USE OF THE *DRASTIC* MODEL TO EVALUATE GROUNDWATER POLLUTION SENSITIVITY FROM ON-SITE WASTEWATER SYSTEMS IN THE MESILLA BASIN

By

J. Steven Walker, GIS Primary Investigator Christopher Brown, NMSU Project Management Sam Fernald, NM WRRI Director

TECHNICAL COMPLETION REPORT

Account Number 606602

July 2015

New Mexico Water Resources Research Institute in cooperation with the Environmental Protection Agency, the Border Environment Cooperation Commission, & New Mexico State University

The research on which this report is based was supported in part through the Border Environment Cooperation Commission, the United States Environmental Protection Agency, the New Mexico Water Resources Research Institute, and New Mexico State University. Information regarding this "Project" is within the guidelines of the Border 2012 Program funded by the U.S. Environmental Protection Agency and administered by BECC.

DISCLAIMER

The purpose of the New Mexico Water Resources Research Institute (NM WRRI) technical reports is to provide a timely outlet for research results obtained on projects supported in whole or in part by the institute. Through these reports the NM WRRI promotes the free exchange of information and ideas and hopes to stimulate thoughtful discussions and actions that may lead to the resolution of water problems. Through peer review of draft reports, NM WRRI attempts to substantiate the accuracy of information contained within them. The views expressed within the reports are those of the authors and do not necessarily reflect those of NM WRRI, its reviewers, or the views and policies of the Department of the Interior, nor does the mention of trade names or commercial products constitute their endorsement by the United States government.

Although the tasks and activities set forth in this Technical Assistance Agreement have been funded in part by the U.S. EPA and the BECC, such tasks/activities do not necessarily reflect the policies, actions, or positions of the U.S. EPA and the BECC.

ACKNOWLEDGEMENTS

The New Mexico Water Resources Research Institute (NM WRRI) provided the facility, software, hardware, and other resources needed to perform the data analysis for this project. The United States Environmental Protection Agency Region 6 Border 2012 Program provided the funding for the project. Dr. John W. Hawley (New Mexico Bureau of Geology Emeritus Senior Environmental Geologist and Senior NM WRRI Hydrogeologist) provided invaluable knowledge and insight for this study through personal interviews, expert opinion, and hours of discussion about geology and mapping. Dr. Christopher P. Brown (Department Head, Geography Department, New Mexico State University) proposed and organized the project and kept it on track for completion. Along with Dr. Brown, Dr. Sam Fernald (Director, NM Water Resources Research Institute), Dr. Michaela Buenemann (Department of Geography, NMSU), Catherine Ortega Klett (Program Manager, NM WRRI), and Erin Ward (Director of Border Programs, NM WRRI) provided important editorial assistance for this paper. The following students, staff, faculty, and experts provided guidance and insights helpful for completing the project and report.

Randy Carr, Spatial Applications and Research Center, NMSU

Heather Susana Glaze, formerly with New Mexico Water Resources Research Institute

Dr. Alfredo Granados-Olivas, Universidad Autónoma de Ciudad Juárez

Dr. John F. Kennedy, Caelum Research Corp.

Dr. J. Phillip King, Department of Civil Engineering, NMSU

Dennis McQuillan, New Mexico Environment Department, Water Quality Bureau

Dr. Curtis Monger, Department of Plant and Environmental Sciences, NMSU

Michael Montoya, New Mexico Environment Department Liquid Waste Program

Allen Paul, Spatial Applications and Research Center, NMSU

Dr. Theodore Sammis, Department of Plant and

Environmental Sciences, NMSU

Staff and faculty of the Department of Geography, NMSU

To all of these people and agencies, I offer my sincerest gratitude.

ABSTRACT

Groundwater contaminated by septic systems can have many undesirable impacts on both human and environmental quality of life. High concentrations of septic-system effluent that have reached groundwater without being fully treated at the environmental level can lead to harmful algal, bacterial, and chemical conditions in ground and surface water. Effluent exiting densely packed septic-system groups is a nonpoint source pollutant that travels underground, and detecting a source from high extraction concentrations is generally problematic. We have addressed this difficulty by adopting the DRASTIC model (a preliminary mapping system for hydrogeology components that govern groundwater pollution transmittance), modified to account for the unique geology of the Mesilla Basin, in an attempt to locate and map areas of high sensitivity to pollutants and cross reference them with areas of high septic-system density. The spatial variability of these areas of sensitivity and risk were used to determine appropriate venues for community outreach and septic-system training within the study area. The highest pollution sensitivity values occurred within the Rio Grande floodplain, where low depth to water values, high amount of recharge from agriculture, high hydraulic conductivities, and relatively flat sand and gravel hydrogeology are located. Groups of parcels with the highest risk values were dispersed around and up to 7.5 miles (12.1 km) outside of the floodplain, because septicsystem density combined with pollution sensitivity were above median values. Pollution risk from septic systems was found to increase as parcel size decreased. The DRASTIC model may underestimate sensitivity in arid areas and can be further improved for assessment of septicsystem pollution by adjusting for a pollutant that begins underground and is delivered with its own source of water.

Keywords: aquifer, *DRASTIC*, geographic information systems (GIS), groundwater, Mesilla Basin, pollution sensitivity, on-site wastewater systems

Dis	clain	ner	. ii
Ack	now	vledgements	iii
Abs	stract	t	iv
List	of 7	Tables	vii
List	of F	Figuresv	<i>'</i> iii
1.0		roduction	
		Project Overview	
		Water Resource Significance	
		On-Site Wastewater Management	
	1.4	Water Storage Contamination by Wastewater Deposit	. 3
	1.5	Choosing a Pollution Sensitivity Model	. 5
2.0		ıdy Area	
		Geographic Description	
		Demographic Description	
	2.3	Geology and Hydrogeology of the Area	. 9
2.0			
3.0		thodology	
		Data Collection and Storage	
	3.2	DRASTIC Pollution Sensitivity Model	
		3.2.1 Depth to Water Component (<i>D</i>)	
		3.2.2 Net Recharge Component (<i>R</i>)	
		3.2.3 Aquifer Media Component (<i>A</i>)	
		3.2.4 Soil Media Component (<i>S</i>)	
		3.2.5 Topography Component (<i>T</i>)	
		3.2.6 Impact of the Vadose Zone Component (<i>I</i>)	
		3.2.7 Hydraulic Conductivity Component (<i>C</i>)	
		3.2.8 DRASTIC Pollution Sensitivity Index (DRASTICi)	
	3.3	Pollution Risk Calculations	
		3.3.1 Area Weighted Mean <i>DRASTIC</i> Pollution Sensitivity Index (<i>DRASTICAWM</i>)	
		3.3.2 <i>DRASTIC</i> Parcel Pollution Risk: <i>DRASTIC</i> _{AWM} per Acre (<i>DRASTIC</i> _{PR})	29
10	Daa		21
4.0		sults DRASTIC Pollution Sensitivity Results	
	4.1	4.1.1 Depth to Water Index (D_i)	
		4.1.2 Net Recharge Index (R_i)	
		4.1.2 Act Recharge Index (R_i) 4.1.3 Aquifer Media Index (A_i)	
		4.1.5 Aquiter Wedia Index (<i>Ai</i>)	
		4.1.4 Son Media Index (S_i) 4.1.5 Topography Index (T_i)	
		4.1.5 Topography index (<i>Ti</i>)	
		4.1.0 Impact of vadose Zone Index (<i>ti</i>)	
		4.1.7 Hydraulic Conductivity Index (Ci)	
		τ_{110} DIASTIC I UTUUUTI SETSILIVILY ITUEX (DIASTIC)	+.)

	4.2 DRASTIC Pollution Risk Results	
	4.2.1 Area Weighted Mean DRASTIC Pollution Sensitivity Index (DRA	
	4.2.2 DRASTIC Parcel Pollution Risk: DRASTICAWM per Acre (DRASTI	,
	4.2.3 Parcel Groups with High <i>DRASTIC</i> Pollution Risk	· ·
5.0	Discussion and Conclusion	
	5.1 <i>DRASTIC</i> Model Predictions	
	5.2 <i>DRASTIC</i> Component Assumptions	
	5.3 <i>DRASTIC</i> Data Difficulties	
	5.4 Recommendations for Using the DRASTIC Model with Septic Systems	
	5.5 Conclusions	
6.0	References	58
AP]	PENDIX A. The DRASTIC Pollution Sensitivity Model	63
	A.1 Hydrogeological Settings and Assumptions.	
	A.2 Model Components	66
AP	PENDIX B. Miscellaneous Tables	73

LIST OF TABLES

Tables Section 3.0	Page
3-1: List of Unprocessed Vector Polygon Data Sources Used in Project	11
3-2: List of Unprocessed Vector Polyline Data Sources Used in Project	12
3-3: List of Unprocessed Raster and Tabular Data Sources Used in Project	12
3-4: Net Recharge Ratings, Weights, and Indices for 2006 USGS Land Use Codes	18
3-5: Surface Hydrogeology Rating System – Hydrostratigraphic Units	23
3-6: Surface Hydrogeology Rating System for Vadose Zone	26
3-7: Hydrogeology Rating System – Lithofacies Assemblages	27

Tables Section 4.0

31
33
35
37
39
11
13
15
18
50
51

Tables Appendix A

A-1: DRASTIC Depth to Water Component - Ranges, Ratings, and Indices	67
A-2: DRASTIC Net Recharge Component - Ranges, Ratings, and Indices	67
A-3: DRASTIC Aquifer Media Component - Ranges, Ratings, and Indices	69
A-4: DRASTIC Soil Media Component - Ranges, Ratings, and Indices	70
A-5: DRASTIC Topography Component - Ranges, Ratings, and Indices	70
A-6: DRASTIC Impact of the Vadose Zone Component - Ranges, Ratings, and Indices	71
A-7: DRASTIC Hydraulic Conductivity Component - Ranges, Ratings, and Indices	72

Tables Appendix B

B-1: Monitored Wells in Doña Ana and El Paso Counties	73
B-2: Soil Family Rating System Used in Project	85
B-3: Soil Series Rating System Used in Project	
B-4: Detailed Descriptions of Surface Hydrogeology Used in Project	
B-5: Hydrogeology Rating System Calculations for Lithofacies	
B-6: Hydrogeology Rating System Calculations for New Lithofacies Divisions	
B-7: Summary of Groundwater Production Potential for Lithofacies	
B-8: Pollution Risk Results Sent to New Mexico Environment Department	
-	

LIST OF FIGURES

Figures Section 2.0	Page
2-1: Study Area and Key Groundwater and Surface Features	8

Figures Section 3.0

3-1: Wells and Water Table Contours Used in Project	15
3-2: Three Dimensional Mesilla Basin DEM Used for Quality Assurance Test Two	17
3-3: ArcScene Quality Assurance Test Two Results	17
3-4: Transect Layer for Cross Sections Used in Project	20
3-5: Water Table (Depth to Water) at Cross Section EE'	21
3-6: Hand Digitized Layer of Hydrogeological Media at the Water Table	22
3-7: Determining Parcel Group Pollution Risk Using Sewage Proximity	30

Figures Section 4.0

4-1: Depth to Water Sensitivity Index (D _i) Locations for the Study Area	32
4-2: Net Recharge Sensitivity Index (<i>R_i</i>) Locations for the Study Area	
4-3: Aquifer Media Sensitivity Index (Ai) Locations for the Study Area	
4-4: Soil Media Sensitivity Index (Si) Locations for the Study Area	
4-5: Topography Sensitivity Index (<i>T_i</i>) Locations for the Study Area	40
4-6: Impact of Vadose Zone Sensitivity Index (<i>I</i> _i) Locations for the Study Area	42
4-7: Hydraulic Conductivity Sensitivity Index (Ci) Locations for the Study Area	44
4-8: DRASTIC Pollution Sensitivity Index (DRASTIC _i) Locations for the Study Area	
4-9: DRASTIC Pollution Risk (DRASTIC _{PR}) Locations for the Study Area	49
Figures Section 5.0	

<u> </u>		
5-1:	Correlation between Parcel Area and Parcel Pollution Risk	3

Figures Appendix A

A-1	: Interaction	and Location of DRASTIC Components	65

1.0 INTRODUCTION

1.1 PROJECT OVERVIEW

This technical report is a review of the geographic information system (GIS) methods used for the project "Examination of risk to groundwater from on-site wastewater management systems in Doña Ana County" (Brown 2014). The GIS methods used by the project involved the mapping and examination of the spatial variability of groundwater pollution sensitivity in the Mesilla Basin of southern New Mexico and northern Chihuahua, Mexico. The pollution sensitivity model that was used for this project is called DRASTIC (Aller et al. 1987). It is a model used as a standardized, preliminary system for mapping hydrogeology components (depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity) that govern groundwater pollution transmittance. The DRASTIC model used in the project was tailored to the unique hydrogeology of the area and incorporated with parcel areas as a proxy for septic-system density and pollutant quantity. The groups of parcels in the Mesilla Basin study area were then ranked according to the pollution 'risk' proxy, and septic-system training and community outreach services were conducted for parcel groups deemed to be at highest 'risk.' The project was part of a joint effort with the Border Environment Cooperation Commission (BECC), the U.S. Environmental Protection Agency Border 2012 Program, New Mexico Water Resources Research Institute, New Mexico State University, and the Universidad Autónoma de Ciudad Juárez for the improvement of water resources and human health along the United States-Mexico border.

1.2 WATER RESOURCE SIGNIFICANCE

Groundwater reservoirs are the most significant resources of fresh water in the planet's hydrologic cycle after glaciers and icecaps, which do not provide readily useable water. The total volume of readily available global groundwater has been estimated to be about 8.5 trillion acrefeet (10.5 million km³), compared to the 75 billion (92,500 km³) acrefeet stored in surface resources, such as lakes and streams (Shiklomanov 1993). In New Mexico, reservoirs of groundwater are also larger than reservoirs of surface water. Elephant Butte Reservoir is the largest body of surface water in New Mexico. At maximum capacity, Elephant Butte covers 35,825 acres (145 km²) and can hold 2,024,586 acrefeet (2.5 km³) of water (Ferrari 2008). The New Mexico Environment Department, Surface Water Quality Bureau (2012) reports that the

long-term (1971-2000) total annual stream flow for New Mexico averages over 5.7 million acrefeet (7 km³). Groundwater supplies throughout New Mexico are estimated to be 20 billion acrefeet (24,700 km³), with 4.4 billion (5,427 km³) being recoverable (NMED-SWQB 2012).

New Mexico residents rely heavily on groundwater for a number of activities-drinking and irrigation being the greatest by volume. Of the 3.82 million acre-feet (4.7 km³) of water withdrawn from the hydrologic system in New Mexico for the year 2010, about 1.77 million acrefeet (2.2 km³, 46.5%) came from groundwater and 1.67 million acre-feet (2.1 km³, 94.0%) of that amount was used for farming (agriculture and livestock) or domestic (public and drinking) use (Longworth et al. 2013). About 78% of New Mexico's 2.08 million residents depend on groundwater for their drinking water supplies (NMED-SWQB 2012). Groundwater is used to a slightly smaller degree than surface water in New Mexico, but during times of drought groundwater is used increasingly to compensate for shortages in surface-water supply (NMED-SWQB 2012). The capacity and quality of groundwater water in New Mexico has great significance. The New Mexico Water Resources Research Institute has provided support for many other projects concerned with groundwater in New Mexico. Several reports dealing with groundwater capacity and quality have been published just for the Mesilla Valley (Updegraff and Gelhar 1978; Bahr 1979; Sammis 1980; Lansford, Creel, and Seipei 1980; Peterson, Khaleel, and Hawley 1984; Creel et al. 1998; Kennedy 1999; Witcher et al. 2004; and Hawley and Kennedy 2004).

1.3 ON-SITE WASTEWATER MANAGEMENT

Many residents of New Mexico use some type of on-site wastewater management (septic) system to handle their wastewater disposal needs. The United States Census Bureau (2004) reported that out of the 825,540 housing units in New Mexico, 240,977 (29.2%) used some form of on-site wastewater system (advanced treatment, septic, cesspool, or privy). Septic systems are small, private, underground, and self-contained sewage treatment plants. Within most septic environments, systems receive sewage discharge from parcels they serve into a watertight receptacle that allows primary separation and anaerobic (oxygen free) digestion of most of the solid waste. A clarified liquid effluent is released and dispersed over a large patch of soil for secondary nutrient extraction and aerobic (oxygen using) digestion. Since the soil is part of the treatment system, almost all sewage treatment units discharge some amount of pollutants into the

environment (McCray et al. 2005).

Most on-site wastewater treatment systems are safe and appropriate for wastewater disposal as long as the conditions of the subsurface provide proper attenuation (McQuillan 2004; McQuillan, Brandt, and Beatty 2004; New Mexico Environment Department, Liquid Waste Program 2006; and NMED-SWQB 2012). Subsurface protection is reduced when systems are not designed properly (e.g., cesspits, straight pipe, hydraulic overload from water softeners), are not functioning properly (e.g., infrequent pumping schedule, root or fauna intrusion, clogged drain field), are in poor mitigation areas (e.g., low depth to water or bedrock, highly fractured, well sorted, unconsolidated), or are densely crowded together. These lead to a negative impact in groundwater quality. Regulations for the safe use of septic systems are dependent on space for the drain field, type of soil and its permeability, distance from other water sources (wells, streams, ponds, and groundwater), depth to bedrock or other impermeable media, size of the tank (chosen based on number of bedrooms or people using the system), and efficiency of the system.

Doña Ana County regulations require that homes and other facilities be removed from an on-site wastewater treatment system and connected to public sewage whenever a system line comes to or is within 300 feet (91 m) of a building (Peter J. Smith & Company, Inc. 2009). High septic-system densities in residential subdivisions with small lots can deposit increased concentrations of septic-system waste into groundwater resources, even if the systems are installed properly (McQuillan 2004; McCray et al. 2005). Septic systems installed on lots with sizes averaging as much as 0.84 acres (3,399 m²) have been found to cause groundwater contamination in New Mexico, and this has led to efforts to determine the effectiveness of regulations that limit the installation of certain septic systems on lots less than 0.75 acre (3,035 m²) (McQuillan, Brandt and Beatty 2004).

1.4 WATER STORAGE CONTAMINATION BY WASTEWATER DEPOSIT

The NMED-LWP (2006) reported that of the 1,250 contaminated public water supply systems tested in a New Mexico source-water assessment, more than half of the cases have been caused by nonpoint sources traced to septic systems. Nonpoint source pollution can come from a variety of other origins besides septic systems, such as: agriculture, grazing, construction, forest and flow alterations, industrial and municipal discharges, waste disposal, run-off, recreation, resource extraction, unpermitted spills and discharges, and natural deposition (NMED-SWQB

2012). However, "nonpoint sources of ground water pollution are predominantly household septic tanks or cesspools and are the major sources of contamination of New Mexico's ground water" (NMED-SWQB 2012, ix).

Groundwater contaminated by septic-system effluent can contain harmful concentrations of viruses, bacteria, amino acids, solvents, pharmaceuticals, water softening salts, chloride, and metals, however, nitrogen and phosphorus compounds cause the most common undesirable impacts on the quality of the environment (McQuillan 2004; McCray et al. 2005). Phosphate and nitrate levels can reach excessive concentrations in the groundwater if the soil below the septic system is overloaded (McCray et al. 2005). Most phosphate in wastewater is hydrolyzed to soluble orthophosphate (PO_4^{3-}) in septic tanks and may not precipitate out of solution before reaching groundwater. Phosphate in this form is the most hazardous to the environment because it is abundant and readily used in plant growth and biological metabolism (McCray et al. 2005). This has the effect of forming algae and cyanobacteria plumes in surface waters that can create anoxic conditions that kill aquatic life and make the water susceptible to high concentrations of chemical and biological contaminants such as iron, manganese, and other bacteria (McQuillan 2004; McCray et al. 2005).

High concentrations of nitrate in consumed groundwater can also cause anoxic conditions in humans and animals by oxidizing ferrous iron (Fe^{2+}) to ferric iron (Fe^{3+}) in the hemoglobin, which causes a condition called methemoglobinemia, also known as 'blue baby syndrome' (NMED-LWP 2006; Yang and Wang 2010; NMED-SWQB 2012). Due to this and other effects on human health and environmental quality, regulatory standards on nitrate concentrations are set at 10 milligrams per liter (McCray et al. 2005). Using this standard and those set for iron, manganese, chloride, para-dichlorobenzene, and methamphetamine chemicals, the New Mexico Environment Department Liquid Waste Program (2006) has identified 355 miles (571 km) of river and stream segments and 1356 acres (5.5 km²) of surface water in New Mexico that have been significantly impacted by nutrients that originated in septic systems.

Water quality standards and septic-system regulations are created to help prevent groundwater exposure from septic waste, but the standards are often put in place after the groundwater has already been compromised. Diagnostic parameters such as elevated chloride in groundwater have a positive correlation with nitrogenous septic waste in groundwater, because

calcium hypochlorite is an inexpensive and therefore often used water disinfectant for tap water, which exits septic systems and does not degrade quickly in the environment (McQuillan 2004; McCray et al. 2005). However, determining the actual source of high chloride or nitrogenous content is difficult, since the septic waste is one of many nonpoint sources (NMED-SWQB 2012). Discovering the cause of compromised groundwater is much more complex than discovering that water has been compromised. A more straightforward course of action would be to predict where groundwater could be compromised and devise a plan of prevention before water quality standards are compromised.

1.5 CHOOSING A POLLUTION SENSITIVITY MODEL

There are several different types of groundwater vulnerability assessment models available (Aller et al. 1987). Most of these models were built using data that the researchers were able to obtain easily and have relatively simple formulas compared to the processes that they model. Finding ways to model the complexities of the environment while keeping the model as concise and manageable as possible is a challenge that the *DRASTIC* model (Aller et al. 1987) performs well enough to attract many researchers. Since its inception, the *DRASTIC* model has been used in hundreds of studies around the world, despite its design for use in the United States. In addition to being used in a nationwide project to evaluate pesticide vulnerability, the model has been used in several states to determine vulnerabilities for several pollutants. A detailed account of the *DRASTIC* model is given below in Section 3.2, and it is further elaborated in appendix A.

Despite the number of users, the *DRASTIC* model does have a number of disadvantages. The major problem that has been brought up by researchers is the subjectivity of the rating determinations and scales it employs. Since many of the factors are chosen, as opposed to being measured, this system is much more qualitative than quantitative (Soller 1992; Napolitano and Fabbri 1996; Babiker et al. 2005; Panagopoulos, Antonakos and Lambrakis 2006; Yang and Wang 2010). Some doubts have also been expressed over the choice of some parameters and the exclusion of others. Rosen (1994) claims that many scientifically defined factors are not directly accounted for, such as sorption capacity, travel time, and dilution. When the final index is calculated, many parameters that are important about a particular setting are superseded by those that have no bearing on its vulnerability (Merchant 2010; Vbra and Zaporozec 1994). Gogu and Dassargues (2000) assert that once an index value is calculated, there is no process for

determining meaningful categories of vulnerability. Another disadvantage of the system is that accuracy testing is very difficult to carry out. Some researchers, such as Kalinski and others (1994); Secunda, Collin, and Melloul (1998); Rupert (2001); McLay and others (2001); and Worrall and Kolpin (2004), have tried to use statistical approaches to improve the quality of their *DRASTIC* groundwater vulnerability assessments. These researchers have attempted to correlate the final vulnerability values with contaminant parameters and measurements of land-use statistics. Some have met with success in testing accuracy, and others have noted the difficulty.

Beyond the drawbacks of the model, *DRASTIC* remains one of the most popular systems in use today because of its advantages. The use of the Delphi consensus method (a structured, iterative, questionnaire process that gathers expert opinions of correct answers), to obtain hydrogeological factors and their ratings and weights, provides the system with expert backing and structure (Aller et al. 1987). The number of hydrogeological factors and their interrelationship reduces the probability of overlooking important parameters, increases statistical accuracy, and provides a relatively good representation of the hydrogeological setting (Rosen 1994). The system also provides estimates for large regions with complex geological structures without the need for specialized methods, equipment, or data (Kalinski et al. 1994; McLay et al. 2001). Finally, the system is specifically designed to be a management tool that is inexpensive, simple to use, easy to understand, uses existing data, and is employable by a diverse collection of individuals with differing levels of expertise (Aller et al. 1987). Because of these advantageous features, it is the model adopted for use in the present study.

2.0 STUDY AREA

2.1 GEOGRAPHIC DESCRIPTION

The project covered the Mesilla Basin area in southern Doña Ana County, New Mexico; western El Paso County, Texas; and northern Chihuahua, Mexico (Figure 2-1). A main study area boundary was first created by digitizing a hand-drawn perimeter (personal interview with John W. Hawley by S. Walker on July 2, 2012) on a 1:24,000 scale surface hydrogeologic map (Hawley and Kennedy 2004). This area contained much of the cities of Las Cruces, New Mexico and El Paso, Texas and several small villages, towns, and colonias. Most of the wastewater systems in the main study area are located directly over shallow aquifers beneath the Mesilla drainage basin. The southern tip of the Jornada del Muerto Basin was included in the study area to determine the effects of dense clusters of wastewater systems on groundwater that flowed from it into the Mesilla Basin. This led to an expansion of the original boundaries to incorporate systems that could possibly have an effect on the aquifer. Septic systems located outside the boundaries of the main study area were grouped together into satellite study areas to observe the pollution sensitivity and possible effects that the systems may have in those areas. The satellite areas are found on the northern tip of the Mesilla Basin (Radium Springs), at the southern end of the Jornada del Muerto Basin (Jornada), west of Las Cruces on the West Mesa (Airport), east of Las Cruces on the piedmont slope of the Organ Mountains (Talavera), and Puerto de Anapra in Mexico (Anapra).

The main study area boundary encompasses 755,682 acres (1,181 mi², 3,058 km²), with 58,004 acres in Texas, 95,176 acres in Chihuahua, and 602,502 acres in New Mexico. The satellite areas total 161,871 acres, with 53,492 in Radium Springs, 55,492 in Jornada, 41,141 in Airport, 9,053 in Talavera, and 2,235 in Anapra. The main study area extends 62 miles (99 km) along the length of the Rio Grande from Leasburg Dam to El Paso del Norte and ranges from 3 miles (4.8 km) wide in the upper Mesilla Valley to nearly 30 miles (48.3 km) from East Potrillo to the Franklin Mountains.

