.cv(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.s) 

ccv4.c = krige.cv(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.c) 

ccv4.e = krige.cv(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(ccv4.s$residual) # 0.008 

mean(ccv4.c$residual) # 0.009 

mean(ccv4.e$residual) # -0.004 

# MSE. Mean squared error  

mean(ccv4.s$residual^2) # 2.36 

mean(ccv4.c$residual^2) # 2.33 

mean(ccv4.e$residual^2) # 2.37 

# RMSE (take the square root to get units in original units) 

sqrt(mean(ccv4.s$residual^2)) # 1.54 

sqrt(mean(ccv4.c$residual^2)) # 1.53 

sqrt(mean(ccv4.e$residual^2)) # 1.54 

# What is the spatial distribution of the residuals? 

bubble(ccv4.s, "residual", main = "Clay 30-60 cm Spherical") 

bubble(ccv4.c, "residual", main = "Clay 30-60 cm Circular") 

bubble(ccv4.e, "residual", main = "Clay 30-60 cm Exponential") 



# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

ck4.s <- krige(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.s, newdata = sgdf) 

ck4.c <- krige(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.c, newdata = sgdf) 

ck4.e <- krige(Clay ~ CrossSectionalCurvature, de4s, model = cvgm4.e, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

ck4.s %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Spherical') + theme_bw() 

ck4.c %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Circular') + theme_bw() 

ck4.e %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,3)) + ggtitle('Exponential') + theme_bw() 

# I'm choosing circular as this has the lowest RMSE and largest range. 

#--------------------------------------------------------------------------- 

# Notes:  

# On singular model fits: If your variogram turns out to be a flat, horizontal or sloping line, then fitting a 
three-parameter model such as the exponential or spherical with nugget is a bit heavy: there's an infinite 
number of possible combinations of sill and range (both very large) to fit to a sloping line. In this case, the 
returned, singular model may still be useful: just try and plot it. Gstat converges when the parameter values 
stabilize, and this may not be the case. Another case of singular model fit happens when a model that 
reaches the sill (such as the spherical) is fit with a nugget, and the range parameter starts, or converges to a 
value smaller than the distance of the second sample variogram estimate. In this case, again, an infinite 
number of possibilities occur essentially for fitting a line through a single (first sample variogram) point. 
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In both cases, fixing one or more of the variogram model parameters may help you out (from fit.variogram 
notes: https://cran.r-project.org/web/packages/gstat/gstat.pdf) 

# 5 Plotting kriging maps.  

#Code modified from https://rpubs.com/nabilabd/118172 

#Load libraries here so they don't mess with other packages 

library(ggplot2) 

library(dplyr) 

#Sand  

# Convert variance into standard deviation 

sk1.c$SD <- sqrt(sk1.c$var1.var) 

sk2.c$SD <- sqrt(sk2.c$var1.var) 

sk3.c$SD <- sqrt(sk3.c$var1.var) 

sk4.s$SD <- sqrt(sk4.s$var1.var) 

# Give better names 

names(sk1.c)[1] <- 'Sand' 

names(sk2.c)[1] <- 'Sand' 

names(sk3.c)[1] <- 'Sand' 

names(sk4.s)[1] <- 'Sand' 

# Reproject and rename kriging SpatialGridDataFrame for better plotting 

library(plotKML) 

sk1_ll <- reproject(sk1.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

sk2_ll <- reproject(sk2.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

sk3_ll <- reproject(sk3.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

sk4_ll <- reproject(sk4.s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))
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# Create dataframe to plot points on figures 

# How do I put popints on plot 

d1_ll <- spTransform(d1, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

d1_ll_df <- as.data.frame(d1_ll)

d1s_ll<- spTransform(d1s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

d1s_ll_df <- as.data.frame(d1s_ll)

d2s_ll<- spTransform(d2s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

d2s_ll_df <- as.data.frame(d2s_ll)

d3s_ll<- spTransform(d3s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

d3s_ll_df <- as.data.frame(d3s_ll)

d4s_ll<- spTransform(d4s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

d4s_ll_df <- as.data.frame(d4s_ll)