2.2 DEMOGRAPHIC DESCRIPTION

The communities of Radium Springs, Doña Ana, Las Cruces, San Ysidro, Fairacres, Mesilla, San Pablo, Mesquite, San Miguel, La Mesa, Vado, Berino, Chamberino, Anthony (New Mexico and Texas), El Paso, Vinton, La Union, Canutillo, Santa Theresa, Sunland Park, and

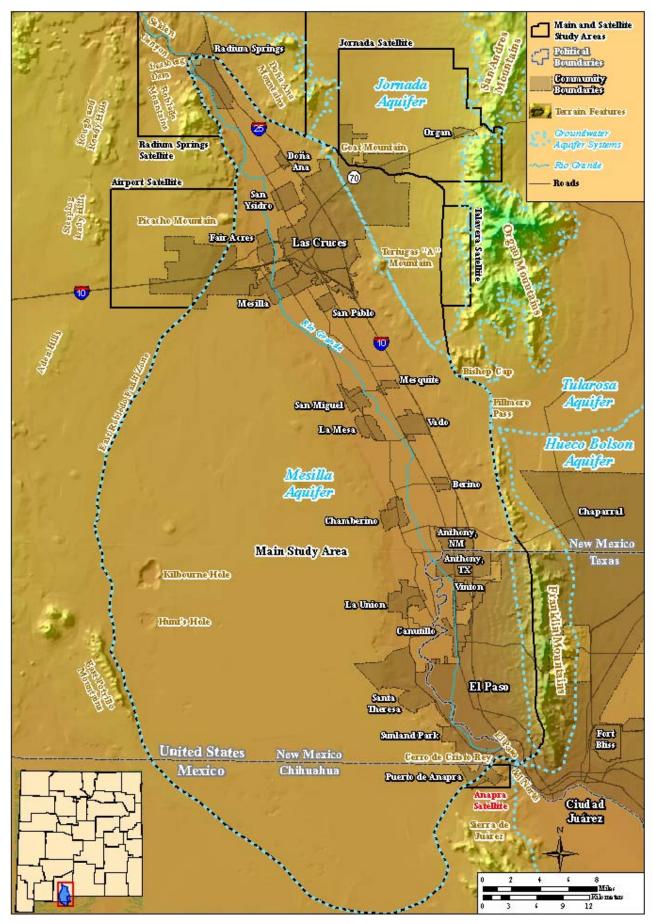


Figure 2-1: Study Area and Key Groundwater and Surface Features

Anapra are located in the main study area. The groundwater reservoir in this area supplies fresh water to over 400,000 people on both sides of the border (U.S. Census Bureau 2010; Instituto Nacional de Estadística y Geografía 2010). Of the 125,023 total parcels located in the study area, 114,822 (92% of total) are located within the main study area. 101,971 (81.6%) of the total parcels in the study area are over 0.1 acres [1 person low average = 50 gallons wastewater per day \div 500 gallons per day per acre minimum regulation (20.7.3 NMAC 2013)] and could possibly support a septic system. If the ratio of 29.2% of the homes in New Mexico supporting some type of septic system were applied to those parcels over 0.1 acres (405 m²), there could be up to 34,800 septic systems in the study area.

2.3 GEOLOGY AND HYDROGEOLOGY OF THE AREA

The Mesilla catchbasin is a low-relief, gravelly to fine-grained sand filled structure nearly completely surrounded by mountain uplifts of less than 9000 feet (2743 m) elevation. The geology and hydrogeology of the Mesilla Basin area listed briefly in the section below are described in depth by Seager and others (1987); Seager (1995); Collins and Raney (2000); and Hawley and Kennedy (2004). A majority of the highlands terrain are basement-cored, fault-block uplifts, capped by Paleozoic and Mesozoic (541 to 65 Ma) sedimentary and Lower Tertiary (65 to 23 Ma) volcanic rocks, lifted and tilted 2 to 23 million years ago (Ma) during the Upper Tertiary. The fault-block mountains and hills include the San Andres Mountains, Doña Ana Mountains, Robledo Mountains, Aden Hills, Sleeping Lady Hills, Goat Mountain, Picacho Peak, Tortugas 'A' Mountain, Bishop Cap, Franklin Mountains, East Potrillo Mountains, and Sierra de Juárez.

A buried bedrock ridge separates the Mesilla structural basin from the Jornada del Muerto basin. This small fault-block uplift stretches from the Doña Ana Mountains southeast to Bishop Cap at the southern end of the Organ Mountains. The structure was later buried under ancestral Rio Grande and piedmont alluvium with only Goat Mountain and Tortugas Mountain remaining above the surface. This structure has been named the Jornada Horst (Woodward and Meyers 1997). The East Potrillo and East Robledo Fault zones are other structural features that have been partly buried by piedmont alluvium, basin-floor sediment, and eolian sand. The Organ Mountains, Cerro de Cristo Rey, and East Potrillo Mountains are a combination of Paleozoic and Mesozoic sedimentary fault-block uplifts, Tertiary intrusive granite and andesite, and extrusive rhyolite, which formed during the Early to Middle Cenozoic Time (50 to 25 Ma). Kilbourne Hole and Hunt

Hole are two maar volcanic craters on the western edge of the basin. These volcanic eruptions, caused by groundwater coming into contact with magma, along with less explosive flows along the East Potrillo Mountains and in the central mesa, covered the basin-fill surface with a basalt layer between 24,000 to 80,000 years ago.

Prior to the cutting of Selden Canyon, the ancestral Rio Grande flowed southward from the Rincon area through gaps around the Robledo Mountains and between the Doña Ana and Organ Mountains and into the Mesilla Basin. As early as three million years ago, the basin was a closed system that merged southward into the floor of the Bolson de Los Muertos in Chihuahua (Hawley, Kennedy and Creel 2001). The Rio Grande led to a deltaic distributary system that deposited basin fill into a set of basin lakes called Lake Cabeza de Vaca. At this time the Tularosa and Hueco basins to the east of the San Andres-Organ-Franklin Mountain chain were also being filled with an interbasin connection through Fillmore Pass (Gile, Hawley and Grossman 1981; Hawley 1986; Frenzel and Kaehler 1992). Ancient basin fill of the Mesilla Basin exists today on the flat area to the west of the Mesilla Valley called West Mesa. The Mesilla Valley itself has been cut below the West Mesa surface by the ancestral Rio Grande during the past 700,000 years (Gile, Hawley and Grossman 1981; Hawley 1986). The inner Mesilla Valley has since gone through stages of cutting and aggradation to form the river floodplain seen today (Hawley 1975).

The subsurface of the Mesilla Basin is composed primarily of the strata of the Upper Cenozoic Santa Fe Group. This material is primarily made up of fluvial and lacustrine sediment initially derived from local uplands transported by the ancestral Rio Grande. Beneath the central West Mesa area, Santa Fe Group deposits are between 1,500 and 2,500 feet (457-762 m) thick. The Santa Fe Group is informally subdivided into three litho-/hydro-stratigraphic units based on their sedimentary properties and relative age. The lower Santa Fe Group was laid down from around 25 to 10 Ma as coarse-grained alluvial fan deposits that grade to fine-grained, basin-floor sediment. Eolian sands, as thick as 600 feet (183 m) deep, are inter-bedded with piedmont deposits at the basin's eastern edge. The middle Santa Fe Group was laid down between 10 to 4 Ma, when tectonism in the area was most active, resulting in the greatest rates of uplift and erosion. The aggradation of the upper Santa Fe Group continued from 4 to 0.7 Ma and includes thick sequences of ancestral Rio Grande fluvial deposits dominated by sand and gravel. The inner valley is filled with as much as 100 feet (30 m) of channel and floodplain deposits that grade to valley-border alluvium primarily derived from erosion of Santa Fe Group basin-fill.

3.0 METHODOLOGY

3.1 DATA COLLECTION AND STORAGE

All data were acquired from public sources. Most raw data were vector shapefiles, with two raster images collected for land cover and topography of the study area and a tabular collection of wells for water depth. The raster and tabular data were converted to shapefiles for manipulation. All data manipulation was performed using ArcGIS 10.0 for Desktop (SP1), ArcGIS 3D Analyst (ArcScene), and Microsoft Excel (2010). All data were imported into a file geodatabase for final organization, compilation, and compression. Lists for each of the groupings of unprocessed data collected for the project are found in tables 3-1, 3-2, and 3-3 below.

Item	Source Data Source		Scale	Year
Boundaries				
New Mexico Counties	tl 2010 35 cousub10.shp	U.S. Department of Commerce, U.S.	1:24,000	2010
Texas Counties	tl 2010 48 cousub.shp	Census Bureau, Geography Division		
New Mexico Cities	tl 2010 35 place10.shp			
Texas Cities	tl 2010 48 place10.shp			
Mexico Cities	poligono de anapra.shp	Universidad Autónoma de Cuidad Juárez, Dr. Alfredo Granados-Olivas	1:24,000?	2012
Aquifer Study Area	MesillaAquifer.shp	Hand drawn by John W. Hawley on December 15, on Mesilla Surface Geologic Map 57 (below)	1:24,000	2012
Land Use / Land Cover I	Data			
Mexico Land Use	uso de suelo.shp	Universidad Autónoma de Cuidad Juárez, Dr. Alfredo Granados-Olivas	1:250,000	2012
Surface Geology				
U.S. Mesilla Geology	geology.shp	Geologic Map 57 (Seager et al. 1987)	1:100,000	1987
Mexico Geology	geologia.shp	Universidad Autónoma de Cuidad Juárez, Dr. Alfredo Granados-Olivas	1:250,000	2012
SSURGO Soil Coverage	Data	•		
New Mexico Soils	soilmu a nm690.shp	United States Department of Agriculture,	1:24,000	2008
White Sands Soils	soilmu a nm719.shp	Natural Resources Conservation Service		2009
Texas Soils	soilmu_a_tx624.shp			2009
Cadastral Parcel Data				
Doña Ana County	DAC_Parcel.shp	Doña Ana County Assessor	Unknown	2012
El Paso County	EPC_Parcels.shp	Paso del Norte Mapa (www.pdnmapa .org, accessed on 02/23/2013)	Unknown	2012
Anapra, Chihuahua, Mexico	anapra-surponienteb.shp	Universidad Autónoma de Cuidad Juárez, Dr. Alfredo Granados-Olivas	1:24,000?	2013
Sewer Service Area Loca	ition			
Las Cruces Service Area	DAC_LasCrucesWW_Service. shp	Las Cruces Utilities, Waste Water Division (Received from NMSU SPaRC Laboratory on 06/13/2013)	Unknown	2013
El Paso, Haskell Service El Paso, Northwest Service	EPC_EPWU_Haskell.shp EPC_EPWU_Northwest.shp	El Paso Water Utilities (Received from NMSU SPaRC Laboratory on 06/13/2013)	Unknown	2013

 Table 3-1: List of Unprocessed Vector Polygon Data Sources Used in Project

Item	Source Data	Source	Scale	Year
Roads				
New Mexico	tl 2010 35 prisecroads.shp	U.S. Department of Commerce, U.S.	1:24,000	2010
Texas	tl_2010_48_prisecroads.shp	Census Bureau, Geography Division		
Rivers				
Rio Grande	NHD13030102.mdb	United States Geological Survey,	1:24,000	2010
		National Hydrology Dataset		
Subsurface Geological S	tructures			
Mesilla Faults	sffault.shp	WRRI Technical Completion Report No.	1:24,000	2004
Mesilla Bedrock	sfbase.shp	332, (Hawley and Kennedy 2004)		
Hydrogeology Cross-Sec	ction Reference			
Transects	xsecs_2011.shp	(Hawley and Kennedy 2004), updated	1:24,000	2011
Sewer Line Location				
Las Cruces City Sewer	CLC WW PipesGeneral.shp	Las Cruces Utilities, Waste Water	Unknown	2006
Lines		Division		
Doña Ana County	Wastewater_Lines.shp	Doña Ana County, GIS Department	Unknown	2010
Sewer Lines				

Table 3-2: List of Unprocessed Vector Polyline Data Sources Used in Project

Item	Source Data	Source	Scale	Year			
Land Use / Land Cover I	Land Use / Land Cover Data						
National Land Cover Dataset	nlcd2006_landcover_4-20-11 .img	United States Geological Survey, National Land Cover Dataset	30-meter	2006			
10-meter Digital Elevation	on Model						
Study Area DEM	6 DEMs, split by the USGS, of the Mesilla Basin area between coordinates: - 107.361 x 32.512, -106.261 x 32.512, -107.361 x 31.603, and -106.261 x 31.603	United States Geological Survey	1/3 arc second (10-m)	2009			
Well Data							
Doña Ana & El Paso Counties	Selected USGS and Hawley and Kennedy Wells Throughout Doña Ana and El Paso Counties (Table B-1)	waterdata.usgs.gov/nwis/gw (USGS) and WRRI Technical Completion Report No. 332 (Hawley and Kennedy 2004)	1:24,000	2012 & 2004			

3.2 DRASTIC POLLUTION SENSITIVITY MODEL

DRASTIC is a pollution sensitivity mapping model that focuses on seven hydrogeology factors (components) that govern pollution transmittance to groundwater (Aller et al. 1987). A ranking scheme determines the pollution potential of each component (component's pollution index) and overlays them for all areas of a study site. When the pollution indices for each component surface are added together, this creates the composite *DRASTIC* pollution sensitivity index. This describes an area's sensitivity for waterborne pollutants to reach groundwater from the surface, based on the facilitation or hindrance of the seven components to pollution

transmittance. The components form the acronym naming the system: Depth to Water (D), Net Recharge (R), Aquifer Media (A), Soil Media (S), Topography (T), Impact of the Vadose Zone (I), and Hydraulic Conductivity (C). Each component has a set weight from 1 to 5 describing its importance in the model with respect to the other components. A component that has a weight of 5 is more significant than a component with a weight of 1. Within each component is a scaled rating system from 1 to 10 that is governed by variations throughout the component. Some ratings are explicitly calculated (e.g., depth to water of 0 to 5 feet = 10 and 5 to 15 feet = 9, topography of 0 to 2% slope = 10 and 2 to 6% slope = 9), and some are implicitly calculated through a subjective method (e.g., aquifer media of sand and gravel = 9 and massive limestone = 8, soil media of loamy sand = 8 and sandy loam = 7). Multiplying a component's rating and the weight returns its index value and adding them together returns the *DRASTIC* index:

 $DRASTIC_{i} = Dr \times Dw + Rr \times Rw + Ar \times Aw + Sr \times Sw + Tr \times Tw + Ir \times Iw + Cr \times Cw$

Where: r = the rating for the component and w = the assigned weight for the component.

Further information about the starting weights and ratings of the original model by Aller and others (1987) can be found in appendix A starting on page 62. The following methods describe how the original model was manipulated based on the uniqueness of the Mesilla Basin study area. Certain components required more manipulation than others. In some cases, data were also more difficult to obtain than others. Some components were used to construct other components. Because of this, the completion order of component analyses proceeded differently than how they are covered below: that is, Net Recharge (R), Soil Media (S), Impact of the Vadose Zone (I), Topography (T), Depth to Water (D), Aquifer Media (A), and Hydraulic Conductivity (C). To maintain consistency, this report lists the components in the order of the *DRASTIC* acronym.

3.2.1 Depth to Water Component (D)

The Depth to Water component is represented by a surface of water-table elevation values interpolated from well-water depths subtracted from surface elevations (to get well-water elevations above sea level), and then subtracted from the values of a digital elevation model. The assigned weight of the component is 5. The component ratings were completed before the Aquifer Media and Hydraulic Conductivity components because the elevation surface was required to

locate the hydrogeological media at the level of the water table. Well data for Doña Ana County, New Mexico and El Paso County, Texas were collected from the USGS and combined with the collection of wells found in Hawley and Kennedy (2004) to increase the number of well values for interpolating a surface. Well logs from Mexico were incomplete and did not provide enough temporal continuity, so measurements from the United States side of the border were used to determine the water table for both sides of the border. A table of well measurement information (Appendix B, Table B-1 on page 72) was compiled and sorted using scripting in Excel to reduce the entire recorded lifetime of each well to a single value denoting the highest watermark that the well ever measured. High watermark measurements yield a water-table surface nearest to the ground surface, which increases the sensitivity to a 'worst-case scenario.' This also removes variability in the surface over time, which negates some of the pumping draw-down that may have occurred and gives the surface a null date.

The water-table surface was built using wells that draw water from the shallow unconfined groundwater found at atmospheric pressure. To determine which wells met this criterion, data were sorted based upon location, depth to well bottom, and hydrogeological stratigraphy found at the depth (Figure 3-1). Wells not located in the main study area were excluded first. The remaining wells were sorted into floodplain wells and non-floodplain wells using a floodplain boundary contoured at 100 feet (30 m) above the valley floor. Wells in the floodplain were excluded if the depth to the bottom was greater than 300 feet (91 m), because it was determined that at this depth, the uncertainty of penetrating into a confined aquifer was too great (personal interview by S. Walker with J.W. Hawley on August 7, 2012). Wells in the floodplain with a depth to bottom of less than 100 feet were classified (Figure 3-1) as *certainly shallow*, as this is the maximum thickness of river alluvium in the floodplain. Those wells between 100 and 300 feet to bottom were classified as *uncertainly shallow* and used to build the preliminary water-table surface and check for statistical error. All wells were assumed to have screens at the bottom of the shaft.

Non-floodplain wells were excluded based on a different set of criteria than floodplain wells. Many wells on the West Mesa have to penetrate more than 300 feet to reach water and they were all classified as *uncertainly shallow* in order to check for statistical error. Each well was compared to cross-sectional diagrams of hydrogeological strata found in Hawley and Kennedy (2004) to determine the strata at the bottom of the well. If a well penetrated to the more densely

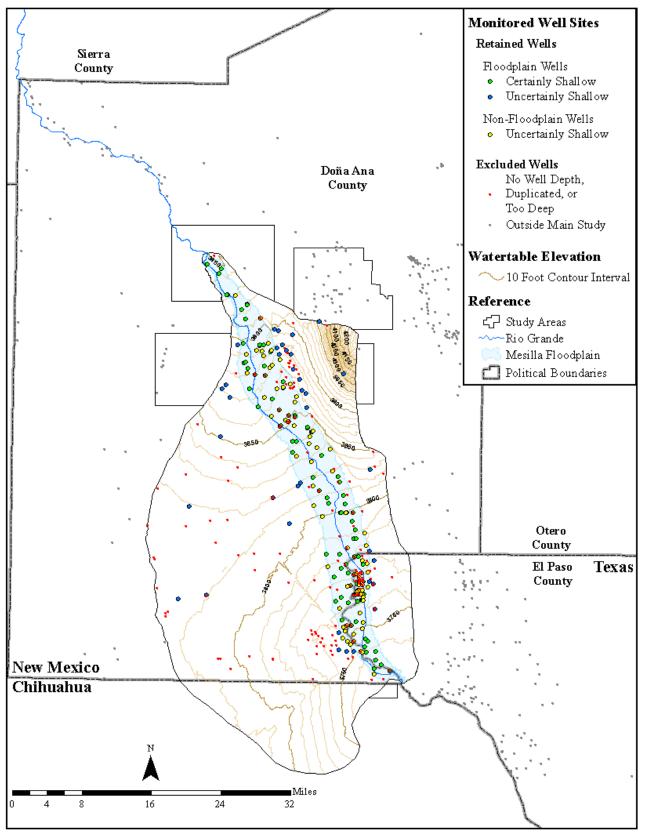


Figure 3-1: Wells and Water Table Contours Used in Project

packed and consolidated Middle or Lower Santa Fe hydrogeological group, that well was excluded. Since the hydrogeological groups vary in their depths across the entire aquifer, the exclusion was performed on a case by case basis. The Middle Santa Fe group in the southern third of the Mesilla groundwater system reaches to just under the river alluvium and has no Upper Santa Fe group above it. Wells in this area were excluded if they had bottom depths greater than 300 feet or if they reached the Lower Santa Fe group or bedrock at any depth.

Of the 779 wells found in both counties, 371 were outside the main study area and 195 of the wells had uncorrectable errors, were duplicated, too deep, or had bottom depths ending in the wrong hydrogeological group. Of the remaining 213 wells, 37 were classed as *uncertainly shallow* non-floodplain wells, 81 were classed as *uncertainly shallow* floodplain wells, and 95 were classed as *certainly shallow* floodplain wells.

Using the Geostatistical Wizard tool in the Geostatistical Analyst extension in ArcGIS for Desktop, a preliminary water-table surface was created using a simple kriging/cokriging model (a Gaussian interpolation method governed by prior covariances). This preliminary surface was checked using the built in cross-validation tool, which checks the model's accuracy by running the model without each well value in the set and compares the interpolated value at the well site against the actual value. If any *uncertainly shallow* wells had a predicted error of greater than 30 feet, those wells were excluded and the surface was recalculated until all errors were corrected. After the wells were tested using geostatistical calculations, eight were removed based on this predicted error.

Several model iterations with 146 different parameter combinations were explored using both kriging and inverse distance weighting. Two quality assurance tests were used afterward to further check each model iteration's accuracy. The first compared the water-table shape and contours of each preliminary model surface (Figure 3-1) to a Mesilla groundwater surface contour map adapted from Hibbs and others (1997) and Hawley and Kennedy (2004, 6). Six of the 146 preliminary model iterations were found to match contours and shape closely and were finalized into geotiff images for further analysis. The second quality assurance test used ArcScene to place the geostatistical water-table surfaces into a three-dimensional environment along with a digital elevation model (Figure 3-2). The groundwater surface, colored blue in Figure 3-2, appeared as a body of water where its elevation values were greater than the DEM. If a body of water appeared

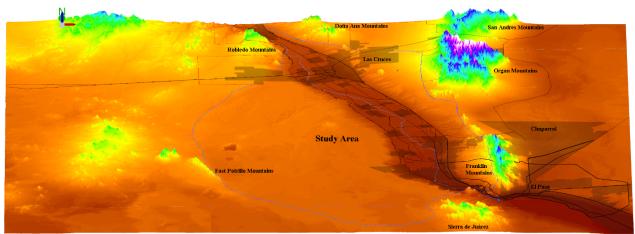
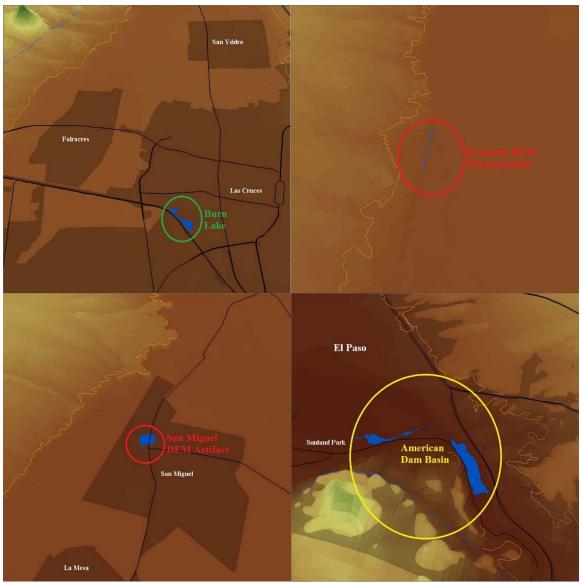



Figure 3-2: Three Dimensional Mesilla Basin DEM Used for Quality Assurance Test Two

Figure 3-3: ArcScene Quality Assurance Test Two Results *Upper Left*: Burn Lake – Correct; *Upper Right*: Orchards West of Mesilla, NM – Incorrect; *Lower Left*: San Miguel, NM – Incorrect; *Lower Right*: American Dam Basin Northwest of El Paso – Questionable

where one did not exist in the real world, that model was found to be inconsistent. While all six models had small inconsistencies (Figure 3-3), the surface with the fewest inconsistencies was chosen as the water-table elevation surface and subtracted from the digital elevation model to become the depth to water surface. The best surface found for these well data was built using a simple kriging analysis that had no transformation. This was optimized using a K-Bessel differential equation to fit the semivariogram prediction model to the data points, with all other variables left at their default settings. The final raster values of the surface were converted to polygon features, clipped to the individual study areas, and reclassified according to the original charted values by Aller and others (1987) in appendix A, table A-1 on page 64.

3.2.2 Net Recharge Component (R)

The Net Recharge component map was built by reclassifying a 2006, 1:24,000 scale, USGS National Land Cover Dataset classification model (Fry et al. 2011) using the Net Recharge parameters determined by Creel and others (1998) and Kennedy (1999) for how much surface water per unit of area is available for each land-cover type (Table 3-4). The weight of this component is 4. This component was completed first, since a raster with land cover was already compiled and classified and a method of reclassifying the dataset had already been studied.

			Index			
NLCD Code ¹	NLCD Classification ¹	Anderson LULC Level 1 Class ²	Value ³	Rr	Rw	Ri
11	Open Water	Water	36	9	4	36
81 / 82	Pasture/Hay / Cultivated Crops	Agricultural Land	36	9	4	36
90 / 95	Woody Wetlands / Emergent Herbaceous	Wetland	32	8	4	32
42	Evergreen Forest	Forest Land	24	6	4	24
21/22/23/24	Developed Land (All Densities)	Urban or Built-up Land	4	1	4	4
31	Barren Land (Rock/Clay/Sand)	Barren Land	4	1	4	4
52 / 71	Shrub/Scrub/ Grassland/Herbaceous	Rangeland	4	1	4	4

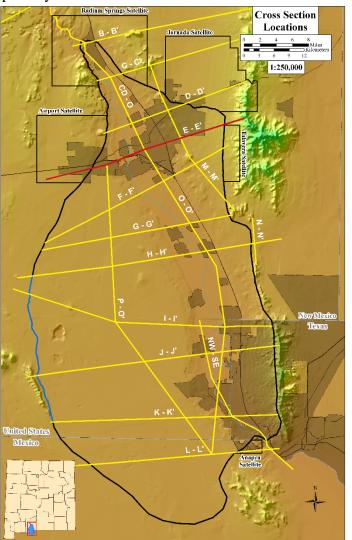
 Table 3-4: Net Recharge Ratings, Weights, and Indices for 2006 USGS National Land Cover Codes

¹ As per Fry et al. (2011).