# Mean prediction 

sk1_ll %>% as.data.frame %>% 

  ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Sand)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(35,85)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "A") + 

  ggtitle('0-5 cm') +  

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_0_5_mean.png", width=6, height=3, unit='in') 

sk2_ll %>% as.data.frame %>% 

  ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Sand)) + coord_equal() + 
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 scale_fill_gradient(low = "yellow", high="red", limits = c(35,85)) + 

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "C") + 

  ggtitle('5-15 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_5_15_mean.png", width=6, height=3, unit='in') 

sk3_ll %>% as.data.frame %>% 

  ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Sand)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(35,85)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "E") + 

  ggtitle('15-30 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_15_30_mean.png", width=6, height=3, unit='in') 

sk4_ll %>% as.data.frame %>% 

  ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Sand)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(35,85)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "G") + 

  ggtitle('30-60 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_30_60_mean.png", width=6, height=3, unit='in') 

# Standard deviation 

sk1_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 



171 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,10)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "B") + 

  geom_point(data = d1_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('0-5 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_0_5_sd.png", width=6, height=3, unit='in') 

sk2_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,10)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "D") + 

  geom_point(data = d1_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('5-15 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_5_15_sd.png", width=6, height=3, unit='in') 

sk3_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,10)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "F") + 

  geom_point(data = d1_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('15-30 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_15_30_sd.png", width=6, height=3, unit='in') 
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sk4_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,10)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "H") + 

  geom_point(data = d4s_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('30-60 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Sand_30_60_sd.png", width=6, height=3, unit='in') 

# Clay 

ck1.c$SD <- sqrt(ck1.c$var1.var) 

ck2.s$SD <- sqrt(ck2.s$var1.var) 

ck3.c$SD <- sqrt(ck3.c$var1.var) 

ck4.c$SD <- sqrt(ck4.c$var1.var) 

# Give better names 

names(ck1.c)[1] <- 'Clay' 

names(ck2.s)[1] <- 'Clay' 

names(ck3.c)[1] <- 'Clay' 

names(ck4.c)[1] <- 'Clay' 

# Reproject and rename kriging SpatialGridDataFrame for better plotting 

ck1_ll <- reproject(ck1.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

ck2_ll <- reproject(ck2.s, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

ck3_ll <- reproject(ck3.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))

ck4_ll <- reproject(ck4.c, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
+towgs84=0,0,0'))
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# Mean prediction 

ck1_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Clay)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,16)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "A") + 

  ggtitle('0-5 cm') +  

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_0_5_mean.png", width=6, height=3, unit='in') 

ck2_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Clay)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,16)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "C") + 

  ggtitle('5-15 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_5_15_mean.png", width=6, height=3, unit='in') 

ck3_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Clay)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,16)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "E") + 

  ggtitle('15-30 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_15_30_mean.png", width=6, height=3, unit='in') 
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ck4_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Clay)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,16)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "G") + 

  ggtitle('30-60 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_30_60_mean.png", width=6, height=3, unit='in') 

# Standard deviation 

ck1_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,5)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "B") + 

  geom_point(data = d1s_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('0-5 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_0_5_sd.png", width=6, height=3, unit='in') 

ck2_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,5)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "D") + 

  geom_point(data = d2s_ll_df, aes(x=Easting, y = Northing)) + 
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  ggtitle('5-15 cm') + 

  theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_5_15_sd.png", width=6, height=3, unit='in') 

ck3_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,5)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "F") + 

  geom_point(data = d3s_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('15-30 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_15_30_sd.png", width=6, height=3, unit='in') 

ck4_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(0,5)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "H") + 

  geom_point(data = d4s_ll_df, aes(x=Easting, y = Northing)) + 

  ggtitle('30-60 cm') + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Clay_30_60_sd.png", width=6, height=3, unit='in') 

# 6 Tables 
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#Soil Survey Data (obtained from the White Sands Soil Survey by downloading the survey from 
WebSoilSurvey, opening the .mdb file and adding the tabular data, opening the component table and finding 
the chutum/dona ana complex component keys, then opening the horizon table and finding the component 
key. I then copied and pasted this data into excel (I had to do a bit of re-aranging to get the horizons right 
by depth). 

ssd <- readWorkbook("./SoilData/physicalprop_chorion.xlsx", rows=c(1:10), cols = c(2,4:16)) 

#Convert to SPC and convert to standard depth intervals.   

depths(ssd) <- Component.Key ~ top + bottom 

# Global soil map standard depth intervals: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100, & 100-200 cm. 
The following code modified from: https://ncss-tech.github.io/AQP/aqp/aqp-intro.html. However, many of 
these soils are < 100 cm deep. Because I have so few samples, I am only going to map soil texture to 60 
cm.  

# Use the slice and slab functions in AQP to average over these depths 

ssd.pc <- aqp::slice(ssd, fm=0:100 ~total.sand.low +  

      total.sand.rv + 

      total.sand.high + 

 total.silt.low + 

 total.silt.rv + 

 total.silt.high + 

      total.clay.low + 

      total.clay.rv + 

      total.clay.high) 

# Subset to GSM depths and calculate weighted mean values (I'm pretty sure that this does a weighted 
mean).  

gsm.depths <- c(0, 5, 15, 30, 60, 100) 

ssd.gsm <- slab(ssd.pc, fm=Component.Key ~total.sand.low + 

    total.sand.rv + 

    total.sand.high + 

 total.silt.low + 

 total.silt.rv + 

    total.silt.high + 

 total.clay.low + 



177 

    total.clay.rv + 

 total.clay.high,slab.structure = gsm.depths, slab.fun = median, na.rm=TRUE) 

# Reshape to wide format, convert to SPC, and make new hz names 

ssd.d2 <- dcast(ssd.gsm, Component.Key + top + bottom ~ variable, value.var = 'value') 

depths(ssd.d2) <- Component.Key ~ top + bottom 

ssd.d2$hzname <- profileApply(ssd.d2, function(i) {paste0('GSM-', 1:nrow(i))}) 

# Copy and paste the following into an excel spreadsheet, calculate weighted average from the proportions 
of components in the map unit, and reformat to make publication quality.  

ssd.d2@horizons 

# Table 2 

tab2a <- data.frame(cbind(rep('Sand', 4), 

  rbind('0-5', 

  '5-15', 

  '15-30', 

  '30-60'), 

   rbind(length(d1), 

   length(d2), 

   length(d3), 

   length(d4)), 

 rbind(summary(d1$Sand), 

    summary(d2$Sand), 

    summary(d3$Sand), 

    summary(d4$Sand)), 

      rbind(sd(d1$Sand), 

      sd(d2$Sand), 

      sd(d3$Sand), 

      sd(d4$Sand)))) 
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names(tab2a)[10] <- 'SD'           

tab2b <- data.frame(cbind(rep('Clay', 4), 

    rbind('0-5', 

  '5-15', 

  '15-30', 

  '30-60'), 

    rbind(length(d1), 

  length(d2), 

  length(d3), 

  length(d4)), 

    rbind(summary(d1$Clay), 

  summary(d2$Clay), 

  summary(d3$Clay), 

  summary(d4$Clay)), 

    rbind(sd(d1$Clay), 

  sd(d2$Clay), 

  sd(d3$Clay), 

 sd(d4$Clay)))) 

names(tab2b)[10] <- 'SD' 

# Table 3 

tab3a <- data.frame(cbind( 

 rbind((as.character(svgm1.c$model)[2]), 

 (as.character(svgm2.c$model)[2]), 

 (as.character(svgm3.c$model)[2]), 

 (as.character(svgm4.s$model)[2])), 

 rbind(sqrt(mean(scv1.c$residual^2)), 
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  sqrt(mean(scv2.c$residual^2)), 

  sqrt(mean(scv3.c$residual^2)), 

 sqrt(mean(scv4.s$residual^2))), 

      rbind(svgm1.c$range[2], 

    svgm2.c$range[2], 

    svgm3.c$range[2], 

    svgm4.s$range[2]), 

        rbind(svgm1.c$psill, 

 svgm2.c$psill, 

 svgm3.c$psill, 

 svgm4.s$psill))) 

names(tab3a) <- c('model', 'rmse', 'range', 'nugget', 'sill') 