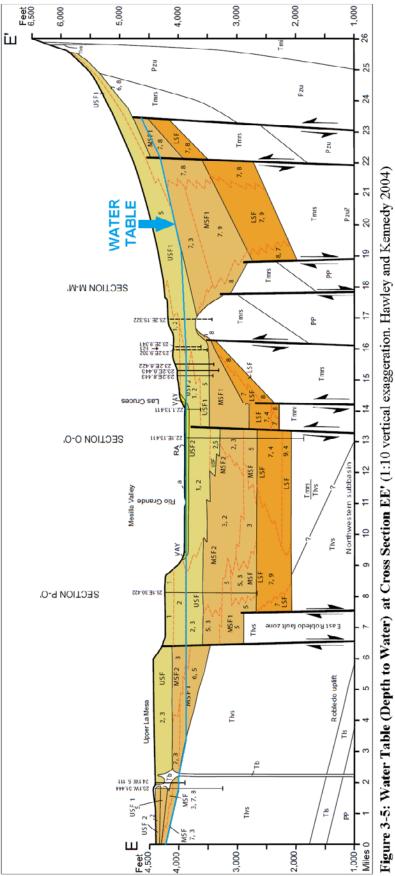
² As per Anderson et al. (1976).

³ Modified for local conditions by Creel et al. (1998) page 43 and Kennedy (1999) page 94.

The Mesilla Valley lies in an arid environment where evapotranspiration exceeds precipitation, which is the secondary source of groundwater far behind percolation from the Rio Grande, canals, and streams (Frenzel and Kaehler 1992). This is the main reason that Creel and others (1998) and Kennedy (1999) used a 1:100,000 scale Level 1, Land Use/Land Cover classification model by Anderson and others (1976) to separate agriculture from surrounding areas that have much lower surface water percolation to groundwater. Net Recharge ratings for the classification were determined based on New Mexico climate research by Frenzel and Kaehler (1992). The values were also used in this project to reclassify a more up-to-date, higher resolution, model.


On page 17 of Creel and others (1998), the table of Net Recharge parameter ratings reported different values than the Net Recharge map on page 43. The values on the map were verified by S. Walker during an interview with Theodore Sammis (May 23, 2012) and expanded to classify the 13 land-cover subdivisions found in this project. The difference between the two reports only affected 0.044% of the total study area. The land-cover data for the Mexican side of the basin covered three different land-cover classifications: urban development, rangeland, and barren land. Since all three groups have a rating of 1 due to the aridity of the environment, a Net Recharge index value of 4 was given to the entire area south of the border.

3.2.3 Aquifer Media Component (A)


The Aquifer Media component was built using the water table created for the Depth to Water component, cross referenced with the hydrogeological cross-section drawings, fault-line locations, bedrock-elevation contours, and surface-hydrogeology layers from Hawley and Kennedy (2004). The weight assigned to this component is 3. All geology shapefiles extended into Mexico, so no additional material was required to map the aquifer south of the border. This was one of the last components to be created because it required the water-table surface to be completed beforehand and required complex interpolation and expert knowledge of the subsurface from interviews.

Eighteen transects (Figure 3-4) crossing the aquifer from several angles were traced using the 3D Analyst package in ArcGIS for Desktop to obtain elevations from the digital elevation model and the water-table elevation surface. The extent of each hydrogeological group at the water-table elevation along each transect was collected, exported, and plotted in Excel and on the Hawley and Kennedy (2004) cross sections themselves (Figure 3-5). Using known distances and depths of the subsurface materials from the cross sections, the media at the water-table level were interpolated between transects. A hand-drawn and digitized map of polygons was created to denote the assumed type of media present at the water-table surface across the entire study area (Figure 3-6).

To improve performance with interpolation, fault lines and bedrock elevations were incorporated in conjunction with some of the cross sections. Tabular information was added to each polygon using the ratings designed by Aller and others (1987) adjusted to high, medium, or low range, using Hawley and Kennedy (2004) and expert advice (personal interview by S. Walker with J.W. Hawley on December 15, 2012). Table 3-5 lists information about the subsurface hydrostratigraphic units and lithofacies assemblages used to classify the hydrogeology map. Hydrostratigraphic units (HSUs) are the specific types of geological media that form a distinct hydrologic unit with respect to groundwater flow. They are comparable to the mappable, hydrogeological settings of *DRASTIC*. Lithofacies (LFAs) are distinct strata of sedimentary media combined into groups based on color, grain size, texture, distribution, composition, structure, or post-depositional alteration. They are the building blocks of the hydrogeological model and the primary elements of HSUs.

Figure 3-4: Transect Layer for Cross Sections Used in Project (Cross Section E-E' Highlighted in Red)

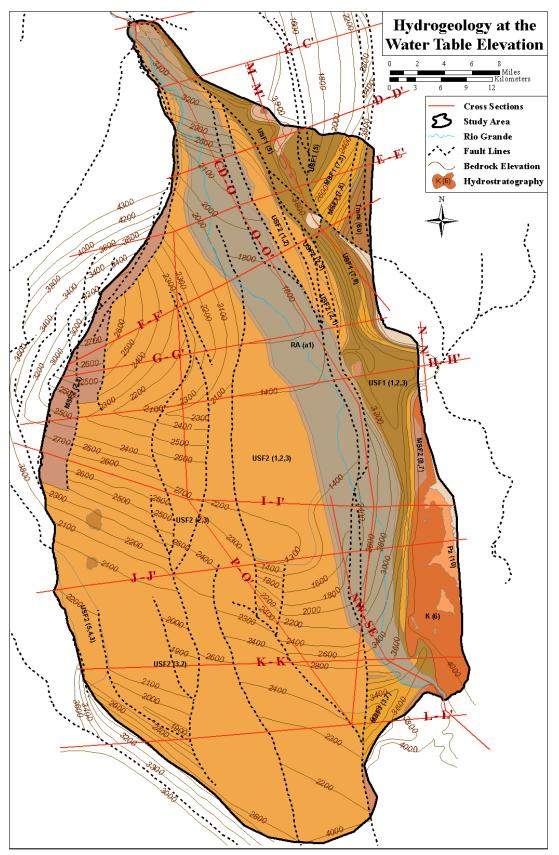


Figure 3-6: Hand Digitized Layer of Hydrogeological Media at the Water Table (by S. Walker 2012)

HSU^{1}		Name ¹	MediaRange ²		$\mathbf{A}_{\mathbf{w}}^2$	Ai
RA	a1	Fluvial Deposits	Sand and Gravel	9	3	27
ТА	b	Ancestral Fluvial Deposits	Sand and Gravel	9	3	27
USF2		Basin Floor Upper Santa Fe	Sand and Gravel	9	3	27
!P	10	Limestone	Massive Limestone	8	3	24
LSF		Undivided Lower Santa Fe	Sand and Gravel with Silt and Clay	7	3	21
MSF1		Piedmont Slope Middle Santa Fe	Sand and Gravel with Silt and Clay	7	3	21
MSF2		Basin Floor Middle Santa Fe	Sand and Gravel with Silt and Clay	7	3	21
Qbm	3	Eruptive Volcanic Basalt	Sand and Gravel with Silt and Clay	7	3	21
USF1		Piedmont Slope Upper Santa Fe	Sand and Gravel with Silt and Clay	7	3	21
VAY	b	Valley Border Deposits	Sand and Gravel with Silt and Clay	7	3	21
Pzl	6b	Undiff Limestone, Sandstone	Bedded Sandstone, Limestone, Shale	5	3	15
Tls	6b	Sedimentary Sand/Mudstone	Bedded Sandstone, Limestone, Shale	5	3	15
K	6	Sarten/Dakota Sandstone	Massive Sandstone	4	3	12
Tmrp	6b	Part/ Densely Welded Rhyolite Ash	Massive Sandstone	4	3	12
Tmrs	6b	Pyroclastic/Volcaniclastic Rock	Massive Sandstone	4	3	12
Tmsp	6b	Sedimentary Tuffs	Massive Sandstone	4	3	12
КР	10	None	Basalt	2	3	6
P/ Pz/ Pzu	10	Limestone, Sandstone, and Mudstone	Basalt	2	3	6
Pzm	10	Undifferentiated Limestone and Shale	Basalt	2	3	6
Qb	5	Extrusive Volcanic Basalt	Basalt	2	3	6
Tb	10	Basalt Flows	Basalt	2	3	6
Tli	10	Intermediate Volcanic Rock	Metamorphic/ Igneous	2	3	6
Tlvs	10	Volcaniclastic Sedimentary	Basalt	2	3	6
Tmi	10	Intermediate Plutonic Rock	Metamorphic/ Igneous	2	3	6
Tmrv	10	Intermediate Rhyolite Lava	Metamorphic/ Igneous	2	3	6
Tri-Tlvs	10	Intrusive Volcaniclastic	Basalt	2	3	6

Table 3-5: Surface Hydrogeology Rating System – Hydrostratigraphic Units

¹ As per Hawley and Kennedy (2004).

² As per Aller et al. (1987).

³ As per J.W. Hawley, interviewed by S. Walker on December 15, 2012.

3.2.4 Soil Media Component (S)

The Soil Media component was built using 2008 and 2009, Natural Resources Conservancy Service (NRCS), 1:24,000 scale, Soil Survey Geographic databases (SSURGO) for the counties of Doña Ana (U.S. Department of Agriculture 2008) and El Paso (USDA 2009a) and Fort Bliss Military Reservation (USDA 2009b). These databases were described in detail using interpretation guides (Jaco 1971 and Bulloch and Neher 1980) and official soil series descriptions (USDA 1997). The assigned weight of this component is 2. This was one of the first components to be created since the dataset used for the Soil Media component was already delineated and simply required reclassification to generate a workable component map.

The NRCS SSURGO data obtained for this component are a collection of soil series that indicate depths and amounts of texture related materials required by the *DRASTIC* model, such as clay, loam, sand, and silt. Soil series are described based on individual layers of differing

thickness called horizons. Horizons are made up of materials with distinct physical characteristics, primarily color and texture. Descriptions of material type are also included, such as organic, mineral, structural, and chemical composition. The series data are mapped by county boundaries, except where they extend onto federally controlled land. Data gathered for each individual soil survey matches based on tabular fields, but does not match based on soil series names or extents. Many boundaries between series have marked differences, even when the actual site is homogeneous. Doña Ana County, El Paso County, and Fort Bliss SSURGO data are the only series available for use in the study area. The White Sands series was unavailable, leading to a notch being cut from the Jornada satellite boundary after its creation.

The SSURGO soil series provided a large number of different soil types beyond the nine that Aller and others (1987) had originally described for *DRASTIC*. Using the original soil types and ratings as a base, a table of expanded ratings for each soil type (Appendix B, Table B-2 on page 84) was designed with expert advice (personal interview by S. Walker with C. Monger on June 26, 2012). Soil horizon ratings were combined together into a single rating for each series (Appendix B, Table B-3 on page 85) using a formula for vertical hydraulic conductivity perpendicular to layering (Fetter 2001). For example, the Belen clay loam series consisting of 11 inches of clay loam soil type (11 inches × rating of 3 = 33 inches) on the surface, 15 inches of silty clay soil type (15 inches × 2 = 30 inches) underneath, and 34 inches of very fine sand soil type at the bottom (34 inches × 7 [very fine has -2 rating to sand's 9] = 238 inches) has a total rating (33 inches + 30 inches + 238 inches \div 60 inches total depth) of 5 for the series. Soil data from Mexico were much less complex, having a scale of 1:250,000 and a taxonomic specificity of soil order. Soil orders were converted to soil horizons by using average ratings across the order. This allowed the data to be incorporated into the project's soil type index chart, but the scale issue could not be adjusted.

3.2.5 Topography Component (T)

The Topography component was built from a USGS (2009), one-third arc second, National Elevation Dataset (NED) digital elevation model (DEM). These data included the full extent of the Mesilla groundwater basin in Mexico. The weight of this component is 1. The entire dataset for all study areas was 286 megabytes in size and had to be clipped to smaller chunks or separated into slope classes for geoprocessing, since ArcGIS has a two gigabyte memory limit

outside of file or SDE geodatabases. Each raster cell was given a percent slope based upon the heights of each of its eight neighbors. The rasters were converted into topologically connected polygons so that ratings, weights, and indices (Aller et al. 1987) for the slopes could be added to the geometry. Polygons were conglomerated and smoothed into larger homogeneous shapes, but the large number of polygons exceeded memory limitations and had to be broken into five individual slope class layers. Each slope class was dissolved and given a single index value before being merged into a single shapefile.

3.2.6 Impact of the Vadose Zone Component (I)

The Impact of the Vadose Zone component was built from a 2004, 1:100,000 scale, surface hydrogeology layer (*geology.shp*, Seager et al. 1987) depicted in Hawley and Kennedy (2004). The assigned weight of the component is 5. The range of ratings from the *DRASTIC* model were broken into low, medium, and high values to classify the surface hydrogeology. The hydrogeology layer from Hawley and Kennedy (2004) divides the geology near the ground surface of the Mesilla, Jornada, and Tularosa Basins into groups of features with different hydrogeological properties and structures. Appendix B, Table B-4 on page 91 has full descriptions of each hydrogeology layer. Table 3-6 depicts all hydrogeology features in the study area; listing their geomorphology, maximum depths, and vadose zones based on properties found in Hawley and Kennedy (2004). A *DRASTIC* vadose range was tailored with expert advice (personal interview by S. Walker with J.W. Hawley on July 17, 2012) for each hydrogeology type based on its known formation, components, and porosity. The rating value was then selected from the range of values for each vadose range based on the location of the hydrogeology and its amount of fracturing.

The hydrogeology shapefile layer used in Hawley and Kennedy (2004) extended slightly over four miles (6.4 km) into Mexico, with the final six miles (9.7 km) of the aquifer being covered by the Mexican hydrogeology shapefile layer (*geología.shp*). This layer had a scale of 1:250,000 and described the hydrogeology of the area in simple geomorphic terms, such as 'sedimentaria' (sedimentary) or 'suelo' (soil). These geomorphic terms were reclassified using the Hawley and Kennedy (2004) vadose ranges and ratings were chosen based on location and fracturing.

Hydrogeology ¹	Geomorphology Zone ¹	Vadose Zone ¹	Vadose Range ²	Ir ³	I_w^2	Ii
RA	Rio Grande Valley	Mostly saturated	Sand/Gravel	9	5	45
ТА	Rio Grande Valley	Entirely vadose	Sand/Gravel	9	5	45
USF2	Santa Fe Group	Partly vadose	Sand/Gravel	9	5	45
USLM	Santa Fe Group	Entirely vadose	Sand/Gravel	9	5	45
!P	Bedrock/Pre-Santa Fe		Thin Bed Sand/Lime/Shale Seq	4	5	20
E	Piedmont Slope	Entirely vadose	Sand/Gravel with Silt/Clay	4	5	20
E/Qb	Basalt Capping		Basalt	4	5	20
Kl	Bedrock/Pre-Santa Fe		Thin Bed Sand/Lime/Shale Seq	4	5	20
MSF1	Santa Fe Group	Mostly saturated	Sand/Gravel with Silt/Clay	4	5	20
PA/ PAO/ PAU/ PAUc/ PAY	Piedmont Slope	Entirely vadose	Sand/Gravel with Silt/Clay	4	5	20
Pz/ Pzm	Bedrock/Pre-Santa Fe		Thin Bed Sand/Lime/Shale Seq	4	5	20
Pzl	Bedrock/Pre-Santa Fe		Limestone	4	5	20
Qb/ Qba/ Qbac/ Qbc	Basalt Capping		Basalt	4	5	20
Tb/ Tba	Bedrock/Pre-Santa Fe		Basalt	4	5	20
Tli/ Tmi/ Tmrv	Bedrock/Pre-Santa Fe		Metamorphic / Igneous	4	5	20
Tls/ Tmsp	Bedrock/Pre-Santa Fe		Thin Bed Sand/Lime/Shale Seq	4	5	20
USF1/ USLc	Santa Fe Group	Mostly vadose	Sand/Gravel with Silt/Clay	4	5	20
VA/ VAY	Rio Grande Valley	Mostly vadose	Sand/Gravel with Silt/Clay	4	5	20
VAO	Rio Grande Valley	Entirely vadose	Sand/Gravel with Silt/Clay	4	5	20
K	Bedrock/Sedimentary		Sandstone	3	5	15
Qt	Basalt Capping		Sandstone	3	5	15
Tmrp	Bedrock/Pre-Santa Fe		Sandstone	3	5	15
Tlvs	Bedrock/Pre-Santa Fe		Shale	2	5	10
BF	Basin Floor	Mostly vadose	Silt / Clay	1	5	5
BFP	Basin Floor	Entirely vadose	Silt / Clay	1	5	5

Table 3-6: Surface Hydrogeology Rating System for Vadose Zones

¹ Hawley and Kennedy (2004).

² Aller et al. (1987).

³ As per J.W. Hawley, interviewed by S. Walker on July 17, 2012.

3.2.7 Hydraulic Conductivity Component (C)

The Hydraulic Conductivity component was built last in conjunction with the Aquifer Media component, since hydraulic conductivity is an attribute of the hydrogeologic media. The weight assigned to this component is 3. Polygons created for the Aquifer Media component were classified with both hydrostratigraphic units (HSUs) and lithofacies assemblages (LFAs). A table was created for this component using LFAs reclassified with *DRASTIC* Hydraulic Conductivity ratings (Aller et al. 1987), entries from Hawley and Kennedy (2004), and expert advice (personal interview by S. Walker with J.W. Hawley on December 15, 2012). Table 3-7 lists the reclassified ratings for each of the LFAs.

Many LFAs had a range of hydraulic conductivities that had to be averaged to obtain one value to enter into each polygon. For example, LFA 2 has a *high to moderate* conductivity. *High* ranges from 30 to 100 feet per day (average 65) and *moderate* ranges from 3 to 30 feet per day (average 16.5). *High to moderate* ranges from 3 to 100 feet per day with an average of 40.75. All calculations are found in appendix B on tables B-5, B-6, and B-7.

LFA Values ¹	Hydraulic Conductivity ¹	K [feet per day] ¹	K [gallons per day per square foot] ²	\mathbf{Cr}^3	C_w^3	Ci
1/ a1	High	65	486.2338	4	3	12
1,2	High-High Moderate	56.92	425.7912	4	3	12
1,2,3/1,3/2,1	High Moderate	48.83	365.27379	4	3	12
2/ a	High to Moderate	40.75	304.83119	4	3	12
2,3	High Moderate	32.67	244.38859	2	3	6
3,2	Moderate High	24.58	183.87118	2	3	6
3/ 4/ 5a/ a2	Moderate	16.5	123.42858	2	3	6
3,5	Moderate	15.01	112.28261	2	3	6
5,4,3	Moderate	14.27	106.74702	2	3	6
5/ 5b/ 6/ 6a/ a3/ b/ 5,6/ 6,5	Moderate to Low	12.03	89.990656	1	3	3
3,7	Moderate Low	11.52	86.17559	1	3	3
3,9	Moderate Low	11.02	82.43533	1	3	3
5,6,7,8	Moderate Low	8.89	66.501823	1	3	3
6,8	Moderate Low	8.54	63.883641	1	3	3
7,3	Moderate Low	6.53	48.847796	1	3	3
9,3	Low Moderate	5.53	41.367276	1	3	3
6b	Low to Moderate	4.83	36.130912	1	3	3
7/ 8/ c/ 7,8/ 8,7	Low	1.55	11.594806	1	3	3
9/10	Very Low	0.05	0.374026	1	3	3

Table 3-7: Hydrogeology Rating System – Lithofacies Assemblages

¹ As per Hawley and Kennedy (2004).

² Conversion rate is 1 foot per day \times 7.48052 gallons per cubic foot (Fetter 2001).

 3 As per Aller et al. (1987).

3.2.8 DRASTIC Pollution Sensitivity Index (DRASTIC_i)

The *DRASTIC* index map was created by adding each of the seven component index maps together using the Union tool in ArcGIS for Desktop. The Union tool was preferred over the Intersect tool, since the Intersect tool only creates new feature areas where all layers overlap and removes the areas that don't overlap. The Union tool allows topological errors to be detected because it creates feature areas at any place covered by any layer, placing null values where component layers do not overlap completely. Polygons that had component fields with null index values were either deleted because they were non-overlapping edges or adjusted so that polygon topology was adjoined. Once the *DRASTIC* data layer was topologically clean, a new field was created and filled with the sum from each of the component index values. Divisions for a seven tiered ranking system (Very Low, Low, Below Average, Average, Above Average, High, and Very High) were calculated using a Jenks (1967) natural breaks classification.

3.3 POLLUTION RISK CALCULATIONS

To determine the amount of risk that a group of parcels would have for polluting groundwater, this project used housing density and property size as indicators for application and

concentration of septic pollutants. In this project, individual parcels had many different *DRASTIC* sensitivity index values and there was no way to determine where on each property a septic system might be located if a property had a septic system. If the property had a septic system, an area weighted average assumes that the system has a potential sensitivity index value somewhere between the lowest value on the property and the highest value, with the greatest chance of the system having the value that covers the greatest area. So, an area weighted average *DRASTIC* sensitivity index value was calculated for each property to simplify the pollution sensitivity. To simplify the pollution risk, each property was assumed to have up to one septic system on it and the property size acted as a limit for the number of systems that could be placed in close proximity to each other. This made the property itself a unit of pollution, with size and density of parcels governing the level of risk. While a single tiny parcel would have a high level of risk based on its size, the same parcel in the midst of several large parcels would not be as high risk as many tiny parcels packed together.

3.3.1 Area Weighted Mean DRASTIC Pollution Sensitivity Index (DRASTICAWM)

This layer was built by calculating the area weighted average *DRASTIC* pollution sensitivity for each parcel in the study area. The cadastral layer obtained from Doña Ana and El Paso Counties covered all study areas in the United States. A cadastral layer obtained for Mexico only covered parcels in the town of Anapra and nothing else in the groundwater study area. All of the parcels were combined together and corrected for topological reporting differences between political agencies. Preference was given to the edge of the parcel that fell closest to the property edge as seen on 2012, ESRI, satellite imagery (world imagery basemap). The Union tool was again used to remove topology errors.

Each parcel was given a unique name based on its county and parcel code. These numbers remained connected to each *DRASTIC* divided parcel piece and were used to reassemble the pieces of each parcel after area weighting. This weighting was performed by calculating the area of each parcel piece and multiplying it by the *DRASTIC* index score. When the parcel pieces were dissolved into whole parcels again, the area weighted *DRASTIC* values were added together and divided by the area of the whole parcel to create an area weighted average *DRASTIC* pollution sensitivity index. For example, if a parcel covered one-square acre and half of it was filled with a pollution sensitivity value of 120 (0.5 acre \times 120 = 60) and one-quarter was filled with 100 (0.25

acre \times 100 = 25) and 80 (0.25 acre \times 80 = 20), the parcel would have a sensitivity value of 105 ((60+25+20) acre \div 1 acre).

Area weighted mean *DRASTIC* parcels remained in the seven tiered ranking system used for the *DRASTIC* pollution sensitivity index and were also binned into groups of one-half acre to determine basic statistics. After recombining averaged parcels and removing several parcels known to be roads and those under 0.1 acres (405 m²), the number of parcels in the total study area was reduced to 116,000 parcels with areas between 0.1 and 3070 acres (12.4 km²). Of this total number of parcels, 79,600 (68.5%) were less than one-half acre, 12,200 (10.6%) were between one-half and one acre, 7,440 (6.4%) were between one and one-and-a-half acres, 2,610 (2.2%) were between one-and-a-half and two acres, and 14,100 (12.1%) are over two acres.

3.3.2 DRASTIC Parcel Pollution Risk: DRASTIC_{AWM} per Acre (DRASTIC_{PR})

The parcel pollution risk map was created by taking the area weighted mean *DRASTIC* pollution sensitivity parcels and dividing the area of each parcel into the index values. The scale ranged in value from 0.04 to 1159.5 and was roughly divided into eight equal distributions (quantile breaks) of 11,300 parcels, centered on a median of 347.12. This allowed each tier to be compared equally against the others and provided a scale that had half of the values on each side of the median. The number of parcels in each half-acre size bin was counted depending on which risk tier it fell into.

Parcel groups were pinpointed for community outreach septic-system training by choosing groups of twenty or more parcels adjoining each other that had above median *DRASTIC* parcel pollution risk. Las Cruces Wastewater Utilities and Doña Ana County Wastewater Utilities provided main sewage-pipe diagrams for use in the project. El Paso Water Utilities and their branches provided service-area border diagrams without sewage lines. Sunland Park, Anthony, and Anapra have wastewater treatment plants, but no information about their service areas or pipes was obtained. All sewage line layers were merged and a 300-foot buffer layer was created around the pipe locations to determine which parcels needed to be connected to sewage by regulation.

Metadata, if found with the sewage layers, did not indicate whether sewage lines were mains or laterals. To account for this uncertainty, parcel groups were classified according to the distance and locations of lines and service areas or proximity to a treatment plant (Figure 3-7).

Parcels of above median or higher risk that intersected the 300-foot buffer or fell within the El Paso Service Area had their *DRASTIC pR* reduced to 0 to indicate that they were on city sewage service. Groups of parcels surrounded by sewage lines or with a wastewater facility within a half mile (0.8 km) were classified as *Unlikely* on septic. Parcel groups between 300 and 500 feet (91-152 m) of sewage lines or in communities with sewage treatment plants were classified as *Uncertain* on septic. Parcel groups outside of 500 feet in areas with no sewage service were classified as *Likely* on septic.

A list of parcel groups and their classifications was sent to the New Mexico Environment Department to determine how many of them were actually on septic systems. Many were verified, but some remained unverified. If a group of parcels was verified as being on septic systems, their classification was changed to *Verified* on septic or *Partial* on septic, otherwise it was classified as verified *On Sewage*.