tab3b <- data.frame(cbind( 

 rbind((as.character(cvgm1.c$model)[2]), 

 (as.character(cvgm2.s$model)[2]), 

 (as.character(cvgm3.c$model)[2]), 

 (as.character(cvgm4.c$model)[2])), 

 rbind(sqrt(mean(ccv1.c$residual^2)), 

  sqrt(mean(ccv2.s$residual^2)), 

  sqrt(mean(ccv3.c$residual^2)), 

 sqrt(mean(ccv4.c$residual^2))), 

      rbind(cvgm1.c$range[2], 

    cvgm2.s$range[2], 

    cvgm3.c$range[2], 

    cvgm4.c$range[2]), 

        rbind(cvgm1.c$psill, 

 cvgm2.s$psill, 

 cvgm3.c$psill, 

 cvgm4.c$psill))) 
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# 7. Variogram plotting 

# Make nice variogram lines for plotting 

# sand 

s1line = variogramLine(svgm1.c, maxdist = max(svg1$dist)) 

s2line = variogramLine(svgm2.c, maxdist = max(svg2$dist)) 

s3line = variogramLine(svgm3.c, maxdist = max(svg3$dist)) 

s4line = variogramLine(svgm4.s, maxdist = max(svg4$dist)) 

# clay 

c1line = variogramLine(cvgm1.c, maxdist = max(cvg1$dist)) 

c2line = variogramLine(cvgm2.s, maxdist = max(cvg2$dist)) 

c3line = variogramLine(cvgm3.c, maxdist = max(cvg3$dist)) 

c4line = variogramLine(cvgm4.c, maxdist = max(cvg4$dist)) 

# Sand 

splot1 <- 

ggplot(svg1, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = s1line) +  

 ylim(c(0,80)) + 

  annotate("text", x = 75, y = 75, label = "Sand 0-5 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

splot2 <- 
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ggplot(svg2, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = s2line) +  

 ylim(c(0,80)) + 

  annotate("text", x = 75, y = 75, label = "Sand 5-15 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

splot3 <- 

ggplot(svg3, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = s3line) +  

 ylim(c(0,80)) + 

  annotate("text", x = 75, y = 75, label = "Sand 15-30 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

splot4 <- 

ggplot(svg4, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = s4line) +  

 ylim(c(0,80)) + 

  annotate("text", x = 75, y = 75, label = "Sand 30-60 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 
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# Clay 

cplot1 <- 

 ggplot(cvg1, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = c1line) +  

 ylim(c(0,10)) + 

  annotate("text", x = 75, y = 9.2, label = "Clay 0-5 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

cplot2 <- 

 ggplot(cvg2, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = c2line) +  

 ylim(c(0,10)) + 

  annotate("text", x = 75, y = 9.2, label = "Clay 5-15 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

cplot3 <- 

 ggplot(cvg3, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = c3line) +  
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 ylim(c(0,10)) + 

  annotate("text", x = 75, y = 9.2, label = "Clay 15-30 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

cplot4 <- 

 ggplot(cvg4, aes(x = dist, y = gamma)) + 

  geom_point() + 

 geom_line(data = c4line) +  

 ylim(c(0,10)) + 

  annotate("text", x = 75, y = 9.2, label = "Clay 30-60 cm") + 

 theme_bw() + 

 theme(axis.title.x=element_blank(),  

 axis.title.y=element_blank(),   

 axis.text=element_text(size=11)) 

# Arrange into one plot 

# sand 

sfig <- ggarrange(splot1, splot2, splot3, splot4, ncol = 2, nrow = 2) 

sfig <- annotate_figure(sfig, 

  bottom = text_grob("Distance (m)"), 

  left = text_grob("Semivariance", rot = 90)) 

ggsave(sfig, filename="Fig3.png") 

# clay 

cfig <- ggarrange(cplot1, cplot2, cplot3, cplot4, ncol = 2, nrow = 2) 



cfig <- annotate_figure(cfig, 

  bottom = text_grob("Distance (m)"), 

  left = text_grob("Semivariance", rot = 90)) 

ggsave(cfig, filename="Fig4.png") 

# # X. Stochastic Simulations, i.e., equiprobable realizations of the variable that replicate the spatial 
characteristics found in the sample data. When all the simulated surfaces are assembled, they provide a 
distribution of values for each location in the study area. Models that well fit the data will have little 
variability between realizations. The nmax parameter results in local kriging, but without it, the command 
seems to go into an infinite loop.  

# 

# #Kriging is a deterministic method whose function has a unique solution and does not attempt to represent 
the actual variability of the studied attribute. The smoothing property of any interpolation algorithm 
replaces local detail with a good average value; however, the geologist and reservoir engineer are more 
interested in finer-scaled details of reservoir heterogeneity than in a map of local estimates of the mean 
value. Like the traditional deterministic approach, stochastic methods preserve hard data where known and 
soft data where informative. Unlike the deterministic approach, though, it provides geoscientists and 
reservoir engineers with many realizations. The kriged solution is the average of numerous realizations, 
and the variability in the different outcomes is a measure of uncertainty at any location. Thus, the standard 
deviation of all values simulated at each grid node is the quantification of uncertainty.[2] [3] 
http://petrowiki.org/Geostatistical_conditional_simulation 

# I decided against stochastic simulation as I was more interested in getting a good prediction than in 
assessing local variability because kriging is twice as good at estimation as is stochastic simulation (Webster 
and Oliver, 2007, Geostats for Env. Sci, pg. 271) and because the standard deviation of the simulation was 
often > 100.  

#0-5 cm 

set.seed(4801) 

sSS1 <- krige(Sand ~ DEM_5_utm, de1, model = svgm1.c, newdata = sgdf, nsim=100, nmax = 67) 

#5-15 cm 

set.seed(4801) 

sSS2 <- krige(Sand ~ DEM_5_utm, de2, model = svgm2.c, newdata = sgdf, nsim=100, nmax = 67) 

#15-30 cm 
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set.seed(4801) 

sSS3 <- krige(Sand ~ TopographicWetnessIndex, de3, model = svgm3.e, newdata = sgdf, nsim=100, nmax 
= 67) 

#30-60 cm 

set.seed(4801) 

sSS4 <- krige(Sand ~ DEM_5_utm+LongitudinalCurvature, de4, model = svgm4.s, newdata = sgdf, 
nsim=100, nmax = 67) 

# Convert simulations to raster brick 

sSS1 <- brick(sSS1) 

sSS2 <- brick(sSS2) 

sSS3 <- brick(sSS3) 

sSS4 <- brick(sSS4) 

# Calculate mean and standard deviation of soil depth 

s1.m <- calc(sSS1, mean) 

s2.m <- calc(sSS2, mean) 

s3.m <- calc(sSS3, mean) 

s4.m <- calc(sSS4, mean) 

s1.sd <- calc(sSS1, sd) 

s2.sd <- calc(sSS2, sd) 

s3.sd <- calc(sSS3, sd) 

s4.sd <- calc(sSS4, sd) 

par(mfrow = c(2,2)) 

plot(s1.m) 

plot(s2.m) 

plot(s3.m) 

plot(s4.m) 
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plot(s1.sd) 

plot(s2.sd) 

plot(s3.sd) 

plot(s4.sd) 

# Clay 

set.seed(4801) 

cSS1.c <- krige(Clay ~ ValleyDepth, de1s, model = cvgm1.s, newdata = sgdf, nsim=100, nmax=60) 

cSS1.s <- krige(Clay ~ x, de1s, model = x, newdata = sgdf, nsim=100, nmax=60) 

cSS1.c <- krige(Clay ~ x, de1s, model = x, newdata = sgdf, nsim=100, nmax=60) 

cSS1.c <- krige(Clay ~ x, de1s, model = x, newdata = sgdf, nsim=100, nmax=60) 

# Convert simulations to raster brick 

cSS1.r.s <- brick(cSS1.s) 

# Calculate mean and standard deviation of soil depth 

c1.s.m <- calc(cSS1.r.s, mean) 

c1.s.sd <- calc(cSS1.r.s, sd) 

par(mfrow = c(1,2)) 

plot(c1.s.m) 

plot(c1.s.sd) 



187 

APPENDIX E CODE USED FOR GEOSTATISTICAL MODELING OF SOIL DEPTH 
R code used for geostatistical modeling of soil depth 