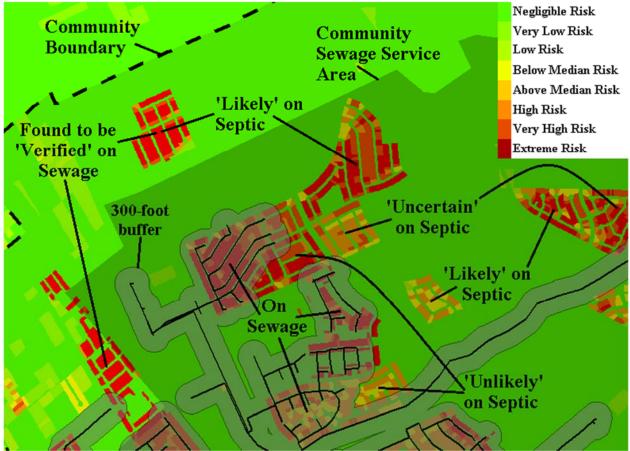


Figure 3-7: Determining Parcel Group Pollution Risk Using Sewage Proximity

4.0 RESULTS

4.1 DRASTIC POLLUTION SENSITIVITY RESULTS

The results of the *DRASTIC* pollution sensitivity model indicate areas where the combined component multipliers show an increased likelihood of contamination of the groundwater, without taking the specifics (volume, transport, type, etc.) of a pollutant into account. Values are continuous across political, property, and study area boundaries and are listed based on the amount of area that they cover, both in total acreage and percentage of the study area.

4.1.1 Depth to Water Index (Di)

The highest index values ($D_i=50$ to 10), representing the smallest depth to groundwater, are naturally found in the floodplain valley closest to the river (Figure 4-1). The lowest index value ($D_i=5$), representing greater than 100 feet to water, covers the entire study area outward from the floodplain. Table 4-1 shows that 80.1% of the main study area, 95.4% of the Radium Springs satellite area, and 100% of the other satellite areas have a depth to water of 100 feet or greater. In the main study area, 1.5% have 5 or fewer feet to water ($D_i=50$), 10.9% ($D_i=45$) between 5 and 15 feet ($D_i=45$), 3% between 15 and 30 feet ($D_i=35$), 1.4% between 30 and 50 feet ($D_i=25$), 1.6% between 50 and 75 feet ($D_i=15$), and 1.5% between 75 and 100 feet ($D_i=10$). The Radium Springs satellite also has some area (4.6%) with less than 100 feet to water, because the Rio Grande flows through Selden Canyon northwest of Leasburg Dam through an alluvium filled channel with depths of up to 75 feet (23 m).

Depth to Water [feet]	0 to 5	5 to 15	15 to 30	30 to 50	50 to 75	75 to 100	100+
D _i [sensitivity points]	50	45	35	25	15	10	5
Main Study Area [acres]	1.14×10 ⁴	8.21×10 ⁴	2.28×10 ⁴	1.06×10 ⁴	1.22×10 ⁴	1.14×10 ⁴	6.05×10 ⁵
(percent total area)	(1.5%)	(10.9%)	(3.0%)	(1.4%)	(1.6%)	(1.5%)	(80.1%)
Radium Springs [acres]	0.00×10 ⁰	0.00×10 ⁰	4.57×10 ²	5.79×10 ²	7.08×10 ²	7.28×10 ²	5.10×10 ⁴
(percent total area)	(0.0%)	(0.0%)	(0.9%)	(1.1%)	(1.3%)	(1.4%)	(95.4%)
Jornada Satellite [acres]	0.00×10 ⁰	5.60×10 ⁴					
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)
Airport Satellite [acres]	0.00×10 ⁰	4.11×10 ⁴					
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)
Talavera Satellite [acres]	0.00×10 ⁰	9.05×10 ³					
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)
Anapra Satellite [acres]	0.00×10 ⁰	2.24×10 ³					
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)

 Table 4-1: Depth to Water Pollution Sensitivity Index Results

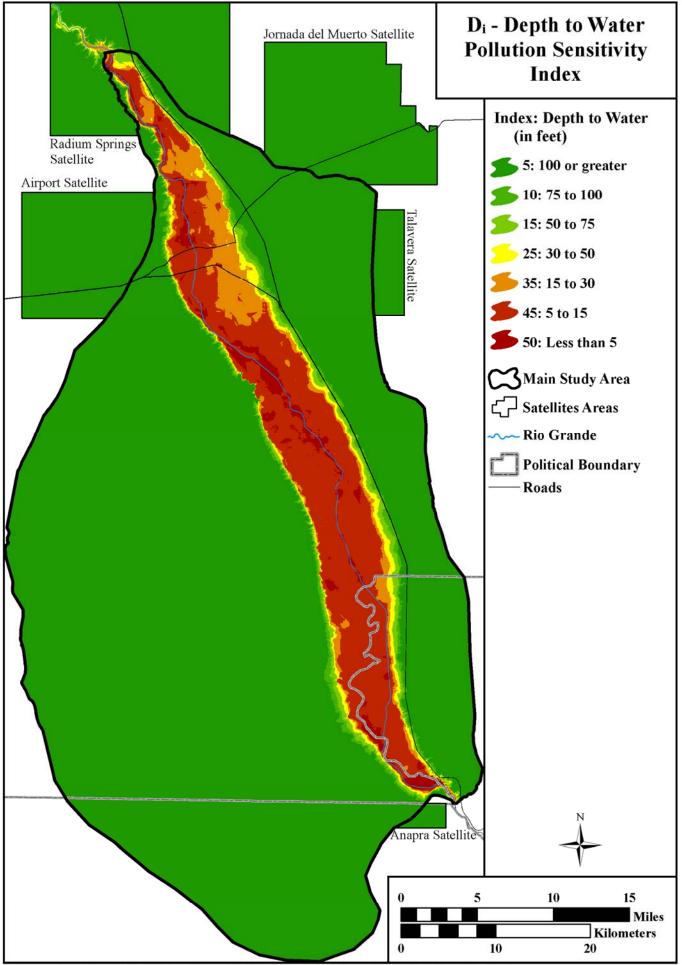


Figure 4-1: Depth to Water Sensitivity Index (D_i) Locations for the Study Area

4.1.2 Net Recharge Index (Ri)

The highest index values (R_i =36 to 12), representing the largest concentration (>2 inches per unit area) of recharge from activities and land cover that improve surface to water-table percolation, are located within agricultural areas and along mountain tops (Figure 4-2). A majority of the agricultural areas, which have the highest index values (R_i =36), are located within the floodplain valley. The lowest index value (R_i =4), representing less than 2 inches of recharge per unit area, cover most of the study area outward from the floodplain and parts of the floodplain with urban built-up cover. This is the most categorically homogenous component in the model, with 90.5% of the area across all study areas being covered by the Urban/Built-Up/Barren/ Rangeland group (Table 4-2). This group covers 88.7% in the main study area, 98.9% in the Radium Springs satellite, 98.3% in the Jornada satellite, 99.7% in the Airport satellite, 99.4% in the Talavera satellite, and 100% in the Anapra satellite. Only 11.3% of the Agriculture/Water group (R_i =36) in the main study area and 1.5% of the Forest Land group (R_i =24) in Jornada were over 1% coverage.

USGS Land Cover Class	Agriculture, Water	Wetland	Forest Land	(None)	Urban, Built-Up, Barren, Rangeland
Recharge Range [inches]	10+	10 to 7	7 to 4	4 to 2	2 to 0
R _i [sensitivity points]	36	32	24	12	4
Main Study Area [acres]	8.51×10 ⁴	2.87×10 ²	4.80 ×10 ¹	0.00×10 ⁰	6.70×10 ⁵
(percent total area)	(11.3%)	(0.0%)	(0.0%)	(0.0%)	(88.7%)
Radium Springs [acres]	3.48×10 ²	6.30×10 ¹	1.59×10 ²	0.00×10 ⁰	5.29×10 ⁴
(percent total area)	(0.7%)	(0.1%)	(0.3%)	(0.0%)	(98.9%)
Jornada Satellite [acres]	7.90×10 ¹	1.10×10 ¹	8.58×10 ²	0.00×10 ⁰	5.50×10 ⁴
(percent total area)	(0.1%)	(0.0%)	(1.5%)	(0.0%)	(98.3%)
Airport Satellite [acres]	1.03×10 ²	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	4.10×10 ⁴
(percent total area)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(99.7%)
Talavera Satellite [acres]	0.00×10 ⁰	1.10 ×10 ¹	3.90 ×10 ¹	0.00×10 ⁰	9.00×10 ³
(percent total area)	(0.0%)	(0.1%)	(0.4%)	(0.0%)	(99.5%)
Anapra Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	2.24×10 ³
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100%)

Table 4-2: Net Recharge Pollution Sensitivity Index Results

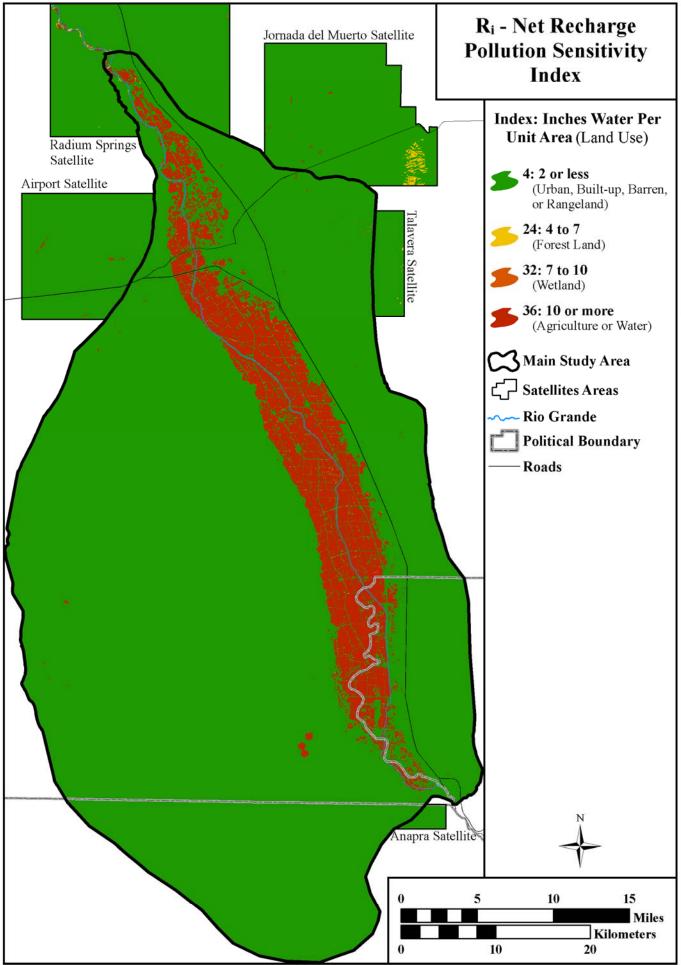


Figure 4-2: Net Recharge Sensitivity Index (R_i) Locations for the Study Area

4.1.3 Aquifer Media Index (Ai)

The highest index value $(A_i=27)$ at the water-table surface representing Sand and Gravel, has the least amount of pollution attenuation and is located primarily within and west of the floodplain and in the Jornada and Radium Springs satellites (Figure 4-3). The lowest index values $(A_i=6 \text{ to } 24)$, representing several different categories of more consolidated material, fall within the rest of the areas depending on the subsurface geomorphology. Table 4-3 shows 76.2% of the main study area at the water-table surface is covered by the Sand and Gravel, group ($A_i=27$), 16.6% is Sand and Gravel with Silt and Clay group ($A_i=21$), 5.1% is Massive Sandstone group (Ai=12), and 2.1% are Metamorphic/Igneous or Basalt and Massive Limestone groups. 82.1% of the Radium Springs and 87.5% of the Airport satellite areas have Metamorphic/Igneous or Basalt features ($A_i=6$) at the water-table level, due to the large areas covered by the Doña Ana and Robledo uplifts. The aquifer media in the Jornada satellite area is covered by 60.3% Sand and Gravel with Silt and Clay ($A_i=21$) and 32.8% Metamorphic/Igneous or Basalt materials ($A_i=6$). These come from the San Andres Mountains and their piedmont alluvium. The Talavera satellite on the slope of the Organ Mountains is 97.4% covered by the Massive Sandstone group ($A_i=12$) at the water-table level. The Anapra satellite contains 62.6% of the Metamorphic/Igneous or Basalt $(A_i=6)$ group and 30.6% of the Massive Sandstone $(A_i=12)$ group at the water-table level, from the areas between the Cerro de Cristo Rey and the Sierra de Juárez uplifts.

Aquifer Media Range [hydrogeologic unit]	Sand and Gravel	Massive Limestone	Sand-Gravel with Silt-Clay	Thin Bed Sand/ Lime/Shale Seq.	Massive Sandstone	Metamorph/Igneous or Basalt
Water Table Media [hydrostratigraphic units]	RA/TA/ USF2	!P	LSF/MSF1/MSF2/ Qbm/USF1/VAY	Pzl	K/Tmrp/ Tmrs/Tmsp	KP/P/Pz/Pzu/Qb/Tb/Tli Tlvs/Tmi/Tmrv/Tri-Tlvs
A _i [sensitivity points]	27	24	21	15	12	6
Main Study Area [acres]	5.75×10 ⁵	5.50×10 ³	1.26×10 ⁵	0.00×10 ⁰	3.83×10 ⁴	1.07×10 ⁴
(percent total area)	(76.2%)	(0.7%)	(16.6%)	(0.0%)	(5.1%)	(1.4%)
Radium Springs [acres]	2.44×10 ³	6.97×10 ²	3.14×10 ³	3.34×10 ²	2.98×10 ³	4.39×10 ⁴
(percent total area)	(4.6%)	(1.3%)	(5.9%)	(0.6%)	(5.6%)	(82.1%)
Jornada Satellite [acres]	3.84×10 ³	0.00×10^{0}	3.37×10 ⁴	0.00×10 ⁰	0.00×10 ⁰	1.84×10 ⁴
(percent total area)	(6.9%)	(0.0%)	(60.3%)	(0.0%)	(0.0%)	(32.8%)
Airport Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	4.89×10 ³	1.64×10 ²	7.30×10 ¹	3.60×10 ⁴
(percent total area)	(0.0%)	(0.0%)	(11.9%)	(0.4%)	(0.2%)	(87.5%)
Talavera Satellite [acres]	0.00×10^{0}	0.00×10^{0}	0.00×10 ⁰	0.00×10 ⁰	8.82×10 ³	2.32×10 ²
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(97.4%)	(2.6%)
Anapra Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	1.51×10 ²	0.00×10 ⁰	6.84×10 ²	1.40×10 ³
(percent total area)	(0.0%)	(0.0%)	(6.8%)	(0.0%)	(30.6%)	(62.6%)

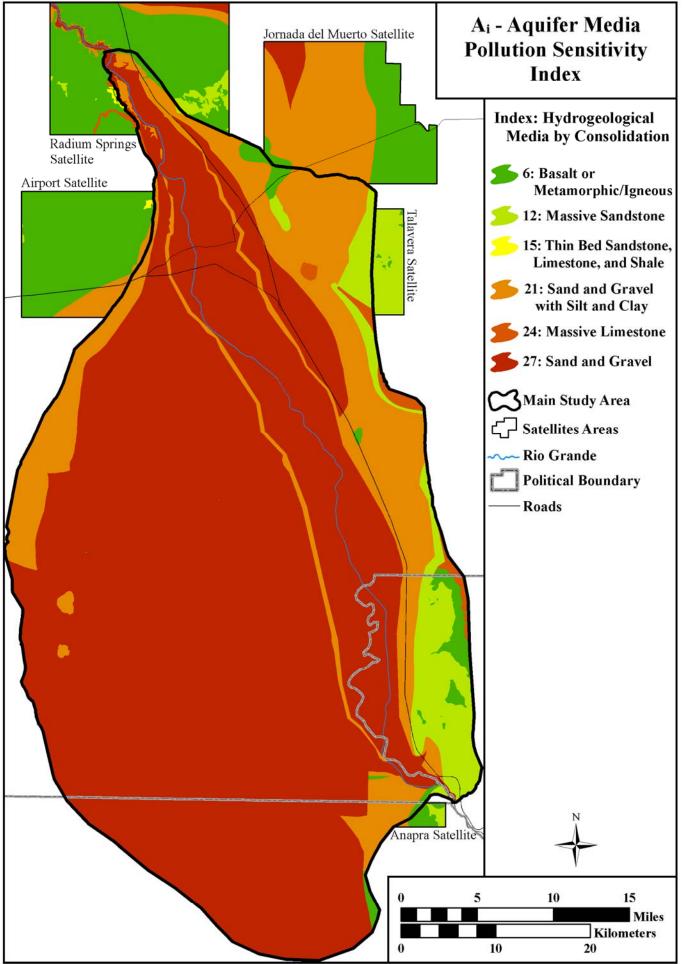


Figure 4-3: Aquifer Media Sensitivity Index (Ai) Locations for the Study Area

4.1.4 Soil Media Index (Si)

This component is the most categorically heterogeneous in the model. It has an assorted patchwork of index categories throughout the floodplain flanked by more homogenous groupings on the slopes around its perimeter (Figure 4-4). Heterogeneity in the floodplain depicts a soil surface where consolidation amounts change constantly due to agricultural practices and alluvial deposit. In the main study area, the mesa to the southwest of the floodplain is a large homogenous area taking up most of the 47.4% of the Sandy Loam (S_i =14) group and broken by surface expressions from lava flows and windswept sand (Table 4-4). The Clay/Dumps/Pits/Rock Outcrops (S_i =2) group cover a majority of the Radium Springs (47.0%) and Airport (43.6%) satellite areas. The Radium Springs satellite also has the highest prevalence (18.1%) of Sand (S_i =18) of the areas, based on percentage of area. The Jornada satellite area has nearly equal amounts of Sand (S_i =18), Loamy Sand (S_i =16), Gravelly Loam (S_i =12), Loam/Silty Loam (S_i =10) and Sandy Clay Loam/Silt (S_i =8) categories totaling 77.8% of its total areal coverage. The Talavera satellite area has a high prevalence (51.7%) of the Clay Loam/Silty Clay Loam (S_i =6) group and Anapra has mostly (41.2%) Gravelly Loam (S_i =12) covering it.

		ation St		, index .	lesuits					
Soil Media Range [soil families]	Thin, Absent, or Gravel	Sand	Loamy Sand	Sandy Loam	Gravelly Loam	Loam/ Silty Loam	Sandy Clay Loam/ Silt	Clay Loam /Silty Clay Loam	Sandy Clay/ Silty Clay	Clay/ Dumps/ Pits/Rock Outcrops
S _i [sensitivity points]	20	18	16	14	12	10	8	6	4	2
Main Study Area [acres] (percent total area)	3.60×10² (0.0%)	1.61×10⁴ (2.1%)	1.42×10⁵ (18.8%)		4.59×10⁴ (6.1%)	3.23×10⁴ (4.3%)	4.83×10⁴ (6.4%)	2.49×10⁴ (3.3%)	1.09×10³ (0.1%)	8.61×10⁴ (11.4%)
Radium Springs [acres] (percent total area)	0.00×10⁰ (0.0%)		1.22×10 ⁴ (22.9%)		1.23×10³ (2.3%)	2.77×10³ (5.2%)	8.10×10¹ (0.2%)	9.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	2.51×10⁴ (47.0%)
Jornada Satellite [acres] (percent total area)	0.00×10⁰ (0.0%)		7.55×10³ (13.5%)		8.85×10³ (15.8%)	9.20×10³ (16.4%)	1.02×10⁴ (18.3%)	2.01×10³ (3.6%)	0.00×10⁰ (0.0%)	5.12×10³ (9.1%)
Airport Satellite [acres] (percent total area)	0.00×10⁰ (0.0%)	3.25×10³ (7.9%)	2.49×10³ (6.0%)	1.12×10 ⁴ (27.3%)	4.06×10³ (9.9%)	3.82×10² (0.9%)	1.16×10³ (2.8%)	6.30×10² (1.5%)	0.00×10⁰ (0.0%)	1.79×10⁴ (43.6%)
Talavera Satellite [acres] (percent total area)	0.00×10⁰ (0.0%)	1.45×10³ (16.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	0.00×10 ⁰ (0.0%)	4.68×10³ (51.7%)	0.00×10⁰ (0.0%)	2.92×10³ (32.3%)
Anapra Satellite [acres] (percent total area)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	4.07×10² (18.2%)		9.20×10² (41.2%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)	5.70×10² (25.5%)

 Table 4-4: Soil Media Pollution Sensitivity Index Results

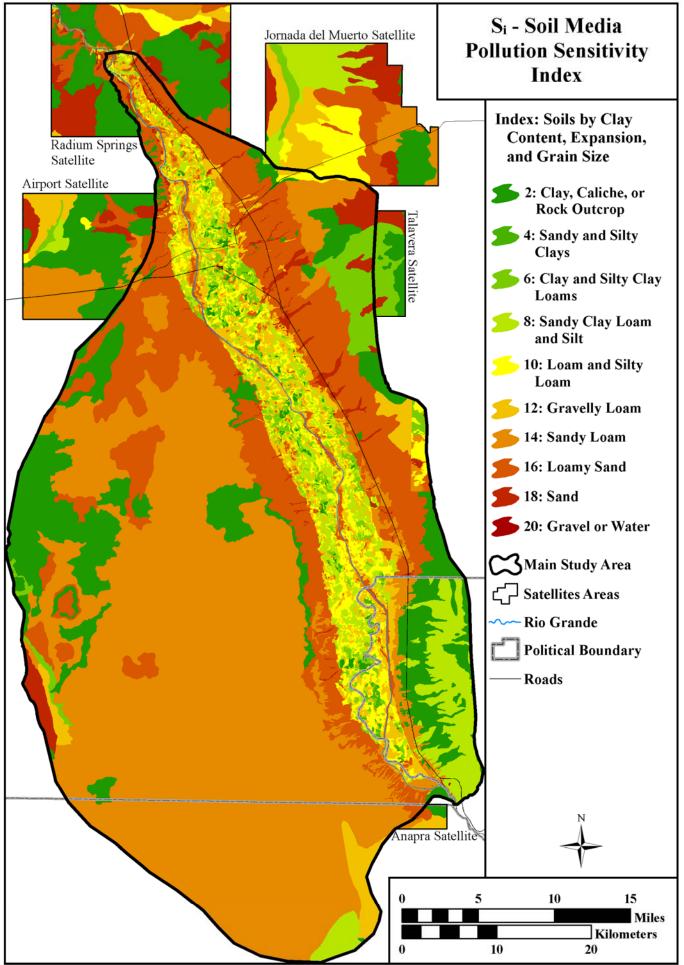


Figure 4-4: Soil Media Sensitivity Index (S_i) Locations for the Study Area

4.1.5 Topography Index (Ti)

The highest index value ($T_i=10$) covers large swaths (68.8%) of the entire study area (Figure 4-5), as the basin is mostly flat (less than 2% slope). The lowest index values ($T_i=1$ to 9), representing slopes of greater than 2%, lie in areas one to four miles (6.4 km) just west of the floodplain, around the perimeters of Kilbourne Hole and Hunt Hole, throughout the Radium Springs satellite area, and most of the area east of I-25 and I-10 south of Las Cruces. Table 4-5 shows that flat ($T_i=10$) surfaces cover 77.6% of the main study area, 77.1% of the Airport satellite area, and 38.6% of the Anapra Satellite area. The Jornada satellite area is the next most flat with 40.9% of its total area covered with 2 to 6% slope ($T_i=9$). The satellite areas with the least slope are Radium Springs, with 63.8% of its area and Talavera with 32.0% of its area covered with greater than 18% slope ($T_i=1$).

Topography Range [percent slope]	0 to 2	2 to 6	6 to 12	12 to 18	18+
T _i [sensitivity points]	10	9	5	3	1
Main Study Area [acres]	5.86×10 ⁵	9.81×10 ⁴	3.80×10 ⁴	1.42×10 ⁴	1.91×10 ⁴
(percent total area)	(77.6%)	(13.0%)	(5.0%)	(1.9%)	(2.5%)
Radium Springs [acres]	2.33×10 ³	4.29×10 ³	7.55×10 ³	5.19×10 ³	3.41×10 ⁴
(percent total area)	(4.3%)	(8.0%)	(14.1%)	(9.7%)	(63.8%)
Jornada Satellite [acres]	9.96×10 ³	2.29×10 ⁴	1.11×10 ⁴	2.82×10 ³	9.18×10 ³
(percent total area)	(17.8%)	(40.9%)	(19.9%)	(5.0%)	(16.4%)
Airport Satellite [acres]	3.17×10 ⁴	4.13×10 ³	2.23×10 ³	9.87×10 ²	2.07×10 ³
(percent total area)	(77.1%)	(10.0%)	(5.4%)	(2.4%)	(5.0%)
Talavera Satellite [acres]	5.14×10 ²	2.69×10 ³	2.06×10 ³	8.84×10 ²	2.90×10 ³
(percent total area)	(5.7%)	(29.7%)	(22.8%)	(9.8%)	(32.0%)
Anapra Satellite [acres]	8.63×10 ²	4.97×10 ²	3.42×10 ²	2.05×10 ²	3.27×10 ²
(percent total area)	(38.6%)	(22.3%)	(15.3%)	(9.2%)	(14.6%)

 Table 4-5: Topography Pollution Sensitivity Index Results

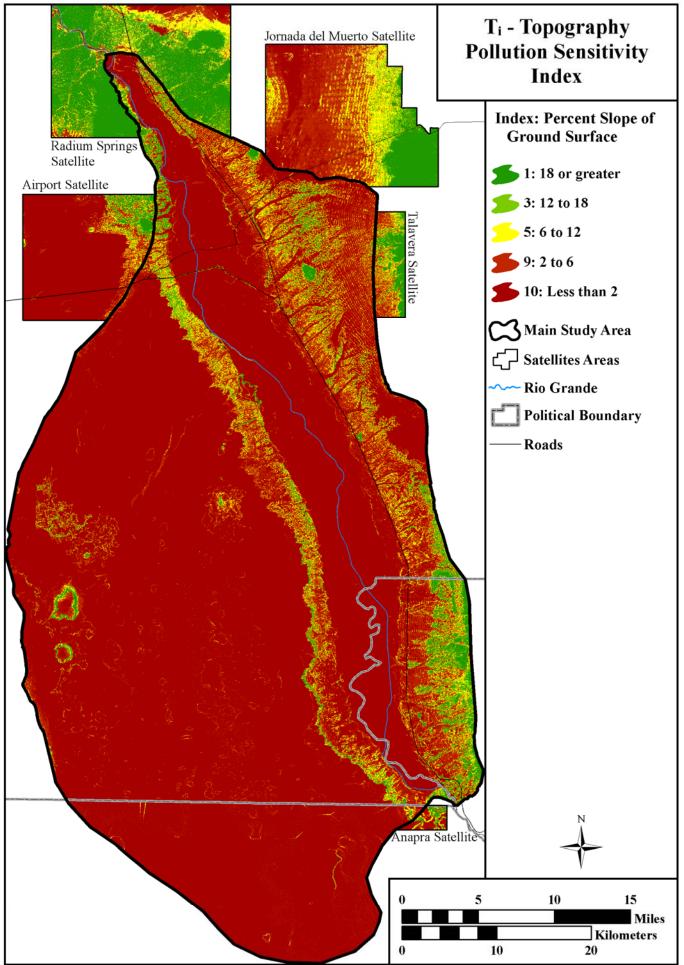


Figure 4-5: Topography Sensitivity Index (T_i) Locations for the Study Area

4.1.6 Impact of Vadose Zone Index (Ii)

A majority (65.1%) of the study area (Table 4-6), mostly located in the floodplain and on the mesa to the west and southwest, is covered in the well-sorted, low protection, Sand and Gravel (I_i =45) category (Figure 4-6). A swath of this category is also located just west of the floodplain and east of I-25 and I-10 south of Las Cruces, but is striated by wide sections of the Sand and Gravel with Silt and Clay or Metamorphic/Igneous or Thin Bedded Sandstone, Limestone, Shale Sequences or Limestone or Basalt category (I_i =20). The western edge of the main study area and the Radium Springs, Jornada, Talavera, north Airport, and east Anapra satellite areas contain conglomerations of the lowest index, pollution mitigating, values (I_i =5 to 20) from the range uplifts and pyroclastic eruptions. The Sand and Gravel (I_i =45) category covers 74.4% of the main study area, 63.5% of the Airport satellite area, and 51.8% of the Anapra satellite area. A vast amount of Sand and Gravel with Silt and Clay (I_i =20) from piedmont alluvium and Thin Bedded Sandstone, Limestone, and Shale Sequence (I_i =20) from piedmont bases cover 65.4% of the Radium Springs satellite area and 75.6% of the Talavera satellite area. The Jornada satellite area is primarily covered by (91.7%) the same category, because the basin is closed and has poor flow characteristics to sort out smaller silt and clay particles.

Impact of Vadose Zone Range [hydrogeologic unit]	Sand and Gravel	Sand-Gravel with Silt-Clay/Metamorph- Igneous/Thin Bed Sandstone, Limestone, Shale Sequence/Limestone/Basalt	Sandstone	Shale	Confining Silt/Clay
Surface Hydrogeology [hydrostratigraphic units]	RA/TA/ USF2/ USLM	!P/E/KI/MSF1/PA/PAO/PAU/PAUc/Pz/ Pzl/Pzm/Qb/Qba/Qbac/Qbc/Tb/Tii/Tls/ Tmi/Tmrv/Tmsp/USF1/USFc/VA/VAO/ VAY	K/Qt/ Tmrp	Tlvs	BF/BFP
Ii [sensitivity points]	45	20	15	10	5
Main Study Area [acres] (percent total area)	5.62×10⁵ (74.4%)	1.76×10⁵ (23.3%)	9.64×10³ (1.3%)	2.71×10² (0.0%)	7.64×10³ (1.0%)
Radium Springs [acres] (percent total area)	7.06×10³ (13.2%)	3.50×10 ⁴ (65.4%)	2.20×10³ (4.1%)	9.19×10³ (17.2%)	3.70×10¹ (0.1%)
Jornada Satellite [acres] (percent total area)	6.88×10² (1.2%)	5.13×10 ⁴ (91.7%)	0.00×10⁰ (0.0%)	1.56×10 ² (0.3%)	3.81×10³ (6.8%)
Airport Satellite [acres] (percent total area)	2.61×10 ⁴ (63.5%)	1.25×10 ⁴ (30.4%)	7.30×10¹ (0.2%)	1.99×10³ (4.8%)	4.44×10² (1.1%)
Talavera Satellite [acres] (percent total area)	0.00×10⁰ (0.0%)	6.84 ×10 ³ (75.6%)	2.18×10³ (24.1%)	3.40×10¹ (0.4%)	0.00×10⁰ (0.0%)
Anapra Satellite [acres] (percent total area)	1.16×10³ (51.8%)	1.01×10³ (45.2%)	6.70×10¹ (3.0%)	0.00×10⁰ (0.0%)	0.00×10⁰ (0.0%)

Table 4-6: Impact of Vadose Zone Pollution Sensitivity Index Results

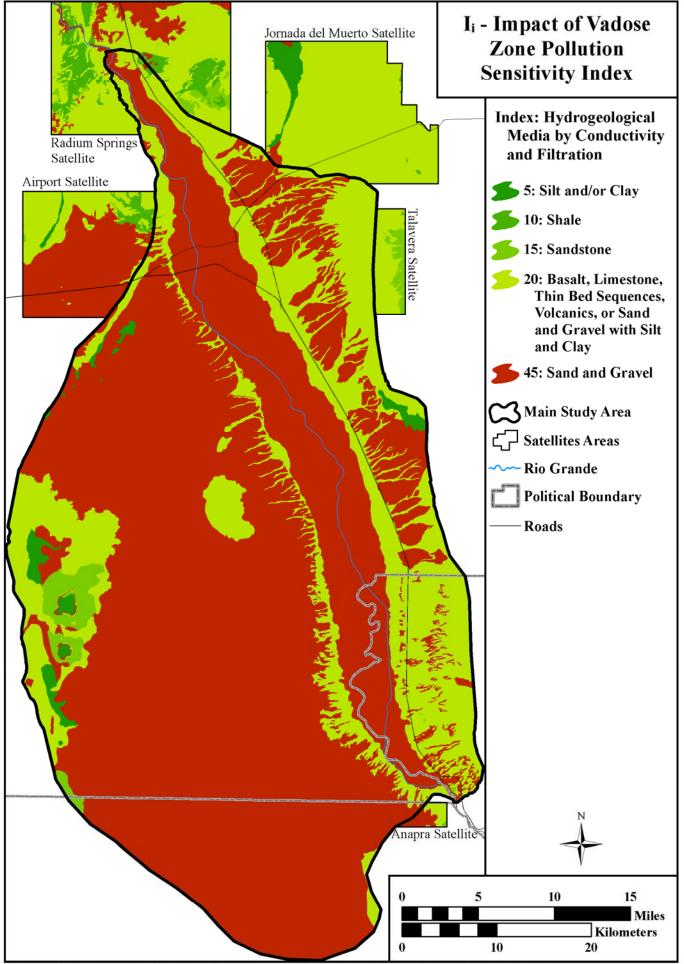


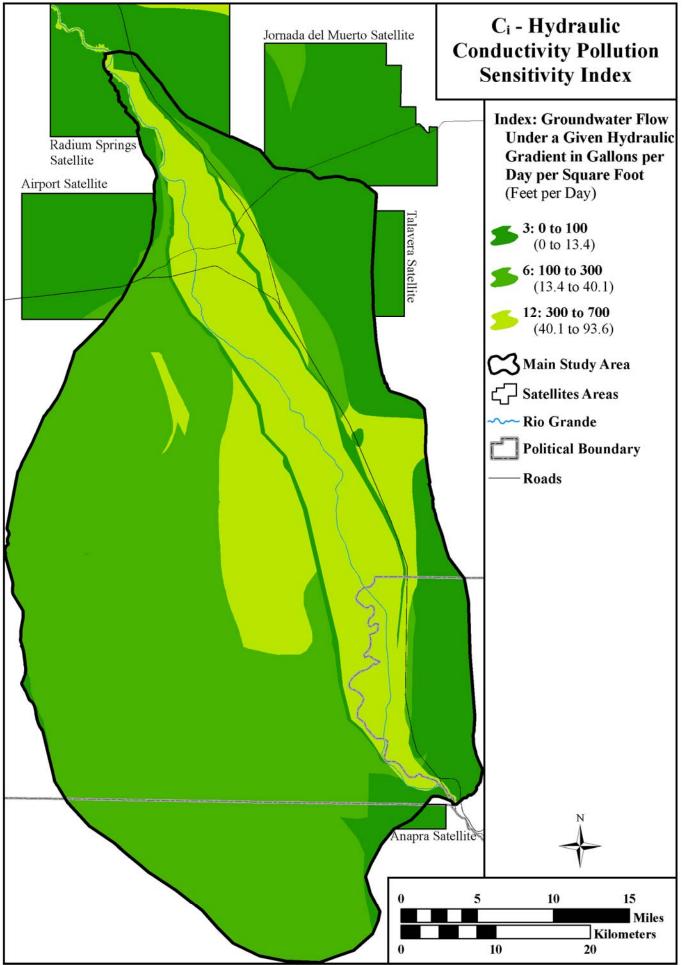
Figure 4-6: Impact of Vadose Zone Sensitivity Index (Ii) Locations for the Study Area

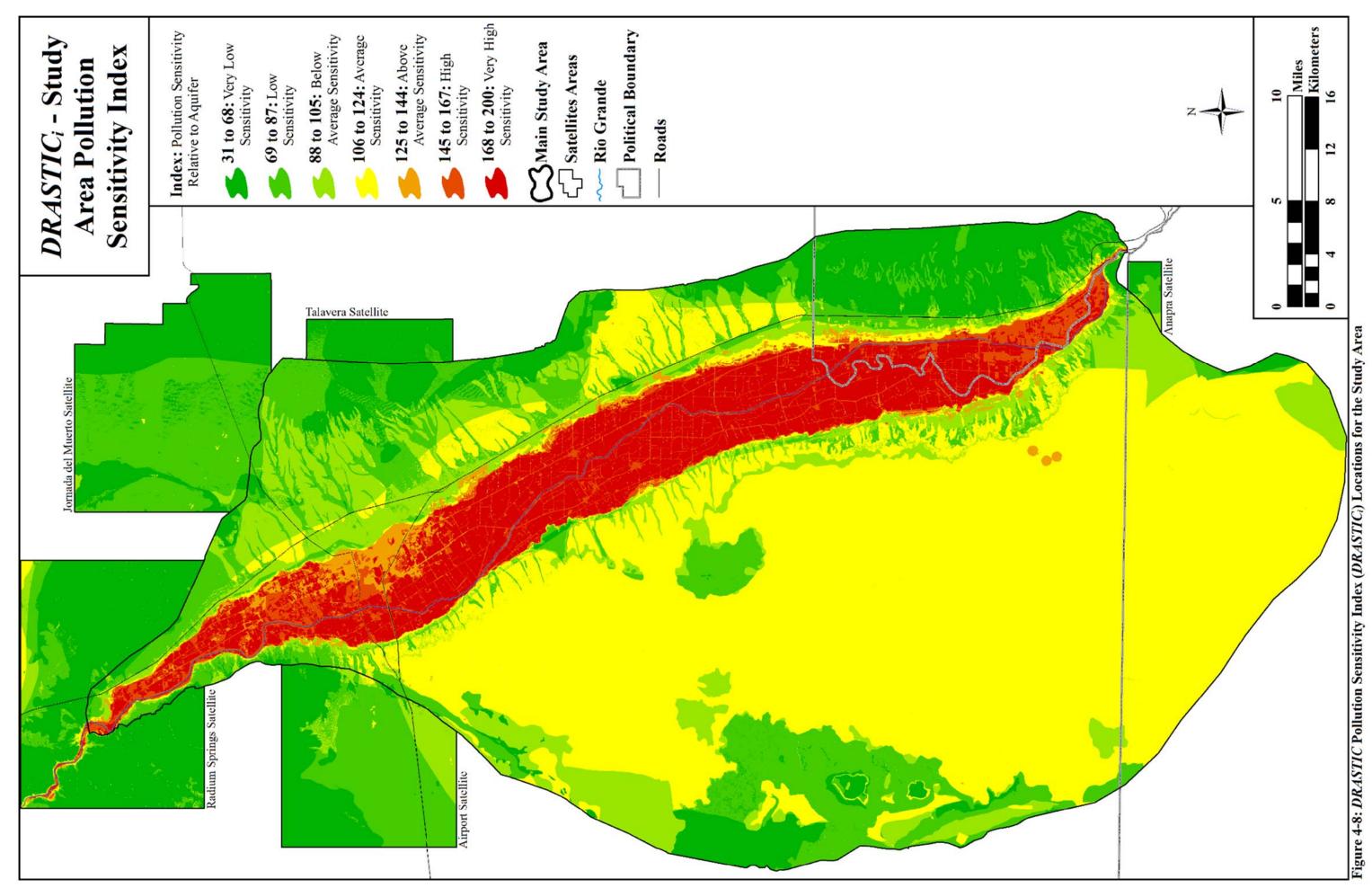
4.1.7 Hydraulic Conductivity Index (Ci)

The highest index value (C_i =12), representing 300 to 700 gallons per day per square foot (gpd/ft²), occurs near and within the floodplain (Figure 4-7). This index covers 26.6% of the main study area. From the Rio Grande, passing through Selden Canyon (Table 4-7), 4.6% of the Radium Springs satellite is also covered by this index value. An area of the highest index value lies to the east of the floodplain and south of the Talavera satellite area, revealing the telltale instance of past hydrologic flow through Fillmore Pass between the Mesilla and Tularosa Basins. Another swath of this higher index lies on the other side of the floodplain in the center of the main study area, from higher conductivity materials that had descended from seismic activity down to the level of the water table. Seismic activity also pushed lower conductivity materials up into the irregularly shaped sections west of the Anapra satellite and southwest of the Talavera satellite. A Hydraulic Conductivity index of 6, representing 100 to 300 gpd/ft², covers 55.6% of the main study area. A portion of the Jornada and Radium Springs satellites are covered by this medial conductivity index, revealing past signs of flow from the ancient Rio Grande through this now closed basin. The rest (17.9%) is covered by the 1 to 100 gpd/ft² (C_i =3) category. A majority (95.3%) of all satellite areas are also covered by this lowest index category.

Hydraulic Conductivity [gallons per day/foot ²]	2,000+	2,000 to 1,000	1,000 to 700	700 to 300	300 to 100	100 to 0
Hydraulic Conductivity [feet/day]	267+	267 to 134	134 to 94	94 to 40	40 to 13	13 to 0
Lithofacies Values	None	None	None	a1/ 1,2/ 1-3/ 1,3	2,1/ 2,3/ 3,2/ 3/ 3,5/ 5-3	b/ 3,7/ 3,9/ 5/ 5,6/ 5-8/ 6/ 6b/ 6,5/ 6,8/ 7/ 7,3/ 7,8/ 8/ 8,7/ 9,3/ 10
C _i [sensitivity points]	30	24	18	12	6	3
Main Study Area [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	2.01×10 ⁵	4.20×10 ⁵	1.35×10 ⁵
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(26.6%)	(55.6%)	(17.9%)
Radium Springs [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	2.44×10^{3}	0.00×10 ⁰	5.11×10 ⁴
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(4.6%)	(0.0%)	(95.4%)
Jornada Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	3.84×10 ³	5.21×10 ⁴
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(6.9%)	(93.1%)
Airport Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	1.39×10 ³	3.98×10 ⁴
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(3.4%)	(96.6%)
Talavera Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10^{0}	9.05×10 ³
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)
Anapra Satellite [acres]	0.00×10 ⁰	2.24×10 ³				
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(100.0%)

 Table 4-7: Hydraulic Conductivity Pollution Sensitivity Index Results




Figure 4-7: Hydraulic Conductivity Sensitivity Index (Ci) Locations for the Study Area

4.1.8 DRASTIC Pollution Sensitivity Index (DRASTIC_i)

A majority (51.4%) of the main study area (Table 4-8) is covered by the Average Risk (DRASTIC_i=106 to 124) category, bisected by the floodplain covered mainly by the Above Average and higher sensitivity (DRASTIC_i=125 to 200 maximum) categories, with Below Average or lower categories ($DRASTIC_{i}=105$ to 31 minimum) covering most of the area east of the floodplain and areas on the far western edge (Figure 4-8). Within the main study area, 10.5% have Very High sensitivities (DRASTIC_i=168 to 200), 3.4% have High sensitivities (DRASTIC_i=145 to 167), 1.6% have Above Average sensitivities (DRASTIC_i=125 to 144), 12.5% have Below Average sensitivities (DRASTICi=88 to 105), 12.0% have Low sensitivities $(DRASTIC_{i}=69 \text{ to } 87)$, and 8.7% have Very Low sensitivities $(DRASTIC_{i}=31 \text{ to } 68)$. Approximately 100% of the High and Very High categories and 95% of the Above Average category are located in the floodplain. Three center-pivot irrigation circles just north of the New Mexico-Mexico border are also of Above Average sensitivity. The Average sensitivity area covers a large swath of the western mesa from Interstate-10 south into Mexico, and also a small patch south of Tortugas 'A' Mountain and southwest of Fillmore Pass. The Below Average, Low, and Very Low sensitivity areas cover 33.2% of the main study area, and lie mainly along the piedmont slopes of hills and mountains on the perimeter of the basin and on the mesa where volcanic ejecta have covered the surface.

Nominal Value	Very High	High	Above Average	Average	Below Average	Low	Very Low	Total
<i>DRASTIC</i> i	200 to	167 to	144 to	124 to	105 to	87 to	68 to	Area
[sensitivity points]	168	145	125	106	88	69	31	Alta
Main Study Area [acres]	7.91×10 ⁴	2.56×10 ⁴	1.18×10 ⁴	3.89×10 ⁶	9.41×10 ⁴	9.10×10 ⁴	6.55×10 ⁴	755,682
(percent total area)	(10.5%)	(3.4%)	(1.6%)	(51.4%)	(12.5%)	(12.0%)	(8.7%)	(82.4%)
Floodplain Area [acres]	7.91×10 ⁴	2.56×10 ⁴	1.12×10 ⁴	9.37×10 ³	1.77×10 ⁴	4.98×10 ³	4.36×10 ³	132,358
(percent of Main Study)	(100%)	(100.0%)	(95.4%)	(2.4%)	(18.8%)	(5.5%)	(6.7%)	(17.5%)
Radium Springs [acres]	1.91×10 ²	2.53×10 ²	2.44×10 ²	9.57×10 ²	2.07×10 ³	5.95×10 ³	4.38×10 ⁴	53,492
(percent total area)	(0.4%)	(0.5%)	(0.5%)	(1.8%)	(3.9%)	(11.1%)	(81.9%)	(5.8%)
Jornada Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	5.60×10 ¹	3.65×10 ²	3.17×10 ⁴	2.38×10 ⁴	55,950
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.1%)	(0.7%)	(56.7%)	(42.5%)	(6.1%)
Airport Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	2.00×10 ⁰	1.56×10 ²	5.24×10 ³	2.11×10 ⁴	1.47×10 ⁴	41,141
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.4%)	(12.7%)	(51.2%)	(35.6%)	(4.5%)
Talavera Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	5.00×10°	7.52×10 ²	8.30×10 ³	9,053
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.1%)	(8.3%)	(91.6%)	(1.0%)
Anapra Satellite [acres]	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	0.00×10 ⁰	3.32×10 ²	8.31×10 ²	1.07×10^{3}	2,235
(percent total area)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(14.9%)	(37.2%)	(47.9%)	(0.2%)

 Table 4-8: DRASTIC Pollution Sensitivity Index Results

The satellite areas have predominantly (93.9%) Low and Very Low (DRASTICi=31 to 87) pollution sensitivities. Only the Radium Springs (687 acres, 2.8 km2, 1.3%) and Airport (2 acres, 0.01 km2, 0.0%) satellites have any area with Above Average or higher (DRASTICi= 125 to 200) sensitivities. In the Radium Springs satellite, 0.4% is in the Very High category (DRASTICi=168 to 200), 0.5% is in the High category (DRASTICi= 145 to 167), and 0.5% is in the Above Average category (DRASTICi= 125 to 144). The Jornada satellite is predominantly (56.7%) of Low (DRASTICi= 69 to 87) sensitivity, with 42.5% in the Very Low category (DRASTICi=69 to 87), 0.7% in the Below Average category (DRASTICi=88 to 105), and 0.1% in the Average category (DRASTICi=106 to 124).

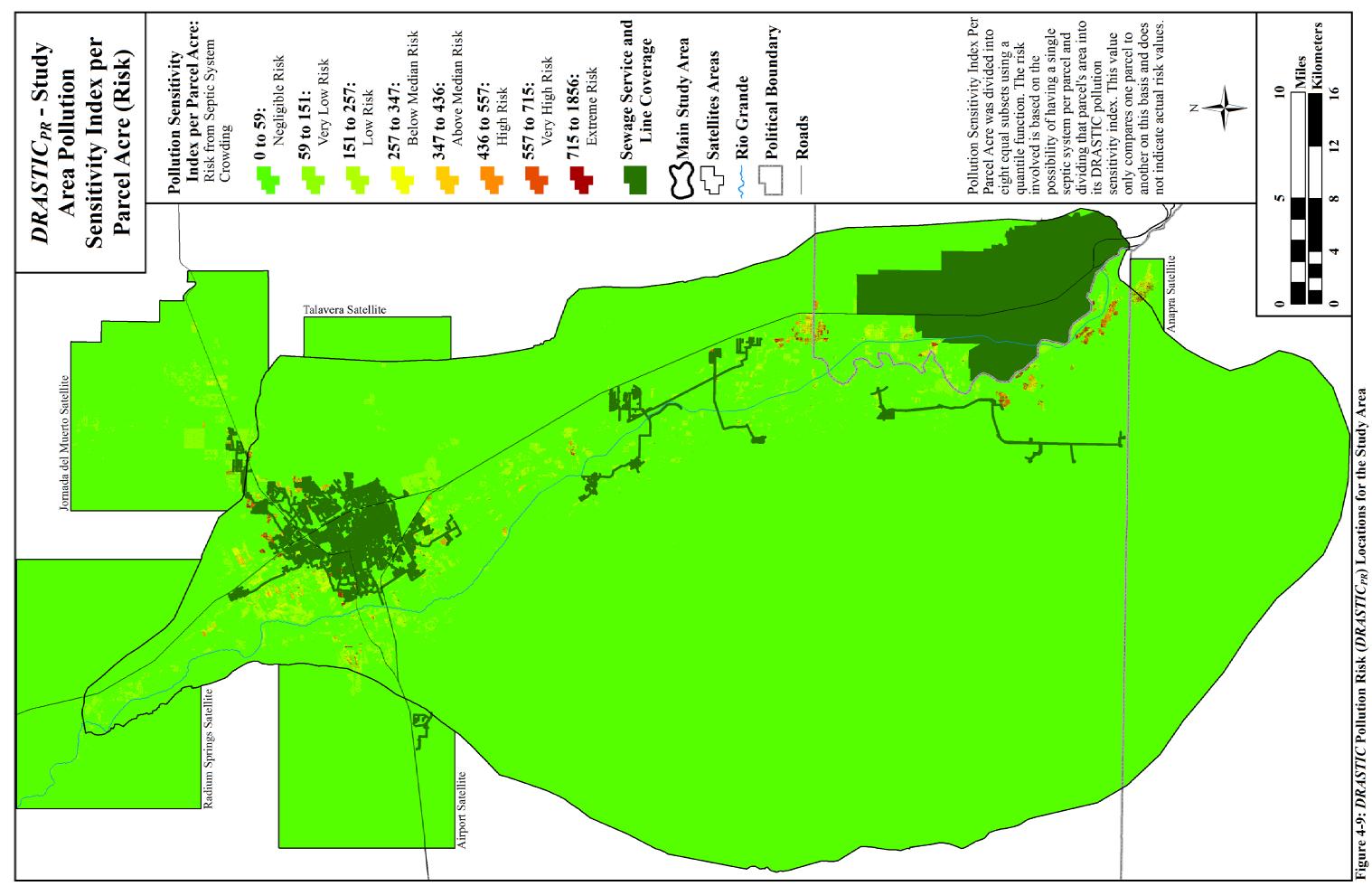
4.2 DRASTIC POLLUTION RISK RESULTS

The results of the *DRASTIC* pollution risk assessment indicate areas where sensitivity is combined with a suspected volume of a pollutant to determine the location of areas that have an increased chance to contaminate the groundwater. The pollution risk results are reported through numbers of parcels instead of by area, since the smallest unit of study is the cadastral unit and they cross study and satellite areas.

4.2.1 Area Weighted Mean DRASTIC Pollution Sensitivity Index (DRASTIC_{AWM})

When the *DRASTIC* results are averaged into each individual parcel, the map of the results retains nearly the same placement and sensitivity coverage as the original *DRASTIC* pollution sensitivity map. Most of the individual component details in the original *DRASTIC* sensitivity layer are averaged into individual parcels, leading to maximum sensitivity value of 196 instead of 200. The overall sensitivity index values remain in relatively the same place, however. The differences between the *DRASTIC* sensitivity index and the area weighted mean of the index, are that integer values change to decimal values (results of averaging) and units of measurement change from polygon area (acres) to individual parcels (group of 20 parcels).

Of the total number of parcels (Table 4-9) in the total study area, 10.5% parcels fell in the Very High (*DRASTIC_{AWM}*=167 to 196) sensitivity classification; 11.8% parcels fell in High (*DRASTIC_{AWM}*=144 to 167); 6.4% fell in Above Average (*DRASTIC_{AWM}*=124 to 144); 9.4% fell in Average (*DRASTIC_{AWM}*=105 to 124); 25.3% fell in Below Average (*DRASTIC_{AWM}*=87 to 105); 15.8% fell in Low (*DRASTIC_{AWM}*=68 to 87); and 20.8% fell in Very Low (*DRASTIC_{AWM}*=31 to 68). A majority (20.8%) of the parcels with an area less than one-half acre had a *DRASTIC*


pollution sensitivity of Below Average. A majority (2.2%) of the half- to one-acre parcels had a High sensitivity. One- to one-and-a-half acre parcels were predominantly (1.7%) of Low sensitivity and 0.7% of the one-and-a-half to two acre parcels had Very High sensitivity.