# Geostatistical modeling of soil depth in the the Tromble Weir Watershed 

# Colby Brungard, PhD 

# Load libraries 

library(aqp) 

library(sp) 

library(rgdal) 

library(raster) 

library(gstat) 

library(dplyr) 

library(ggplot2) 

# Set working directory 

setwd("D:/Tromble Weir") 

#1. Data preprocessing 

# read in and check data 

dat <- read.csv("./Mikayla Data/R_Pit_Data_cwb.csv") 

sdat <- read.csv("./Mikayla Data/R_Pit_Site_Data.csv") 

head(dat) 

# Convert to SPC 

depths(dat) <- Pedon.ID ~ HZ.Top + HZ.Bottom 

site(dat) <- sdat 

# Create depth variable 

dat$depth <- profileApply(dat, FUN = max) 

# Convert site data to spatialpointsdataframe for further analysis 



dsp1 <- dat@site 

coordinates(dsp1) <- ~ Longitude + Latitude 

proj4string(dsp1) <- '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs' 

# Reproject 
dsp <- spTransform(dsp1, CRS('+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m 
+no_defs'))

# Write to file for visulization in gis 

# writeOGR(dsp, "./Mikayla Data", "SoilDepthObservations", driver = "ESRI Shapefile") 

# Points 3 and 37 were located outside of the study area. Remove them 

dsp <- dsp[dsp$Pedon.ID != 3 & dsp$Pedon.ID != 38,] 

# Remove dsp1 so I'm not confused 

rm(dsp1) 

# Read in the study boundary and plot points over it 

sarea2 <- readOGR(dsn = "./SoilData/spatial", layer = "SoilMU26") 

sarea <- spTransform(sarea2, projection(dsp)) 

plot(sarea) 

points(dsp, pch = 19, col = 'blue') 

#2 Exploratory data analysis 

summary(dsp$depth)  

sd(dsp$depth) # 1919 

# Histogram 
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hist(dsp$depth, col = "lightblue", border = "red", main = "Depth") 

rug(dsp$depth) 

 # This appears to be bi-modal distribution with soils <120 and >150 cm.  

 # I could separate these by depths, but it doesn't make a lot of sense to separate by depth 

# Does a log transform help? Somewhat, I think, so I'll try it, but bimodal distribution is largest problem. 

dsp$ldepth <- log(dsp$depth) 

hist(dsp$ldepth, col = "grey", border = "red", main = 'Log (depth)') 

rug(dsp$ldepth) 

# No spatial patterns readily apparent 

bubble(obj = dsp, z = "depth", pch=1) 

bubble(obj = dsp, z = "ldepth", pch=1)  

# Look for outliers 

# sel = plot(variogram(depth ~ 1, dsp, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

#plot(sel, dsp) # No outliers readily apparent 

#2.1 Exploratory relationships with terrain variables 
# Load all rasters. Rasters created from 5m ifsar DEM using geoprocess_by_area.bat. See readme file in tw 
folder. 

brk <- do.call(brick, lapply(list.files(path = "./Terrain_derivatives/TD_5m", pattern = ".*tif", full.names = 
TRUE), raster)) 

# Reproject rasters to points (if needed) 
brk2 <- projectRaster(brk, crs="+proj=utm +zone=13 +ellps=GRS80 +datum=NAD83 +units=m +no_defs 
+towgs84=0,0,0")

# Mask to study area, then crop extent (significantly reduces processing time). 

studyarea <- readOGR("./NestedSampllingExample", "SoilMU26") 

brk3 <- mask(brk2, mask = studyarea) 

brk4 <- crop(brk3, studyarea) 
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# Extract covariate values 

ec <- raster::extract(brk4, y = dsp) 

# Kriging and gaussian simulation requires a very fine underlying grid on which to predict. 

# Use rasters to create prediction grid 

sgdf <- as(brk4, 'SpatialGridDataFrame') 

# Join covariate values to soil depth data 

dsp2 <- cbind(dsp, ec) 

# Plotting 

# This plot shows a somewhat linear relationship between depth and all variables except upslope curvature 
and topographic position index. It also shows a lot of co-linearity between covariates.  

scatterplotMatrix(as.data.frame(dsp2[,-1])) 

# Fit linear models between Sand and covariates 

# Significance only shows that the relationship is not-zero. 

#Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

summary(lm(depth ~ Aspect                 , dsp2))  

summary(lm(depth ~ ConvergenceIndex       , dsp2)) 

summary(lm(depth ~ CrossSectionalCurvature, dsp2)) 

summary(lm(depth ~ DEM_5_utm             , dsp2)) #** 0.1454 

summary(lm(depth ~ FlowAccumulation       , dsp2)) 

summary(lm(depth ~ LongitudinalCurvature  , dsp2)) 

summary(lm(depth ~ LSfactor         , dsp2)) 

summary(lm(depth ~ Slope  , dsp2)) 

summary(lm(depth ~ TopographicWetnessIndex, dsp2)) 

summary(lm(depth ~ ValleyDepth            , dsp2)) 

# Only elevation is significant. Not a very strong relationship, but I do need to account for this relationship. 
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# Check for Anisotropy 

plot(variogram(depth ~ 1, dsp, alpha = c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 140, 155, 180)))  

# Looks like a variogram at 120 degrees would be best so I'm going with this. 

# h-scatterplots 
hscat(depth ~ 1, data = dsp2, c(3, 9, 29, 88, 266, 800), variogram.alpha=120) # Most correlated at < 30m, 
maybe 88m.  

# Look for spatial outliers. One posible outlier, but I do not interpret this as a 'real' outlier as this is likely 
in the area next to the small drainage.  

# s1.sel = plot(variogram(depth ~ 1, dsp2, cloud = TRUE), col = 'blue', pch = 19, digitize = TRUE) 

# plot(s1.sel, dsp2) 

# Empirical (experimental or sample) variogram. 

dvg <- variogram(depth ~ DEM_5_utm, dsp2, alpha=120) 

plot(dvg) 

dvg 

#Variogram modeling 
#The experimental variogram is basically just two columns of numbers: distance and semivariance. To use 
this for predictions, we need to fit a model (like a regression line) to the variogram. Because the variogram 
modeling is a numerical optimization we need to provide starting values. psill is the partial sill, which is 
the sill-nugget. 

dvgm1.s <- fit.variogram(object=dvg, model = vgm(nugget = 400, psill = 1600, range= 300, model = 'Sph')) 

dvgm1.c <- fit.variogram(object=dvg, model = vgm(nugget = 400, psill = 1600, range= 300, model = 'Cir')) 

dvgm1.e <- fit.variogram(object=dvg, model = vgm(nugget = 400, psill = 1600, range= 300, model = 'Exp')) 

dvgm1.s 

dvgm1.c 

dvgm1.e 
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plot(dvg, dvgm1.s, pch = 19) 

plot(dvg, dvgm1.c, pch = 19) 

plot(dvg, dvgm1.e, pch = 19) 

# Leave-one-out cross validation 

dcv1.s = krige.cv(depth ~ DEM_5_utm, dsp2, model = dvgm1.s) 

dcv1.c = krige.cv(depth ~ DEM_5_utm, dsp2, model = dvgm1.c) 

dcv1.e = krige.cv(depth ~ DEM_5_utm, dsp2, model = dvgm1.e) 

# MPE. Mean prediction error (predicted-observed) = bias. Positive = under prediction, negative = over 
prediction  

mean(dcv1.s$residual) # -0.351 

mean(dcv1.c$residual) # -0.165 

mean(dcv1.e$residual) #  0.205 

# MSE. Mean squared error measures on average how different predictions are from observations. 

# The MSE will be small if the predicted responses are very close to the true responses, and will be large if 
for some of the observations, the predicted and true responses differ substantially (ISL sixth printing). 

mean(dcv1.s$residual^2) # 1418 

mean(dcv1.c$residual^2) # 1452 

mean(dcv1.e$residual^2) # 1753 

# RMSE (take the square root to get units in original units) 

sqrt(mean(dcv1.s$residual^2)) # 37.7 cm 

sqrt(mean(dcv1.c$residual^2)) # 38.1 

sqrt(mean(dcv1.e$residual^2)) # 41.9 

# The spherical model has the lowest RMSE, largest range, and lowest nugget so I choose spherical. Still it 
his hard to model soil depth. 