Nominal Value	Very High	High	Above Average	Average	Below Average	Low	Very Low	Total
Average Parcel DRASTIC Index (DRASTIC _{AWM})	167 to 196	144 to 167	124 to 144	105 to 124	87 to 105	68 to 87	31 to 68	Parcels
Parcels between 0.1 and 2.0 acres (percent total parcels in each bin)	8.12×10³ (67.0%)	1.25×10⁴ (91.5%)	6.93×10³ (92.8%)	9.21×10³ (84.8%)	2.73×10⁴ (92.9%)	1.57×10⁴ (85.5%)	2.21×10⁴ (91.9%)	1.02×10⁵ (87.9%)
Parcels between 0.1 and 0.5 acres (percent total parcels)	3.29×10³ (2.8%)	8.47×10 ³ (7.3%)	5.32×10³ (4.6%)	7.37×10³ (6.4%)	2.41×10⁴ (20.8%)	1.07×10⁴ (9.3%)	2.03×10⁴ (17.5%)	7.96×10⁴ (68.6%)
Parcels between 0.5 and 1.0 acres (percent total parcels)	2.24×10³ (1.9%)	2.55×10 ³ (2.2%)	1.08×10³ (0.9%)	1.01×10³ (0.9%)	1.89×10³ (1.6%)	2.52×10 ³ (2.2%)	9.62×10² (0.8%)	1.22×10⁴ (10.6%)
Parcels between 1.0 and 1.5 acres (percent total parcels)	1.79×10³ (1.5%)	1.10×10³ (0.9%)	3.67×10² (0.3%)	6.11×10² (0.5%)	9.70×10² (0.8%)	1.98×10³ (1.7%)	6.12×10² (0.5%)	7.43×10 ³ (6.4%)
Parcels between 1.5 and 2.0 acres (percent total parcels)	8.05×10 ² (0.7%)	3.82×10² (0.3%)	1.57×10² (0.1%)	2.19×10² (0.2%)	3.70×10² (0.3%)	4.56×10² (0.4%)	2.19×10² (0.2%)	2.61×10³ (2.2%)
Total parcels in each bin (percent total parcels)	1.21×10⁴ (10.5%)	1.37×10⁴ (11.8%)	7.46×10³ (6.4%)	1.09×10⁴ (9.4%)	2.94×10⁴ (25.3%)	1.84×10⁴ (15.8%)	2.41×10⁴ (20.8%)	1.16×10⁵ (100%)

 Table 4-9: Area Weighted Mean DRASTIC Pollution Sensitivity Index Results

4.2.2 DRASTIC Parcel Pollution Risk: DRASTIC_{AWM} per Acre (DRASTIC_{PR})

Dividing individual parcel area (in acres) into each parcel's *DRASTIC* index value completely changes the spatial layout of the values (Figure 4-9). To compare parcels, bins with nearly equal (with breaks only occurring between different parcel area values) amounts of parcels were created to classify them (Table 4-10). All of the parcels that fell in the High (*DRASTIC*_{PR}= 436 to 557), Very High (*DRASTIC*_{PR}=557 to 715), or Extreme (*DRASTIC*_{PR}=715 to 1856) pollution risk bins were less than a half-acre. The percentage of the smaller parcels in each bin decreases as pollution risk values decrease. For example, parcels at a half-acre or less fill 98.7% of the Above Median (*DRASTIC*_{PR}=347 to 436) bin; 88.3% of the Below Median (*DRASTIC*_{PR}=257 to 347) bin; 54.5% of the Low (*DRASTIC*_{PR}=151 to 257) bin; 7.7% of the Very Low (*DRASTIC*_{PR}=59 to 151) bin; and none of the Negligible bin (*DRASTIC*_{PR}=0 to 59). Parcels in the Negligible pollution risk bin that are less than two acres make up 13.7% of the total. Most (95.4%) of the parcels that have above median pollution risk fall within community boundaries, even up to 7.5 miles (12.1 km) outside of the floodplain.

Nominal Value	Extreme	Very High	High	Above Median	Below Median	Low	Very Low	Negligible	Total
DRASTIC Index	715	557	436	347	257	151	59	0	Total Parcels
Value Per Acre	to	1 arceis							
(DRASTIC _{PR})	1856	715	557	436	347	257	151	59	
Parcels between	1.45×10^{4}	1 45, 104	1.45×10^{4}	1 45, 104	1 45, 104	1 45, 104	1 20, 104	1.00, 103	1.02.105
0.1 and 2.0 acres		1.45×10^{4}		1.45×10^{4}	1.45×10^{4}		1.29×10^{4}	1.99×10^{3}	1.02×10^{5}
(percent of total)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(89.3%)	(13.7%)	(87.9%)
Parcels between	1.45×10 ⁴	1.45×10 ⁴	1.45×10 ⁴	1.43×10 ⁴	1.28×10 ⁴	7.90×10 ³	1.11×10 ³	0.00×10^{0}	7.96×10^{4}
0.1 and 0.5 acres	(100%)	(100%)	(100%)	(98.7%)	(88.3%)	(54.5%)	(7.7%)	(0.0%)	(68.6%)
Parcels between	0.00×10^{0}	0.00×10^{0}	0.00×10^{0}	1.85×10^{2}	1.70×10^{3}	5.33×10 ³	4.97×10^{3}	5.80×10 ¹	1.22×10^{4}
0.5 and 1.0 acres	(0.0%)	(0.0%)	(0.0%)	(1.3%)	(11.7%)	(36.8%)	(34.3%)	(0.4%)	(10.6%)
Parcels between	0.00×10^{0}	1.26×103	5.25×10 ³	9.27×10^{2}	7.44×10^{3}				
1.0 and 1.5 acres	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(8.7%)	(36.2%)	(6.4%)	(6.4%)
Parcels between	0.00×10^{0}	1.61×10^{3}	1.00×10^{3}	2.61×10^{3}					
1.5 and 2.0 acres	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(11.1%)	(6.9%)	(2.2%)
Total Parcels	1.45×10 ⁴	1.16×10 ⁵							

Table 4-10: DRASTIC Parcel Pollution Risk Results

4.2.3 Parcel Groups with High DRASTIC Pollution Risk

After separating out all parcels with Above Average and higher pollution risk (*DRASTIC_{PR}*=347 to 1856) and removing parcels determined to be within reach of a sewage system (Table 4-11), large groupings of twenty or more parcels were sought to determine locations of parcel groups that could possibly have a high potential of septic-system pollution. A list of 79 parcel groups was sent to the New Mexico Environment Department to verify if they were on septic or sewage (Appendix B, Table B-8). The list was returned with 28 of the parcel groups being verified *On Sewage*, 8 being *Verified* on septic, 2 being on *Partial* septic, and 41 left unverified. Using this classification, 16 of the unverified parcel groups were *Likely* on septic, 18 were *Uncertain* on septic, and 7 were *Unlikely* on septic.

Of the communities that have sewage treatment plants, Sunland Park had the greatest number of high risk parcels (2990 in ten parcel groups), followed by Anthony, NM/TX (2310 in seven parcel groups), and Anapra (1280). The number of parcels that are serviced by the sewagetreatment systems in these communities is unknown. Of the communities without sewage treatment plants or in areas where they do not receive service, Santa Theresa has 1240 high risk parcels in eight parcel groups, Doña Ana County has 710 parcels in nine parcel groups, Las Cruces has 692 parcels in seven parcel groups, Canutillo has 357 parcels in three parcel groups, San Ysidro has 165 parcels in three parcel groups, Mesquite has 148 parcels in one parcel group, Fairacres has 29 parcels in one parcel group, and San Pablo has 20 parcels in one parcel group. Of the communities with sewage treatment, Sunland Park has the greatest number (2860 parcels, 95.7%) of Very High *DRASTIC* pollution risk values. Of the communities without sewage, Santa Theresa has the greatest number of Extreme (240 parcels, 19.4%) and Very High (585 parcels, 47.2%) *DRASTIC* pollution risk values.

		with Higher 1								
C	C	T	Parcels with Above Median Risk							
Community	Groups	Treatment	Extreme	Very High	High	Above Median	Total			
Sunland Park	10	Septic/Sewage	1.01×10^{2}	2.86×10 ³	2.80×10^{1}	0.00×10^{0}	2.99×10^{3}			
Anthony	7	Septic/Sewage	2.18×10 ²	1.06×10^{3}	1.03×10 ³	0.00×10^{0}	2.31×10^{3}			
Anapra	1	Septic/Sewage	0.00×10^{0}	1.28×10^{3}	0.00×10^{0}	0.00×10^{0}	1.28×10^{3}			
Doña Ana Cty	9	Septic/Sewage	2.00×101	3.50×10 ¹	1.72×10^{2}	4.83×10^{2}	7.10×10^{2}			
Las Cruces	7	Septic/Sewage	0.00×10^{0}	3.26×10^{2}	3.08×10^{2}	5.80×10 ¹	6.92×10^{2}			
Santa Theresa	8	Septic	2.40×10^{2}	5.85×10^{2}	1.58×10^{2}	2.36×10^{2}	1.24×10^{3}			
Canutillo	3	Septic	2.31×10 ²	0.00×10^{0}	1.26×10^{2}	0.00×10^{0}	3.57×10^{2}			
San Ysidro	3	Septic	0.00×10^{0}	0.00×10^{0}	6.30×101	1.02×10^{2}	1.65×10^{2}			
Mesquite	1	Septic	0.00×10^{0}	1.48×10^{2}	0.00×10^{0}	0.00×10^{0}	1.48×10^{2}			
Fairacres	1	Septic	0.00×10^{0}	2.90×101	0.00×10^{0}	0.00×10^{0}	2.90×10^{1}			
San Pablo	1	Septic	0.00×10^{0}	0.00×10^{0}	2.00×10 ¹	0.00×10^{0}	2.00×10^{1}			

Table 4-11: Communities with Higher Than Median DRASTIC Pollution Risk

5.0 DISCUSSION AND CONCLUSION

5.1 DRASTIC MODEL PREDICTIONS

Several steps were taken in this project to improve the accuracy and precision of the predictions, but there were never any plans to check the quality assurance of the results. No water quality studies or field measurements were performed to assess the ability of the model to predict pollution sensitivity or risk. This project only used the information that the model provided to determine some of the best places to bring training to the public. This does not mean that the results of the project are unusable as a building block in a more formal hydrogeological undertaking. The model was originally built as a preliminary tool to locate sensitive areas for more extensive studies, specifically to guide our community outreach efforts and inform relevant agencies of potential risk to groundwater contamination.

The components of the model provided some insight about the Mesilla Basin. A silhouette of the cities of Las Cruces and El Paso can be seen in the Net Recharge component (Figure 4-2), which affects the final *DRASTIC* pollution sensitivity results by one or two sensitivity brackets (Very High to High or Above Average). This is mainly because urban development generally causes poor onsite groundwater recharge, but Las Cruces also has a silhouette in the Depth to Water component. Increased depth to water values can come from lowered water-table levels or increased terrain height above the flood plain, as is seen in the West Mesa. Since the Topography component does not show higher terrain where the Las Cruces silhouette lies, it is possible that the water-table depth was lower in the area even before the wells were being monitored.

Another interesting development from the Net Recharge component is how roads decrease pollution sensitivity and center pivot irrigation plots (the three circles in southern half) increase sensitivity, despite being more than 300 feet (91 m) above the water-table level. This does not mean that more pollution will be located here, but it does indicate that a pollutant in the irrigation area could have a greater chance of reaching the aquifer than in the surrounding areas. The actual likelihood (risk) for pollution events to occur require a pollutant as well as a sensitive environment. This is seen on the map with sensitivity index per parcel acre (Figure 4-9). Higher risk is found where dense clusters of septic systems on small parcels are found, even when those parcels are in low-sensitivity areas. Conversely, not all parcels in the highest sensitivity area were found to be at great risk using this methodology, at least from septic systems. While small parcels

with high risk still dot the high sensitivity rural areas, a lack of dense groups can greatly reduce the risk.

Since parcel pollution risk is created by dividing area weighted mean sensitivity scale by parcel area, a somewhat linear correlation between pollution risk and parcel area was expected. Instead, there was an exponential correlation (Figure 5-1) (*DRASTIC*_{PR} = $87.7 \times$ Parcel Area^{-0.979}, R² =0.93). This analysis (Figure 5-1) of the pollution risk in each parcel was beyond the scope of objectives of the original BECC project. It is, however, a clear indication that as the size of parcel decreases, the possible density of on-site wastewater discharge and the pollution risk from individual septic systems increases.

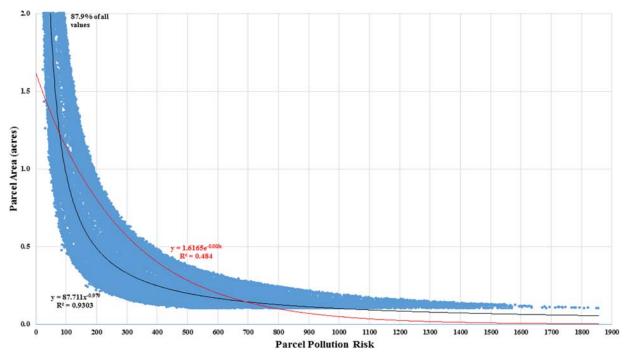


Figure 5-1: Correlation Between Parcel Area and Parcel Pollution Risk

5.2 DRASTIC COMPONENT ASSUMPTIONS

It was necessary to make assumptions about the behavior of the environment to keep the project moving forward. Considering the scale of this project, we had to assume that the water table was relatively flat, even though it is a constantly changing environment. The water table is actually broken in many areas due to uneven layers of subsurface hydrogeology and conic depressions from well pumping. A water-table surface was created using the highest values across the monitored life of each well in an attempt to account for these assumptions; however, there was no way to verify this method.

After the surface was created, it was extended into the Selden Canyon area to build the Depth to Water component for the Radium Springs satellite. This was performed without using any well logs from that area, because water-table surfaces interpreted for the Selden Canyon area never matched the elevations of the main study area, nor provided surfaces that fit properly under a digital elevation model. As a result, the water depths in the Radium Springs Satellite are not listed at less than 15 feet to water, even though the river flows through this pass and the water table is generally within 15 feet of the floodplain surface.

The Net Recharge component was built using previous research with *DRASTIC* by Creel and others (1998) and Kennedy (1999) and was used to obtain values for the land-cover ratings (Section 3.2.2). They acquired climate calculations performed by Frenzel and Kaehler (1992) to find that irrigated land provided 10 or more inches of recharge per unit area and non-irrigated land provided less than 2 inches. When comparing such results for Net Recharge against those found in *DRASTIC*, Aller and others (1987) stated that irrigation was estimated to provide up to four inches per year to recharge values. They also declared that a range of 10 or more inches should be used for recharge of the predefined *DRASTIC* hydrogeological setting of River Alluvium without Overbank Deposits. Since this was indicated for an area matching the flood plain along the Mesilla Basin where a majority of the irrigated agriculture lies, the estimates that Creel and others (1998) provided were assumed to be correct.

The hydrogeological cross sections provided by Hawley and Kennedy (2004) are interpolations along a transect line between deep borehole (well) control points and are assumptions of the hydrogeological media between wells. The Aquifer Media and Hydraulic Conductivity index maps (Sections 3.2.3 and 3.2.7) are interpolations between those cross sections and are assumptions based on assumptions. In terms of accuracy, these assumptions were still better than saying that the entire basin was filled with sand and gravel of a single hydraulic conductivity. Also, we made an assumption that a pollutant reaching the aquifer media at the water-table level would stay in that media and hydraulic conductivity even if it went lower into the aquifer. The Aquifer Media and Hydraulic Conductivity component maps assume that the material at the water-table level continue all the way to the base-bedrock layer. This is certainly not the case as depicted in the Hawley and Kennedy (2004) cross sections. In actuality, the layers of aquifer from bedrock to surface are as varied vertically as they are horizontally.

5.3 DRASTIC DATA DIFFICULTIES

Several assumptions were made during the project that had to do with data collection. It was safe to assume that the aquifer characteristics on either side of political boundaries were the same at the scale of this project, but the way in which data were collected and stored by agencies on both sides of political lines made it appear to be different. This was remedied by using data with similar schemas or collected from one side to describe events on both sides. This did not work in all cases and boundary lines are apparent in some components. Different scales and precisions were also prevalent across the U.S.-Mexico border, but this issue was less important since no parcels cross the borderline. High precision was not really necessary for Mexico, except in Anapra where most of the community does not reside over the shallow aquifer.

Lack of data and metadata was also an issue while building this project and some assumptions had to be made to use the data available or to continue without some data. Without a complete dataset of all of the sewage facilities in the study area, we had to assume that sewage lines that were provided for the study area were main sewage lines. Lateral or sewage lines would have extended the reach of the sewer systems into parcel groups, taking the guesswork out of verifying where septic systems were located. We also had to assume that the El Paso wastewater service area covered the entire area with sewage lines. Out of the 51 parcel groups that were not verified as being *On Sewage*, 8 parcel groups with above average pollution risk were found in communities that have sewage treatment plants, but we did not have a layout of their service area or sewage lines to determine if they were at risk.

5.4 RECOMMENDATIONS FOR USING THE DRASTIC MODEL WITH SEPTIC SYSTEMS

Aller and others (1987) explained that the *DRASTIC* model had four basic assumptions: 1) that the contaminant would be introduced at the ground surface, 2) that the contaminant would be carried to the groundwater by precipitation, 3) that the contaminant would have the mobility of water, and 4) that the evaluated area would be larger than 100 acres. Aller and others (1987) also explained that failure to heed the assumptions of the model would not necessarily invalidate it, but could reduce its predictive effectiveness. This being said, the *DRASTIC* model was not designed for use on septic systems. Aller and others (1987) did mention that wastewater was a source of water that carried pollutants and did mention that certain pollutants came from wastewater, but they did not describe how the model should be adjusted to account for the

delivery of those pollutants. While septic systems can be studied on a scale larger than 100 acres (0.4 km^2) and have discharged pollutants with the mobility of water, these pollutants are introduced several feet below the ground surface and are only slightly affected by precipitation. Septic-system effluent is its own transport medium, carrying waterborne pollutants further into the soil by the flushing of water. Because of this, two of the model's assumptions (introduced at ground surface and carried by precipitation) are nearly rejected. "Wastewater pollutants are the same as any other surface-dispersed, waterborne pollutant" was one of the main assumptions made during the project and only realized after the model was run and the results were studied to in fact be not well justified. A few alterations could be made to *DRASTIC* variables to improve model performance if a pollutant was delivered at the subsurface using its own transport water. These are stated below:

- Depth to water values should be 1 to 6 feet less than the surface measurements to account for the septic tank depth. This change would account for an increase of no more than 10 (from a rating of 9 to a rating of 7 multiplied by a weight of 5) sensitivity index points, as the maximum change from one rating to the next is by a value of 2.
- Net recharge for a drain field should be well over 10 inches per unit area, but only for those parcels that are verified as having a septic system. To calculate water coming from septic systems, the model would have to start with cadastral units and septic-system locations before the Net Recharge component was built. This would be a complex step, but would improve the results. In drier climates, this change could account for an increase of up to 32 (from a rating of 1 to a rating of 9 multiplied by a weight of 4) sensitivity index points.
- The Aquifer Media component would not be affected by septic systems and should not be changed.
- Much of the attenuation from soil media would be negated by the deposit of wastewater pollutants close to the bottom of the layer. An average depth for drain fields could be determined and protection from that point down in the soil series could be used. Typical depths of drain field are 1 to 3 feet. If half of the soil series were negated, this would account for an increase of up to 9 (half of the maximum from a rating of 1 to a rating of 10 multiplied by a weight of 2) sensitivity index points or remove up to 20 points from the entire model if the component were not used.
- Topography would not affect wastewater systems, since drain fields are generally placed in relatively level ground with only a slight decline. However, while topography may not have a direct effect on the dispersion of wastewater pollutants, it does have an effect on other forms of recharge and cannot be discarded as easily as soil media might. This component should be left alone, since its weight does not contribute as much to the total index anyway. Since most homes are built on flat ground, this might not affect the number of sensitivity index points.

• The Impact of the Vadose Zone and Hydraulic Conductivity components would not be affected by septic systems and should not be changed.

5.5 CONCLUSIONS

This report explains the reasoning and tools used in an analysis performed over the entirety of the Mesilla Basin aquifer, a portion of the Jornada del Muerto Basin aquifer, and several surrounding areas just outside the aquifer. The analysis, using a version of the *DRASTIC* model tailored to the study area, provided a spatial study of the variability of the pollution sensitivity in the area, which was cross-referenced with on-site wastewater systems as a pollution source. This provided a spatial set of values indicating an ordinal range of risk of pollution from on-site wastewater systems to the underlying aquifer. The highest *DRASTIC* pollution sensitivity index values occurred in the Rio Grande floodplain, where low depth to water values, high amount of recharge from agriculture, high hydraulic conductivities, and where relatively flat sand and gravel hydrogeology are located. The high index values correspond to poor attenuation and high pollution sensitivity.

DRASTIC pollution sensitivity index values were cross referenced with cadastral units throughout the study area to determine an area weighted pollution sensitivity. The area weighted DRASTIC layer had nearly the same spatial variability as the DRASTIC pollution sensitivity index layer, because the sensitivity values were averaged in each parcel. Assuming one on-site wastewater system per property allows the size of property to be used to limit the density that the systems can be placed. Property size was used as another modeling factor by dividing the parcel size into the average DRASTIC value to obtain pollution sensitivity per unit area. High density parcel groups were found to display the greatest risk for pollution from wastewater systems, even over some high sensitivity properties found in the floodplain. Pollution risk from on-site wastewater systems was determined to increase as parcel size decreased.

Many of the parcels having high pollution sensitivity per unit area had no pollution risk from on-site wastewater systems, because they were on public sewage systems. Cross-referencing the *DRASTIC* pollution risk map with a sewage line and service area layer, we excluded most of the parcel groups with the highest risk values throughout the study area. Many of the parcel groups not excluded could not be verified as being on septic. A number of those that were verified were chosen for community outreach and instructional workshops to inform the property owners of the relationships between their on-site wastewater systems and the aquifer system below.

6.0 REFERENCES

- Aller, L., T. Bennett, J. Lehr, and R. Petty. 1987. *DRASTIC: A Standardized System to Evaluate Ground Water Pollution Potential Using Hydrogeologic Settings* Worthington, OH: National Water Well Association.
- Anderson, J.A., E.E. Hardy, J.T. Roach, and R.E. Witmer. 1976. *A land use and land cover classification* system for use with remote sensor data Geological Survey Professional Paper 964, Washington, D.C.: United States Government Printing Office.
- Babiker, I.S., A.A. Mohamed, T. Hiyama, and K. Kato. 2005. "A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan." Science of the Total Environment 345: 127-140.
- Bahr, T.G. 1979. *Water Resources and Growth of the Mesilla Valley: An Issue Paper* Technical Completion Report 104, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Brown, C.P. 2014. Border 2012 Project Final Report Examination of Risk to groundwater from onsite wastewater management systems (BECC Project# TAA12-021). Submitted to the Border Environment Cooperation Commission, 28 February 2014.
- Bulloch, H.E. and R.E. Neher. 1980. *Soil Survey of Dona Ana County Area, New Mexico*. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service.
- Collins, E.W. and J.A. Raney. 2000. *Geologic map of west Hueco Bolson, El Paso region, Texas* 1:100,000 Scale Open-File Map, Austin, TX: University of Texas at Austin, Bureau of Economic Geology.
- Creel, B.J., T.W. Sammis, J.F. Kennedy, D.O. Sitze, D. Asare, H.C. Monger, and Z.A. Samani. 1998. *Ground-Water Aquifer Sensitivity Assessment* Technical Completion Report 305, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Ferrari, R.L. 2008. *Elephant Butte Reservoir 2007 Sedimentation Survey* Technical Report No. SRH-2008-4., Denver, CO: Bureau of Reclamation, Technical Service Center.
- Fetter, C.W. 2001. Applied Hydrogeology Upper Saddle River, NJ: Prentice Hall, Inc.
- Frenzel, P.F. and C.A. Kaehler. 1992. Geohydrology and Simulation of Ground-Water Flow in the Mesilla Basin, Doña Ana County, New Mexico, and El Paso County, Texas Professional Paper 1407-C, Reston, VA: U.S. Geological Survey.
- Fry, J.A., G. Xian, S. Jin, J.A. Dewitz, C.G. Homer, L. Yang, C.A. Barnes, N.D. Herold, and J.D. Wickham. 2011. "Completion of the 2006 National Land Cover Database for the Conterminous United States." *Photogrammetric Engineering & Remote Sensing* 77 (9): 858-864.
- Gile, L.H., J.W. Hawley, and R.B. Grossman. 1981. Soils and geomorphology in the Basin and Range area of Southern New Mexico Guidebook to the Desert Project Socorro, NM: Authority of State of New Mexico.

- Gogu, R.C. and A. Dassargues. 2000. "Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods." *Environmental Geology* 39: 549-559.
- Hawley, J.W. 1986. "Physiographic provinces (and) landforms of New Mexico." In *New Mexico in Maps*, by J.L. Williams, 28-31. Albuquerque, NM: University of New Mexico Press.
- Hawley, J.W. 1975. "Quaternary history of Doña Ana County Region, south-central New Mexico." *New Mexico Geological Society, Guidebook* 26: 139-150.
- Hawley, J.W. and J.F. Kennedy. 2004. Creation of a Digital Hydrogeological Framework Model of the Mesilla Basin and Southern Jornada Muerto Basin Technical Completion Report 332, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Hawley, J.W., J.F. Kennedy, and B.J. Creel. 2001. "The Mesilla Basin aquifer system of New Mexico, West Texas and Chihuahua – An overview of its hydrogeologic framework and related aspects of groundwater flow and chemistry." In *Aquifers of West Texas*, by R.E. Mace, W.F. III Mullican and E.S. Angle, 76-99. Austin, TX: Texas Water Development Board Report 356.
- Hibbs, B.J., R.H. Boghici, M.E. Hayes, J.B. Ashworth, A.T. Hanson, Z.A. Samani, J.F. Kennedy, and B.J. Creel. 1997. *Transboundary Aquifers of the El Paso/Ciudad Juárez/Las Cruces Region* Special Report for the USEPA, Region 6, Dallas, TX: Texas Water Development Board and New Mexico Water Resources Research Institute.
- Instituto Nacional de Estadística y Geografía. 2010. "Censo de Población y Vivienda 2010." *México en Cifras* http://www3.inegi.org.mx. (accessed November 10, 2013).
- Jaco, H.B. 1971. *Soil Survey of El Paso, Texas*. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service.
- Jenks, G.F. 1967. The Data Model Concept in Statistical Mapping. *International Yearbook of Cartography* 7: 186-190.
- Kalinski, R.J., W.E. Kelly, I. Bogardi, R.L. Ehrman, and R.L. Yamamoto. 1994. "Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska." Ground Water 32 (1): 31-34.
- Kennedy, J.F. 1999. "Aquifer sensitivity assessment for the Lower Rio Grande." In Proceedings of the 43rd Annual New Mexico Water Conference: Water Challenges on the Lower Rio Grande Report No. 310, Las Cruces, NM: New Mexico Water Resources Research Institute. 84-104.
- Lansford, R.R., B.J. Creel, and C. Seipel. 1980. *Demonstration of Irrigation Return Flow Water Quality Control in the Mesilla Valley, New Mexico* Technical Completion Report 120, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Longworth, J.W., J.M. Valdez, M.L. Magnuson, and K. Richard. 2013. *New Mexico Water Use by Categories 2010* Technical Report 54, Santa Fe, NM: New Mexico Office of the State Engineer.