# What is the spatial distribution of the residuals? 
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bubble(dcv1.s, "residual", main = "Sand 0-5 cm Spherical") 

# Kriging + uncertainty. Because I use elevation as a covariate then this is Kriging with an External Drift, 
rather than universal kriging (which is only if I use the coordinates as variables).  

dk <- krige(depth ~ DEM_5_utm, dsp2, model = dvgm1.s, newdata = sgdf) 

# Plotting. sqrt(var1.var) returns the standard deviation rather than the variance. 

dk %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=sqrt(var1.var))) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(2,8)) + ggtitle('Spherical') + theme_bw() 

# 5 Plotting kriging maps for publication.  

# Convert variance into standard deviation 

dk$SD <- sqrt(dk$var1.var) 

# Give better names 

names(dk)[1] <- 'Depth' 

# Reproject and rename kriging SpatialGridDataFrame for better plotting 

library(plotKML) 

dk_ll <- reproject(dk, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0')) 

# Create dataframe to plot points on figures 

# How do I put points on plot? 

dsp2_ll <- spTransform(dsp2, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs 

+towgs84=0,0,0'))

dsp2_ll_df <- as.data.frame(dsp2_ll)
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# Mean prediction 

dk_ll %>% as.data.frame %>% 

  ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=Depth)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(30,150)) +  

 ylab("Latitude") + xlab("Longitude") +  

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "A") + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Depth_mean.png", width=6, height=3, unit='in') 

# Standard deviation 

dk_ll %>% as.data.frame %>% 

 ggplot(aes(x=s1, y=s2)) + geom_tile(aes(fill=SD)) + coord_equal() + 

 scale_fill_gradient(low = "yellow", high="red", limits = c(30,45)) + 

 ylab("Latitude") + xlab("Longitude") + 

 scale_x_continuous() + scale_y_continuous() + 

  annotate("text", x = -106.611, y = 32.589, label = "B") + 

 geom_point(data = dsp2_ll_df, aes(x=Longitude, y = Latitude)) + 

 theme_bw() 

ggsave("./GeostatisticalModeling/Figures/Depth_sd.png", width=6, height=3, unit='in') 

# Variogram model plotting 

# Make nice variogram lines for plotting 

dline = variogramLine(dvgm1.s, maxdist = max(dvg$dist)) 

dplot <- 

 ggplot(dvg, aes(x = dist, y = gamma)) + 

  geom_point() + 



  geom_line(data = dline) +  

  ylim(c(0,2500)) + 

 ylab('Semivariance') + 

 xlab('Distance (m)') + 

  annotate("text", x = 75, y = 2400, label = "Depth") + 

 theme_bw() + 

 theme(axis.text=element_text(size=13)) 

ggsave(dplot, filename="Fig5.png") 

# CONVERT spatialgriddataframe to raster and write to file. These are the predictions that could be used 
for ecohydrological modeling. 

dPred <- raster(dk) 

writeGDAL(dk, "test2.tif", band=1) 

writeRaster(d.sd, "./Predictions/SoilDepth_sd.tif") 

# 4. Build a sampling grid for stage II sampling.  

# The key result from this geostatistical analysis is the range of the ordinary variogram.  

d.vgm #range = 46m. So I need to sample at distances closer than this for better modeling.

TWW <- readOGR(dsn = "./Enriques Data", layer = "Watershed2_Dissolve")

#Buffer out a few meters to be able to sample surrounding areas. I chose the buffer distance iteratively so 
that I felt that I had enough points outside of the actual study area to make good predictions.   

TWWb <- buffer(TWW, width = 30) 

# Make a sampling grid and select only the points inside the study area 

grid <- makegrid(TWWb, cellsize = 45) #Cell size is 45m, < range of variogram. 

grid <- SpatialPointsDataFrame(coords=grid[,c(1,2)], data=grid, proj4string = CRS(proj4string(TWWb))) 

sampGrid <- grid[TWWb, ]   

# Plot   

plot(TWWb) 

points(sampGrid, pch = 19) 
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# Write to file 

# writeOGR(sampGrid, ".", "SoilDepthSamplePoints", driver = "ESRI Shapefile") 
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