- McCray, J.E., S.L. Kirkland, R.L. Siegrist, and G.D. Thyne. 2005. "Model Parameters for Simulating Fate and Transport of On-Site Wastewater Nutrients." *Ground Water* 43 (4): 628-639.
- McLay, C.D., R. Dragden, G. Sparling, and N. Selvarajah. 2001. "Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches." *Environmental Pollution* 115: 191-204.
- McQuillan, D. 2004. "Ground-Water Quality Impacts from On-Site Septic Systems." In National Onsite Wastewater Recycling Association, 13th Annual Conference November 7-10, 2004, 1-13.
 Albuquerque, NM: National Onsite Wastewater Recycling Association.
- McQuillan, D., T. Brandt, and G. Beatty. 2004. *Hydrogeological Analysis of On-site Septic System Lot Size*. Analysis, Santa Fe, NM: New Mexico Environment Department, Field Operations Division.
- Merchant, J.W. 2010. GIS-based groundwater pollution hazard assessment: a critical review of the DRASTIC model. Photogrammetric Engineering & Remote Sensing 60 (9): 1117-1127.
- Napolitano, P. and A.G. Fabbri. 1996. "Single-parameter sensitivity analysis for aquifer vulnerability assessment using *DRASTIC* and SINTACS HydroGIS 96: application of geographical information systems in hydrology and water resources management." In *Proceedings of Vienna Conference*, *IAHS Publication* Vol. 235, 559-66. Vienna, AT: International Association of Hydrologic Sciences.
- New Mexico Environment Department, Liquid Waste Program. 2006. "Onsite Sewage Management in New Mexico." In New Mexico Environment Department, Liquid Waste Program October 11. http://www.nmenv.state.nm.us/fod/LiquidWaste/onsite%20sewage%20management%20in%20N M.pdf. (Accessed April 22, 2014).
- New Mexico Environment Department, Surface Water Quality Bureau. 2012. 2012-2014 State of New Mexico Clean Water Act Integrated Report Statute §303(d)/§305(b). Santa Fe, NM: State of New Mexico.
- Panagopoulos, G.P., A. Antonakos, and N.J. Lambrakis. 2006. Optimization of the *DRASTIC* method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. *Hydrogeology Journal* 14 (6): 894-911.
- Peter J. Smith & Company, Inc. 2009. Comprehensive Plan Inventory for the City of Las Cruces and Doña Ana County Urban Design Plan, Buffalo, NY: Peter J. Smith & Company, Inc.
- Peterson, D.M., R. Khaleel, and J.W. Hawley. 1984. *Quasi Three-dimensional Modeling of Groundwater Flow in the Mesilla Bolson, New Mexico and Texas* Technical Completion Report 178, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Rosen, L. 1994. "A study of the *DRASTIC* methodology with emphasis on Swedish conditions." *Ground Water* 32(2): 278-285.
- Rupert, M.G. 2001. "Calibration of the *DRASTIC* ground water vulnerability mapping method." *Ground Water* 39 (4): 625-630.

- Sammis, T.W. 1980. Demonstration of Irrigation Return Flow Water Quality in the Mesilla Valley, New Mexico Technical Completion Report 117, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Seager, W.R. 1995. Geologic map of the southwest quarter of the Las Cruces and northwest part of the El Paso 1° × 2°, New Mexico. 1:125,000 Scale Geologic Map, Socorro, NM: New Mexico Bureau of Mines and Mineral Resources.
- Seager, W.R., J.W. Hawley, F.E. Kottlowski, and S.A. Kelley. 1987. Geologic map of east half of Las Cruces and northeast El Paso 1° × 2°, New Mexico. 1:125,000 Scale Geologic Map, Socorro, NM: New Mexico Bureau of Mines and Mineral Resources.
- Secunda, S., M.L. Collin, and A.J. Melloul. 1998. Groundwater vulnerability assessment using a composite model combining *DRASTIC* with extensive agricultural land use in Israel's Sharon region. *Journal of Environmental Management* 54: 39-57.
- Shiklomanov, I. 1993. "World fresh water resources." In *Water in Crisis: A Guide to the World's Fresh Water Resources*, by P. H. Gleick, 13-24. New York, NY: Oxford University Press.
- Soller, D.R. 1992. *Applying the DRASTIC model a review of county-scale maps* USGS Open-file Report 92-297, Reston, VA: United States Geological Survey.
- U.S. Census Bureau. 2004. 2000 Census Summary Washington DC: United States Census Bureau.
- . 2010. "2010 Total Population Census Summary File 1." In *American Fact Finder* http://factfinder2.census.gov. (Accessed November 10, 2013).
- U.S. Department of Agriculture, Natural Resources Conservation Service. Revised December 2000. *1997 National Resources Inventory* http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/ ?cid=nrcs142p2_053587. (Accessed May 13, 2012).
- ———. 2008. *Soil Survey Geographic (SSURGO) database for Doña Ana County Area, New Mexico* Fort Worth, TX: U.S. Department of Agriculture, Natural Resources Conservation Service.
- ———. 2009. Soil Survey Geographic (SSURGO) database for Fort Bliss Military Reservation, New Mexico and Texas Fort Worth, TX: U.S. Department of Agriculture, Natural Resources Conservation Service.
- ———. 2009. *Soil Survey Geographic (SSURGO) database for El Paso County, Texas (Main Part)* Fort Worth, TX: U.S. Department of Agriculture, Natural Resources Conservation Service.
- U.S. Geological Survey. 2009. *1/3-Arc Second National Elevation Dataset* Sioux Falls, SD: U.S. Geological Survey.
- U.S. Geological Survey Water Resources. 2012. Groundwater Levels for the Nation. In *National Water Information System: Web Interface* http://nwis.waterdata.usgs.gov/nwis. (Accessed August 1, 2012).

- Updegraff, C.D. and L.W. Gelhar. 1977. *Parameter Estimation for a Lumped Parameter Groundwater Model of the Mesilla Valley, New Mexico* Technical Completion Report 97, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Vbra, J. and A. Zaporozec. 1994. *Guidebook on mapping groundwater vulnerability* Hannover, DE: Heinz Heise.
- Witcher, J.C., J.P. King, J.W. Hawley, J.F. Kennedy, J. Williams, M. Cleary, and L.R. Bothern. 2004. Sources of Salinity in the Rio Grande and Mesilla Basin Groundwater Technical Completion Report 330, Las Cruces, NM: New Mexico Water Resources Research Institute.
- Woodward, D.G. and R.G. Meyers. 1997. Seismic investigation of the buried horst between the Jornada del Muerto and Mesilla ground-water basins near Las Cruces, Doña Ana County, New Mexico Water Resources Investigations Report 97-4147, Reston, VA: U.S. Geological Survey.
- Worrall, F. and D.W. Kolpin. 2004. Aquifer vulnerability to pesticide pollution-combining soil, landuse and aquifer properties with molecular descriptors. *Journal of Hydrology* 293 (1-4): 191-204.
- Yang, Y.S. and L. Wang. 2010. Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the *DRASTIC* method: a case study. *Hydrological Sciences Journal* 55 (7): 1206-1216.

APPENDIX A. THE DRASTIC POLLUTION SENSITIVITY MODEL

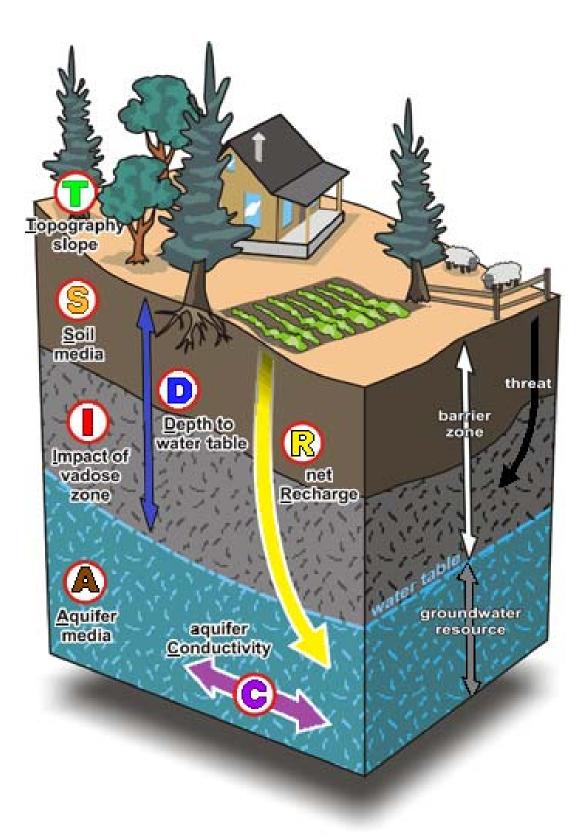
A.1 HYDROGEOLOGICAL SETTINGS AND ASSUMPTIONS

The *DRASTIC* model is described in full detail in *DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings* by Aller and others (1987) and is briefly summarized here to help elucidate the process and components that were tailored to the Mesilla Basin. A thorough collection of overviews, descriptions, procedures, applications, hydrogeologic setting examples, and appendix material can be found in the above referenced document.

DRASTIC is a model that is built around hydrogeologic settings and a ranking scheme that helps users evaluate the pollution potential of the groundwater in one area relative to another connected area. Hydrogeological settings are a selection of geologic and hydrologic factors that assist or prevent the transmission of a pollutant to a source of water. Factors include the starting location of a pollutant, its travel distance, the length of time the pollutant remains in contact with materials, the volume of the pollutant, the volume of transport media moving the pollutant, and hydrogeological materials that must be passed through, and type of pollutant being transmitted. The factors themselves were chosen by a committee of hydrogeologists based on their relative importance and availability of mappable data.

If data concerning a study area are not available, an extensive set of predetermined hydrogeological settings is available in the document by Aller and others (1987), based on geomorphologies of several published groundwater regions. In the examples, there are thirteen different hydrogeological regions broken into four to sixteen different hydrogeological settings each. The Mesilla Valley floodplain is considered an Alluvial Plains region and has a hydrogeological setting of 2Hb, representing River Alluvium without Overbank Deposits. A typical *DRASTIC* Index value for such a setting is 191.

If data concerning a study area are available, the *DRASTIC* model allows the building of maps tailored specifically to the study area. The model scheme provides the common hydrogeological factors described below with a weight that describes the ability of that factor to facilitate or inhibit the fate of a waterborne pollutant. Each weight is a constant value that is never changed and has been determined through the consensus of a committee of hydrogeologists. Each factor is also broken into ranges and are given a rating from 1 to 10 to indicate their individual


ability to help or hinder a pollutant's fate. The range of the factor is either an explicit value (such as 15 feet to water) or a type of material with an implicit value (such as sandstone, which may be heavily fractured). When a factor's weight and rating are multiplied together, an index value is created that describes that factor's total pollution attenuating ability for that mappable unit (a unit of area with common hydrogeological factors). The *DRASTIC* model uses a set of seven hydrogeological factors arranged in order to spell the acronym naming the system: Depth to Water (*D*), Net Recharge (*R*), Aquifer Media (*A*), Soil Media (*S*), Topography (*T*), Impact of the Vadose Zone (*I*), and Hydraulic Conductivity (*S*). Figure A-1 shows how each factor interacts.

The *DRASTIC pollution sensitivity index* (*DRASTIC_i*) is the composite index value that is calculated from the indices of the hydrogeological factors in the model. The *DRASTIC* index is calculated by adding up each of the component index layers for each mappable unit in an entire study area using the formula:

$$DRASTIC_{i} = Dr \times Dw + Rr \times Rw + Ar \times Aw + Sr \times Sw + Tr \times Tw + Ir \times Iw + Cr \times Cw$$

Where: r = the rating for the component and w = the assigned weight for the component.

Using a geographic information system (GIS) to store the layers for each component and combine them over the study area is a straightforward process. When the model was first employed in the late 1980s, this arduous task was done using transparent acetate sheets. The *DRASTIC* index is a discrete, numerical value that ranges from 65 to 223 for typical component index values or 23 to 223 for the absolute range of the model. There are no gradations between the values of bounded mappable units and they are not able to be contoured. Groundwater pollution sensitivity increases as the *DRASTIC* index value becomes larger, but these values are ordinal (ranked higher versus lower without exact division) and only have meaning when compared to values in the same study area of the same aquifer. For example, the *DRASTIC* model can only assume that an index value of 200 has a greater sensitivity than an index value of 150. No specific amount of risk (e.g., probability, odds, or percent chance) can be applied to the maximum *DRASTIC* index value, because risk also requires knowledge of the volume and abilities of a pollutant.

Figure A-1: Interaction and Location of *DRASTIC* **Components** (Original by Richard Franklin & Robert Turner, Geological Survey of Canada. Modified version by Cyrille Medard de Chardon, Simon Fraser University and Steve Walker, New Mexico Water Resources Research Institute)

An inherent set of generalizations about groundwater flow and pollutant movement are incorporated into the scores and weights of each of the factors. A set of assumptions were also developed to govern how the model is to be used. The user of the model assumes that:

- the pollutant will be introduced at the ground surface,
- the pollutant will be transported to the groundwater by precipitation,
- the contaminant will have the mobility of water, and
- the area being evaluated using *DRASTIC* will be 100 acres (0.4 km^2) or larger.

If these assumptions are not followed, the model may need to be examined further before it can be considered accurate. The model is not designed for a number of uses. *DRASTIC* is not designed to be the sole provider of information about the suitability of a site for mass-waste disposal or land use, nor is it meant to replace specific on-site investigations by a professional hydrogeologist. While the *DRASTIC* model provides many of the thought processes that a hydrogeologist may provide when evaluating the groundwater pollution sensitivity of an area, this model is only a screening tool for assessment.

A.2 MODEL COMPONENTS

The following section describes each individual hydrogeological factor, the location of each component in Figure A-1 above, the ranges, ratings, weights, and indices of each factor and the most common location to find data for building each factor.

Depth to Water (D) is used to indicate how much hydrogeological media (e.g., rock, silt, sand) must be penetrated by a pollutant to reach the water table from the ground surface. This component covers the entire, unsaturated 'barrier zone' between the ground surface and the water table surface, encompassing the soil and vadose layers. Depending on the depth, this equates to the amount of time that a contaminant stays in contact with the hydrogeological media and thus time for filtration, biodegradation, sorption, and volatilization. A shallower water table implies a greater chance for the contaminant to reach and pollute the aquifer. Shallow water tables of 5 feet or less to water receive the highest sensitivity rating of $D_r = 10$, while water tables of 100 feet or greater receive a $D_r = 1$ for sensitivity. A weight (D_w) of 5 is given to this factor for its impact on pollution and provides a range of 5 to 50 for its pollution sensitivity index (D_i) . Generally, depths to water are determined through published water-level maps or interpolated surfaces built from well logs.

Range [feet]	Rating (Dr)	Weight (D _w)	Index (D _i)
0 to 5	10	5	50
5 to 15	9	5	45
15 to 30	7	5	35
30 to 50	5	5	25
50 to 75	3	5	15
75 to 100	2	5	10
100+	1	5	5

Table A-1: DRASTIC Depth to Water Component - Ranges, Ratings, and Indices

Net Recharge (R) describes the average amount of water per unit of land area that percolates through the hydrogeological media and provides the transportation for a waterborne pollutant to reach the water table from the ground surface. This component starts from the ground surface and travels through the soil media and vadose zone to rest in the aquifer itself. The greater the amount of recharge available for the transport of a contaminant, the greater the chance for the contaminant to reach and pollute the aquifer, to a point. Increasingly higher amounts of recharge also provide a greater quantity of water for dispersion and dilution of a contaminant. However, the model does not take this into account beyond the explanation of the occurrence. Distribution, intensity, or duration of the recharge events are also not taken into account and assumed to be constant throughout the year. Regardless, more than 10 inches of recharge per unit area receive the highest sensitivity value of $R_r = 9$ for this factor for its impact on pollution and provides a range of 4 to 36 for its pollution sensitivity index (R_i). Values may be estimated through the use of climate maps that provide average annual precipitation values, subtracting runoff and evapotranspiration values.

Range [inches]	Rating (R_r)	Weight (<i>R</i> _w)	Index (R_i)									
0 to 2	1	4	4									
2 to 4	3	4	12									
4 to 7	6	4	24									
7 to 10	8	4	32									
10+	9	4	36									

Table A-2: DRASTIC Net Recharge Component - Ranges, Ratings, and Indices

The *Aquifer Media* (*A*) component refers to the type of hydrogeological material in which the groundwater of the aquifer resides. Aquifer media is the saturated portion under the water table, vadose zone, and soil media. The amount of water that can be stored and released (yield), its ease of movement (conductivity), and the attenuation ability of the material is dependent on the type of aquifer media and amount of fracturing present.

Aquifer Media and Hydraulic Conductivity go hand in hand, as together they influence the amount of attenuation time a pollutant has in contact with the media before moving to an extraction point or spreading further into the aquifer. Flow through aquifer media is governed by primary porosity through grain size and sorting (consolidation) and secondary porosity through faults, channels, and fractures in the material. The more porosity an aquifer medium has, the lower the attenuation and the higher the pollution sensitivity.

Since aquifer media have a variety of different ranges depending on rock or soil with a variety of structures and building materials, this component uses a subjective rating structure with a complex layout. Aquifer media types are arranged based on consolidation, grain size, or channels and given a range of numerical ratings indicating how much fracturing can adjust the attenuation abilities of the material. Low yield Massive Shale is rock made from tightly packed, fine grained, silt or mud and has ratings from $A_r = 1$, if it has few fractures, to $A_r = 3$ if it has many. High yield Karst Limestone is made of materials that have been dissolved by solution with large channels and openings and has ratings from $A_r = 9$, if unfractured to $A_r = 10$ if fractured.

Some aquifer media have a large range of ratings, indicating the importance of fracturing to the pollution sensitivity in those materials. Volcanic basalt is chemically non-reactive to most water-based pollutants and can be very impervious to water movement through its body, leading to a low rating of $A_r = 2$. However, fractures increasingly improve the abilities of this media to move a pollutant long distances without much attenuation, leading to a high rating of $A_r = 10$. A weight (A_w) of 3 is given to this factor for its impact on pollution and provides a range of 3 to 30 for its pollution sensitivity index (A_i) . Data about hydrogeological media at the aquifer level are generally found in published geologic or hydrologic reports about well and borehole loggings.

Range [Hydrogeologic Media]	Rating (A _r)	Weight (A _w)	Index (A _i)
Massive Shale	1 to 3	3	3 to 9
Metamorphic/Igneous	2 to 5	3	6 to 15
Weathered Metamorphic/Igneous	3 to 5	3	9 to 15
Glacial Till	4 to 6	3	12 to 18
Bedded Sandstone, Limestone, and Shale Sequences	5 to 9	3	15 to 27
Massive Sandstone	4 to 9	3	12 to 27
Massive Limestone	4 to 9	3	12 to 27
Sand and Gravel	4 to 9	3	12 to 27
Basalt	2 to 10	3	6 to 30
Karst Limestone	9 to 10	3	27 to 30

Table A-3: DRASTIC Aquifer Media Component - Ranges, Ratings, and Indices

The *Soil Media* (S) component is the uppermost six feet of weathered earth containing the largest concentration of biological material. It sits above the vadose zone and together with the vadose, provides shape and slope for the Topography component. Soils are made up of three basic inert types of material: sand, silt, and clay. Fine textured clay and silt materials combined with organic matter, microbes, and an array of reactive gases, provide a significant impact on the attenuation of pollutants. Shrinking and swelling of clay also affects permeability, intercepting water and waterborne pollutants and slowing or preventing their passage downward to an aquifer. For these reasons, the greater the shrink and swell ability of the clay and the smaller the grain sizes, the greater the attenuation of the soil and the smaller the pollution sensitivity. The scale of values (Table A-4) is arranged so that the soils with the highest clay, silt, and fine material contents have the lowest ratings and those which are too thin, clean, well-sorted, more permeable, or have large-grain size have higher pollution potential ratings. Non-shrinking and nonaggregated clay receives a value of $S_r = 1$ for its ability to hold its shape when water is applied, preventing nearly all water and waterborne pollutants from passing through it. Gravel receives a value of $S_r = 10$, since it has a grain size of greater than 5/64 inch (two millimeters) allowing water and waterborne pollutants to pass through it nearly unchecked. A weight (S_w) of 2 is given to this factor for its impact on pollution and provides a range of 2 to 20 for its pollution sensitivity index (S_i) . The best resource of soil information comes from soil-series data compiled the National Resources Conservation Service published by the United States Department of Agriculture. A soil series will provide a large amount of information about the soil drainage, textures, thicknesses, and compositions of the various layers within the series.

Range [Hydrogeologic Media]	Rating (Sr)	Weight (S _w)	Index (S _i)
Thin or Absent and Gravel	10	2	20
Sand	9	2	18
Peat	8	2	16
Shrinking and/or Aggregated Clay	7	2	14
Sandy Loam	6	2	12
Loam	5	2	10
Silty Loam	4	2	8
Clay Loam	3	2	6
Muck	2	2	4
Nonshrinking and Nonaggregated Clay	1	2	2

Table A-4: DRASTIC Soil Media Component - Ranges, Ratings, and Indices

The *Topography* (*T*) component describes how slope and terrain of the land-surface impacts runoff and infiltration of surface water carrying a pollutant. Topography represents the shape of the land surface, made up of the soil and vadose zone layers. Steeper slopes increase water velocity, reducing the amount of time that a waterborne pollutant has to infiltrate into the soil. However, steep slopes also provide extra erosional force to carry away top-soil and add to the pollution of surface water resources. The flatter the ground surface in the study area, the greater the infiltration rate and the higher the pollution sensitivity. Flat or nearly flat ground at 2% slope or less receives a rating of $T_r = 10$, while more steep slopes of more than 18% receive a rating of $T_r = 1$. A weight (T_w) of 5 is given to this factor for its impact on pollution and provides a range of 1 to 10 for its pollution sensitivity index (T_i). In the late 1980s, when the model was created, the best source of topographical information about an area came from United States Geological Survey 7½-minute quadrangle, topographic maps. While these are still in use today, digital elevation models are the easiest data to obtain.

Range [percent slope]	Rating (T_r)	Weight (T _w)	Index (T _i)
0 to 2	10	1	10
2 to 6	9	1	9
6 to 12	5	1	5
12 to 18	3	1	3
18+	1	1	1

Table A-5: DRASTIC Topography Component - Ranges, Ratings, and Indices

Impact of the Vadose Zone (I) describes the ability of the unsaturated or discontinuously saturated portion of hydrogeological media above the water table to continue the attenuation processes that were started at the soil level. The Impact of the Vadose Zone component is the lower most section of the 'barrier zone' between the soil media and the aquifer media. The Aquifer Media component has a number of similarities to the Impact of the Vadose Zone component. For both, type and structure of the material that water and a waterborne pollutant travel through determines the amount of pollutant attenuated or conveyed to the aquifer. Flow through both materials is governed by primary and secondary porosities, however, there are differences in the forces involved with moving liquids through the unsaturated media of the vadose, as opposed to saturated media of an aquifer. This is depicted in the range of ratings for each media type. The impermeable silt/clay media type retards movement of water through it to the aquifer, giving it a rating of $I_r = 1$, for no fractures to $I_r = 2$, for fractures. Again, karst limestone receives higher sensitivity values, with a slightly lower sensitivity of $I_r = 8$, for no fractures to $I_r = 10$ with fractures. A weight (I_w) of 5 is given to this factor for its impact on pollution and provides a range of 5 to 50 for its pollution sensitivity index (I_i) . Information about surface hydrogeological material below the soil is also found in published geologic or hydrologic reports about well and borehole logs.

Range [Hydrogeologic Media]	Rating (<i>I_r</i>)	Weight (<i>I</i> _w)	Index (<i>I_i</i>)
Confining Layer	1	5	5
Silt/Clay	2 to 6	5	10 to 30
Shale	2 to 5	5	10 to 25
Limestone	2 to 7	5	10 to 35
Sandstone/ Bedded Limestone, Sandstone, Shale/ Sand and Gravel with Silt and Clay	4 to 8	5	20 to 40
Metamorphic/Igneous	2 to 8	5	10 to 40
Sand and Gravel	6 to 9	5	30 to 45
Basalt	2 to 10	5	10 to 50
Karst Limestone	8 to 10	5	40 to 50

Table A-6: DRASTIC Impact of the Vadose Zone Component - Ranges, Ratings, and Indices

Hydraulic Conductivity (C) describes the ability of aquifer media to transmit water under a given hydraulic gradient. Hydraulic Conductivity shares the same space as the Aquifer Media component, but represents a force instead of an area or type of material. Hydraulic conductivity is dependent on more than just the permeability or porosity of a media, as it also depends on the density and viscosity of the fluid being transmitted. Since it is assumed that the pollutant has the mobility of water, density and viscosity variations are the same as water. If water entered a media at constant pressure, hydraulic conductivity would represent the amount of discharge from the media after a set of forces (e.g., gravity, friction, ionic attraction) were applied. The higher the amount of hydraulic conductivity, measured in gallons per day per square foot (gpd/ft²) by Aller and others (1987), the easier a pollutant moves through the aquifer and the greater the pollution sensitivity. A low hydraulic conductivity value of 100 gpd/ft² or less has a pollution sensitivity rating of $C_r = 1$, while a high value of greater than 2,000 gpd/ft² receives the maximum rating of $C_r = 10$. A weight (C_w) of 3 is given to this factor for its impact on pollution and provides a range of 3 to 30 for its pollution sensitivity index (C_i). Hydraulic conductivity values are determined through pumping tests, which examine the specific yield coming from a pumping well and the draw down and distance of an observation well within the pumping well's cone of depression. The value is calculated and published in hydrogeological reports, providing the hydraulic conductivities of each specific strata in the area.

Range [gallons per day per square foot]	Rating (C_r)	Weight (C_w)	Index (C _i)
1 to 100	1	3	3
100 to 300	2	3	6
300 to 700	4	3	12
700 to 1,000	6	3	18
1,000 to 2,000	8	3	24
2,000+	10	3	30

Table A-7: DRASTIC Hydraulic Conductivity Component - Ranges, Ratings, and Indices

APPENDIX B. MISCELLANEOUS TABLES

Agent1NUSGS3USGS3		Well Name	Lat	Long	Well Geo ²	Well	Measure			Keep/Lose
USGS 3 USGS 3		wen reame					Data	D2W	Elev	Reason ³
USGS 3		21S.01W.14.313 (USBR-41)	32.478	-106.922	RA	Depth 29	Date 8/31/1989	11	3949	Cert FP
		21S.01W.14.515 (USBR-41) 21S.01W.24.214 (USBR-42)	32.478	-106.893	RA	29	8/31/1989	11	3939	Cert FP
	322750106535001	× /	32.471	-106.893	RA	34	1/8/1963	8	3939	Cert FP
		22S.01E.06.124 (USBR-43)	32.403	-106.898	RA	28	8/31/1989	9	3926	Cert FP
		22S.01E.09.241 (OLD USBR-26)	32.413	-106.841	RA	23	2/1/1987	7	3923	Cert FP
		225.01E.09.241A (USBR-26)	32.413	-106.841	RA	23	2/15/1996	6	3923	Cert FP
		225.01E.09.333 (USBR-20)	32.412	-106.852	RA	28	2/13/1990	6	3924	Cert FP
		22S.01E.16.433 (USBR-19)	32.388	-106.832	RA	28	6/19/1984	7	3922	Cert FP
		225.01E.33.341 (USBR-15)	32.347	-106.848	RA	20	6/18/1984	6	3900	Cert FP
		225.01E.35.334 (OLD USBR 18)	32.347	-106.815	RA	28	6/18/1984	12	3898	Cert FP
		22S.01E.35.334 (OLD OSBR 18)	32.345	-106.815	RA	30	6/14/1989	11	3899	Cert FP
		22S.01E.35.434B (USBR-17)	32.345	-106.808	RA	42	2/14/1996	9	3901	Cert FP
		23S.01E.01.413 (USBR-44)	32.343	-106.794	RA	29	8/31/1989	19	3881	Cert FP
		23S.01E.09.433 (USBR-16)	32.315	-106.845	RA	26	2/8/2010	4	3890	Cert FP
		23S.01E.14.241 (USBR-45)	32.313	-106.806	RA	28	8/30/1989	16	3874	Cert FP
		23S.01E.16.424 (USBR-12)	32.305	-106.838	RA	20	6/18/1984	13	3853	Cert FP
		23S.01E.22.232E (LC-1E)	32.296	-106.824	RA	10	7/9/1998	4	3885	Cert FP
		23S.01E.22.241E (LC-2E)	32.296	-106.823	RA	10	7/9/1998	4	3884	Cert FP
		23S.01E.23.244C (LC-3C)	32.295	-106.803	RA	50	1/10/1996	16	3874	Cert FP
		23S.01E.27.334 (USBR-11)	32.272	-106.834	RA	12	2/1/2002	5	3877	Cert FP
		23S.02E.29.113 (USBR-47)	32.284	-106.768	RA	29	8/30/1989	17	3863	Cert FP
		24S.01E.01.223 (USBR-46)	32.255	-106.789	RA	35	2/11/1999	11	3870	Cert FP
		24S.01E.11.112 (USBR-48)	32.233	-106.816	RA	28	8/30/1989	5	3865	Cert FP
		24S.02E.07.234B (EBID-2-NEST)	32.237	-106.775	RA	80	2/9/1987	14	3857	Cert FP
		24S.02E.08.434 (OLD USBR-13)	32.228	-106.757	RA	24	2/1/1986	10	3853	Cert FP
		24S.02E.09.433 (USBR-14)	32.229	-106.743	RA	25	2/14/1996	9	3853	Cert FP
		24S.02E.16.124C (M-4C)	32.226	-106.744	RA	40	9/20/2001	9	3853	Cert FP
		24S.02E.17.423E (M-3E)	32.217	-106.755	RA	35	1/19/2000	6	3854	Cert FP
		24S.02E.19.214D (M-1D)	32.210	-106.773	RA	10	9/1/1998	7	3852	Cert FP
		24S.02E.19.223D (M-2D)	32.211	-106.772	RA	11	9/1/1998	7	3852	Cert FP
USGS 3	321230106430401	24S.02E.22.242 (OLD USBR-10)	32.208	-106.718	RA	19	2/9/1989	8	3844	Cert FP
		24S.02E.22.242B (USBR-10)	32.209	-106.719	RA	31	2/9/1994	7	3845	Cert FP
	321206106423601	24S.02E.23.342 (OLD USBR-9)	32.202	-106.711	RA	21	2/1/1986	9	3840	Cert FP
USGS 3	321206106423602	24S.02E.23.342B (USBR-9)	32.201	-106.710	RA	31	2/9/1994	8	3840	Cert FP
USGS 3	321112106445201	24S.02E.28.334 (USBR-8)	32.185	-106.748	RA	24	1/29/1993	5	3845	Cert FP
USGS 3	320946106412401	25S.02E.01.411 (USBR-25)	32.162	-106.691	RA	12	2/15/1996	7	3829	Cert FP
USGS 3	321001106445101	25S.02E.04.114 (USBR-7)	32.167	-106.748	RA	28	1/27/1993	11	3837	Cert FP
USGS 3	320734106422401	25S.02E.23.212 (USBR-6)	32.126	-106.706	RA	28	2/27/2001	7	3822	Cert FP
USGS 3	320615106413302	25S.02E.25.322B (USBR-5)	32.104	-106.693	RA	21	6/14/1989	7	3814	Cert FP
USGS 3	320738106392401	25S.03E.17.433	32.127	-106.657	RA	60	2/21/1985	9	3814	Cert FP
USGS 3	320706106390901	25S.03E.20.421 (USBR-24)	32.119	-106.654	RA	16	6/28/1989	6	3813	Cert FP
		25S.03E.28.343A (USBR-27)	32.097	-106.645	RA	20	2/17/1994	8	3807	Cert FP
USGS 3	320530106413201	25S.03E.31.143 (USBR-4)	32.091	-106.679	RA	18	2/22/1997	7	3808	Cert FP
		26S.02E.01.211 (USBR-3)	32.083	-106.675	RA	18	2/1/1987	6		Cert FP
USGS 3	320405106373101	26S.03E.03.344	32.068	-106.627	RA	26	8/30/1977	8	3804	Cert FP
	320405106373102		32.068	-106.627	RA	36	1/25/1999	9	3803	Cert FP
		26S.03E.04.122 (USBR-21)	32.083	-106.642	RA	20	6/28/1984	8	3803	Cert FP
		26S.03E.08.221 (USBR-23)	32.068	-106.652	RA	24	1/1/1946	8	3801	Cert FP
USGS 3	320404106381901	26S.03E.09.221A (USBR-22)	32.068	-106.639	RA	16		6	3799	Cert FP
		26S.03E.15.112 (USBR-28)	32.053	-106.629	RA	16	1/27/1993	6	3800	Cert FP
		26S.03E.22.211 (USBR-30)	32.039	-106.622	RA	12	2/22/1997	4	3791	Cert FP
		26S.03E.27.211 (USBR-32)	32.025	-106.624	RA	18	2/28/1996	5	3789	Cert FP
		26S.03E.27.212 (USBR-31)	32.025	-106.620	RA	16		4	3789	Cert FP
		26S.03E.31.341, P-1, 10123	31.998	-106.678	RA	90	1/13/1960	17	3783	Cert FP
		26S.03E.32.441 (USBR-39)	31.998	-106.652	RA	18	2/28/1996	7	3783	
		27S.03E.03.211A (ISC-1A)	31.994	-106.623	RA	90		6		Cert FP
		27S.03E.09.1334	31.975	-106.648	RA	34	11/18/1998			Cert FP
		27S.03E.09.444 (USBR-38)	31.966	-106.634	RA	20		3	3776	
USGS 3		27S.03E.15.213A (ISC-2A)	31.965	-106.623	RA	76		10	3772	
		27S.03E.17.1414	31.961	-106.661	RA	32	11/18/1998	0	2775	Cert FP

Table B-1: Monitored Wells in Doña Ana and El Paso Counties

Agent ¹	USGS Well Number	Well Name	Lat	Long	Well Geo ²	Well Depth	Measure Date	D2W	Well Elev	Keep/Lose Reason ³
USGS	315646106374401	27S.03E.22.134A (ISC-3A)	31.946	-106.629	RA	81	3/12/2003	11 11	3769	Cert FP
USGS		27S.03E.22.134A (ISC-5A)	31.940	-106.618	RA	28	8/31/1989	6	3769	Cert FP
USGS		27S.03E.28.314 (USBR-1)	31.930	-106.647	RA	30	6/26/1984	7	3764	Cert FP
		27S.03E.32.124A (USBR-2)	31.919	-106.658	RA	22	2/19/1993	6	3767	Cert FP
		27S.03E.33.4222	31.917	-106.633	RA	32	12/27/1976	8	3764	Cert FP
USGS		27S.03E.35.113 (USBR-50)	31.920	-106.616	RA	29	2/25/1997	9	3759	Cert FP
USGS	315318106384301	28S.03E.09.1324	31.888	-106.646	RA	28	12/28/1973	8	3760	Cert FP
		29S.04E.07.1112	31.808	-106.582	RA	72	1/4/1984	4	3732	Cert FP
USGS		29S.04E.08.223A (ISC-4A)	31.805	-106.550	RA	75	9/24/2007	5	3729	Cert FP
	314816106325901		31.805	-106.550	RA	34	8/26/2009	5	3731	Cert FP
USGS	315856106382001	JL-49-03-303	31.982	-106.639	RA	80	12/1/1998	8	3782	Cert FP
USGS	315245106373201	JL-49-03-916 (OLD USBR-36)	31.879	-106.626	RA	16	2/1/1986	7	3748	Cert FP
USGS	315854106361801	JL-49-04-119	31.982	-106.606	RA	50	10/1/1976	9	3781	Cert FP
USGS	315943106365001	JL-49-04-121 (USBR-29)	31.995	-106.614	RA	16	2/1/1985	6	3783	Cert FP
USGS	315557106361401	JL-49-04-430	31.933	-106.604	RA	50	7/24/1984	3	3767	Cert FP
USGS	315557106361101	JL-49-04-431	31.933	-106.604	RA	50	12/5/1986	5	3765	Cert FP
USGS	315712106364301	JL-49-04-466	31.953	-106.613	RA	59	7/20/1990	5	3766	Cert FP
USGS	315712106362301		31.954	-106.607	RA	58	10/19/1990	7	3767	Cert FP
USGS		JL-49-04-474	31.954	-106.606	RA	47	8/19/1993	6	3767	Cert FP
		JL-49-04-478	31.954	-106.604	RA	52	6/23/1994	9	3768	Cert FP
		JL-49-04-701 (USBR-37)	31.886	-106.617	RA	16	2/18/1999	5	3751	Cert FP
USGS		JL-49-12-101 (OLD USBR-35)	31.845	-106.600	RA	14	2/1/1987	6	3742	Cert FP
		JL-49-12-101B (USBR-35)	31.845	-106.601	RA	31	2/25/1997	6	3742	Cert FP
USGS		JL-49-12-117 (OLD USBR-33)	31.854	-106.593	RA	20	2/1/1987	6	3742	Cert FP
USGS		JL-49-12-117B (USBR-33)	31.854	-106.594	RA	32	2/21/2002	3	3744	Cert FP
		JL-49-12-118	31.835	-106.596	RA	80	1/22/1959	9	3738	Cert FP
USGS		JL-49-12-131	31.858	-106.598	RA	67 50	1/9/2001	7	3746	Cert FP
USGS USGS		JL-49-12-201	31.836	-106.578	RA RA	50 18	1/15/1991	5 3	3740	Cert FP
USGS		JL-49-12-501 (USBR-34) JL-49-12-502	31.815 31.822	-106.568 -106.578	RA	48	6/20/1984 1/9/2001	3 7	3732 3732	Cert FP
USGS	321859106503101		32.317	-106.378	RA	48 34	8/25/2009	9	3888	Cert FP Cert FP
USGS	320404106385801	MES10K MES23R	32.068	-106.650	RA	34 34	8/26/2009	9	3800	Cert FP
USGS	315953106390601	MES25R MES39R	31.998	-106.652	RA	34	8/27/2009	9	3785	Cert FP
USGS		MES43R	32.428	-106.881	RA	35	8/25/2009	9	3931	Cert FP
USGS	321105106442101	MES8R	32.185	-106.739	RA	34	4/27/2010	9	3839	Cert FP
		22S.01E.05.142	32.427	-106.865	USF1	406	6/2/1975	12	3928	Uncert FP
Hawley		22S.01E.14.341A	32.390	-106.815	USF2	324	5/16/1974	47	3903	Uncert FP
USGS		22S.01E.36.314	32.348	-106.798	USF2	191	11/4/1987	20	3890	Uncert FP
USGS		23S.01E.01.411 (LC-33)	32.336	-106.792	USF2	605	2/6/1997	45	3860	Uncert FP
	322003106483401	23S.01E.02.413	32.334	-106.810	USF2	500	3/22/1973	17	3887	Uncert FP
USGS		23S.01E.03.422	32.336	-106.821	USF2	142	1/9/1967	10	3894	Uncert FP
Hawley	321946106502801	23S.01E.04.434	32.330	-106.842	USF2	717	5/26/1975	8	3892	Uncert FP
USGS		23S.01E.11.214A (LC-31)	32.326	-106.808	USF2	617	5/13/1976	10	3893	Uncert FP
USGS	321827106473501	23S.01E.13.411B (LC-29)	32.308	-106.794	USF2	629	1/24/1995	25	3865	Uncert FP
USGS	321753106501601	23S.01E.21.224	32.298	-106.838	USF2	295	3/15/1995	12	3878	Uncert FP
	321647106490602		32.312	-106.790	USF2	352	10/15/1974			Uncert FP
		238.01E.35.444	32.258	-106.804	USF2	410	2/1/1976	88	3791	Uncert FP
USGS		23S.02E.07.411 (LC-10)	32.321	-106.774	USF1	381	1/24/1995	73	3862	
USGS		23S.02E.29.243A (NMSU-2)	32.280	-106.754	USF	485	12/1/1963	51	3852	Uncert FP
-		23S.02E.29.331 (LC-30)	32.274	-106.767	USF	470	10/6/1976	24		Uncert FP
	321629106460	23S.02E.29.331B	32.275	-106.768	USF2	280	6/20/1977	19	3857	Uncert FP
		23S.02E.30.243A	32.273	-106.780	USF	804	12/2/1975	34		Uncert FP
USGS		23S.02E.33.43	32.260	-106.741	USF2	275	4/29/1994 2/9/1987	42 °		Uncert FP
USGS		24S.01E.13.221A (EBID-5)	32.226	-106.789	USF2	370		8		Uncert FP
USGS USGS		24S.02E.04.322 24S.02E.17.322 (EBID-3)	32.250 32.220	-106.744 -106.762	USF2	312	7/28/1986 2/8/1993	25	3841 3847	Uncert FP
USGS		24S.02E.17.322 (EBID-3) 24S.02E.17.414A(EBID1-FarNest)	32.220		USF2 USF	464 312	2/8/1993	13 10		Uncert FP Uncert FP
USGS		24S.02E.17.414A(EBID1-ParNest) 24S.02E.21.123 (EBID-4)	32.218	-106.757 -106.745	USF	480	1/16/1993	10		Uncert FP Uncert FP
	321239106444301		32.203	-106.743	USF	290	1/10/1992	10		Uncert FP
	321137106424501		32.194	-106.713	USF	356	1/12/1976	12		Uncert FP
	321052106425101		32.194	-106.715	USF	370	1/9/1976	12		Uncert FP
		24S.02E.35.114 24S.02E.36.313	32.181	-106.699	USF	303	9/19/1972	47	3795	Uncert FP
	321025106402201		32.173	-106.673	USF	400	1/8/1975	58	3827	Uncert FP
USGS		25S.02E.04.421	32.161	-106.739	USF	232	3/15/1995	13	3831	Uncert FP
		1								

A41	USGS Well	W-U N	T -4		Well Geo ²	Well	Measure	D2W		Keep/Lose Reason ³
Agent ¹ USGS	Number 320906106423601	Well Name 25S.02E.11.144	Lat 32.152	Long -106.711	USF2	Depth 130	Date 7/22/1958	6	Elev 3827	Uncert FP
	320641106421801	25S.02E.26.221	32.132	-106.706	RA	120	1/20/1999	8	3817	Uncert FP
	320814106400101		32.111	-106.667	USF2	250	1/20/1999	8	3819	Uncert FP
USGS	320445106421001	26S.02E.02.223	32.079	-106.703	USF2	147	3/21/1995	21	3799	Uncert FP
	320336106411105		32.060	-106.687	USF	151	12/1/1976	9	3799	Uncert FP
~	320405106382601	26S.03E.04.433	32.068	-106.641	USF	130	2/15/1994	, 7	3803	Uncert FP
	320205106361001	26S.03E.23.232	32.008	-106.603	MSF	232	9/12/1972	62	3772	Uncert FP
USGS	320049106354801	26S.03E.26.4244	32.033	-106.599	MSF	300	1/9/1958	33	3787	Uncert FP
	320032106381501	26S.03E.33.221, Hornet 1, K-2A	32.009	-106.637	MSF	215	11/17/1998	10	3783	Uncert FP
	315837106402501	27S.03E.07.2311	31.977	-106.674	MSF2	213	12/28/1967	19	3779	Uncert FP
~			31.977	-106.674	MSF2	149	12/9/1991	16	3781	Uncert FP
			31.944	-106.635	MSF	130	1/15/1960	10	3767	Uncert FP
		28S.03E.04.1113, 10138, Q-105	31.908	-106.649	MSF2	140	11/20/1998	8	3760	Uncert FP
		28S.03E.16.124	31.876	-106.642	MSF2	148	1/14/1959	7	3753	Uncert FP
		28S.03E.16.221A (ISC-7A)	31.879	-106.636	MSF	198	1/28/2008	10	3751	Uncert FP
	315204106381601	28S.03E.16.4311	31.870	-106.639	MSF	148	12/13/1966	4	3752	Uncert FP
	315126106381801	28S.03E.21.144, ST-7, 10158	31.859	-106.643	MSF	245	12/13/1995	53	3750	Uncert FP
	315112106380101		31.853	-106.634	MSF	205	6/14/1974	36	3749	Uncert FP
USGS	315110106371701	28S.03E.22.432A (ISC-6A)	31.853	-106.622	MSF	222	1/28/2008	3	3749	Uncert FP
USGS	315013106362601	28S.03E.26.344A (ISC-5A)	31.837	-106.608	MSF	168	1/26/2010	5	3742	Uncert FP
	315049106373601	28S.03E.27.124, ST-18	31.848	-106.627	MSF	254	6/14/1974	42	3746	Uncert FP
Hawley	315008106361601	28S.03E.35.212	31.836	-106.605	MSF	235	1/13/1959	5	3742	Uncert FP
Hawley	314756106345101	29S.04E.07.311	31.799	-106.581	MSF1	274	1/15/1957	56	3722	Uncert FP
USGS	315916106362201	JL-49-04-112	31.988	-106.607	MSF	260	2/2/1960	19	3771	Uncert FP
	315733106364401		31.959	-106.613	MSF	202	9/20/1958	6	3769	Uncert FP
	315757106370201	JL-49-04-116	31.966	-106.618	MSF	277	1/27/1975	9	3772	Uncert FP
USGS	315901106355001	JL-49-04-118	31.984	-106.598	MSF	264	6/2/1952	44	3776	Uncert FP
USGS	315804106354301	JL-49-04-138	31.968	-106.596	MSF	190	1/10/1952	49	3771	Uncert FP
USGS	315803106362801	JL-49-04-188	31.968	-106.608	MSF	242	3/19/2004	16	3766	Uncert FP
USGS	315617106365601	JL-49-04-403	31.938	-106.616	MSF	160	2/16/1953	5	3765	Uncert FP
USGS	315617106364201	JL-49-04-405	31.938	-106.612	MSF	170	1/14/1959	5	3765	Uncert FP
USGS	315619106362101	JL-49-04-406	31.939	-106.606	MSF	152	7/8/1952	6	3766	Uncert FP
USGS	315551106372101	JL-49-04-407	31.931	-106.623	MSF	200	1/12/1960	7	3761	Uncert FP
USGS	315552106371001	JL-49-04-408	31.931	-106.620	MSF	200	4/17/1959	6	3762	Uncert FP
	315607106365901	JL-49-04-409	31.935	-106.617	MSF	156	1/10/1978	7	3766	Uncert FP
	315556106364302		31.932	-106.612	MSF	194	4/17/1959	6	3761	Uncert FP
	315557106361801		31.933	-106.606	MSF	160	7/8/1952	5	3769	Uncert FP
	315520106362701		31.922	-106.608	MSF	160	1/27/1975	5	3762	Uncert FP
	315523106362201		31.923	-106.607	MSF	200	1/14/1959	5	3759	Uncert FP
	315537106361501	JL-49-04-415	31.927	-106.605	MSF2	122	7/8/1952	5	3769	Uncert FP
	315556106363101		31.932	-106.609	MSF	200	10/20/1958		3760	Uncert FP
USGS	315557106365801	JL-49-04-420	31.933	-106.617	MSF	202	7/8/1952	6	3768	Uncert FP
USGS	315708106362301	JL-49-04-423	31.952	-106.607	MSF	200	7/1/1986	9	3766	Uncert FP
	315652106362301		31.948	-106.607	MSF		1/27/1975			Uncert FP
	315652106364301		31.948	-106.612	MSF	219	1/27/1975	7		Uncert FP
	315517106361401		31.921	-106.604	MSF	210	1/27/1975	3	3761	Uncert FP
	315654106362201		31.948	-106.607	MSF	242	3/19/2004	19		Uncert FP
	315637106354301		31.944	-106.596	MSF	190		54	3766	Uncert FP
	315401106363701		31.900	-106.611	MSF	116	1/9/1982	6		Uncert FP
	315308106361001		31.886	-106.603	MSF	150	12/4/1986	5		Uncert FP
	315228106361601		31.875	-106.605	MSF2	110	12/4/1986	4	3752	Uncert FP
	315152106371901		31.865	-106.622	MSF2	128	1/16/1993	6		Uncert FP
	322220106471001		32.372	-106.787	USF2	405	3/15/1976	160		Uncert NFP
		22S.01E.32.443	32.345	-106.858	USF2	207	11/6/1972	72	3890	Uncert NFP
	322148106450201		32.363	-106.751	USF2	485	9/13/1974	444	3845	Uncert NFP
	3222101064640	22S.02E.30.123	32.370	-106.778	USF2	294	3/15/1976	209	3891	Uncert NFP
	322045106461001	22S.02E.31.444 (LC-23)	32.346	-106.770	USF2	596	1/1/1965	217	3851	Uncert NFP
	321640106524601	23S.01E.30.322 (CLC-37)	32.278	-106.880	USF2	645	2/4/2003	315	3874	Uncert NFP
Hawley	201615106521601	23S.01E.33.422	32.257	-106.872	USF	209	4/15/1905	12	3873	Uncert NFP
		23S.01W.25.444 (LC Sludge Well)	32.271	-106.888	USF	380	2/1/1985	327		Uncert NFP
		23S.02E.05.321	32.337	-106.763	USF1	620	10/7/1977	222	3834	Uncert NFP
			32.341	-106.781	USF2	402	3/10/1972	119	3859	Uncert NFP
		23S.02E.07.122 (LC-11)	32.330	-106.776	USF2	360	1/1/1965	77	3867	Uncert NFP
паwley	321947106450801	235.02E.08.224	32.330	-106.753	USF1	550	3/21/1974	275	3838	Uncert NFP

	USGS Well				Well	Well	Measure		Well	Keep/Lose
Agent ¹	Number	Well Name	Lat	Long	Geo ²	Depth	Date	D2W	Elev	Reason ³
USGS		23S.02E.16.314 (LC-24)	32.305	-106.748	USF1	591	1/13/2009	199	3826	Uncert NFP
USGS			32.289	-106.735	USF1	507	2/1/1994	178	3879	Uncert NFP
, , , , , , , , , , , , , , , , , , ,	321614106434601	23S.02E.34.123	32.271	-106.730	USF2	342	12/4/1972	169	3841	Uncert NFP
		23S.02E.34.412	32.265	-106.723	USF1	486	12/1/1972	180	3852	Uncert NFP
USGS	321758106385701	23S.03E.20.222	32.300	-106.650	USF1	285	3/1/1972	181	4404	Uncert NFP
Hawley	321128106531601	24S.01W.25.422	32.191	-106.888	USF2 USF	370	2/3/1975	370	3848	Uncert NFP
Hawley Hawley		24S.02E.03.434 25S.02E.22.314	32.242 32.116	-106.721 -106.731	USF USF2	550 200	11/29/1972 1/19/1976	120 19	3844 3846	Uncert NFP Uncert NFP
USGS		25S.02E.22.314 25S.02E.28.222B (Old Ranch Well)	32.110	-106.731	USF2 USF2	1200	2/8/1994	19	3819	Uncert NFP
USGS		25S.02E.31.312A (Fletch Deerman)	32.091	-106.784	USF2	400	1/28/1999	354	3817	Uncert NFP
		258.03E.13.112	32.140	-106.594	USF2	600	1/29/1985	387	3815	Uncert NFP
USGS	320425106565201	26S.01W.04.412	32.074	-106.949	USF2	445	2/7/1995	387	3824	Uncert NFP
		26S.02E.17.2444	32.047	-106.751	USF2	340	4/5/1976	321	3803	Uncert NFP
Hawley	320013106353401	26S.03E.36.144	32.004	-106.593	MSF	240	4/1/1959	114	3776	Uncert NFP
USGS	315536106544601	27S.01W.26.433	31.926	-106.911	USF2	314	10/17/1973	284	3811	Uncert NFP
Hawley		27S.01W.32.124	31.919	-106.966	USF2	280	7/2/1973	216	3814	Uncert NFP
Hawley	315204106390201	28S.03E.17.441	31.868	-106.651	MSF	250	6/18/1975	77	3755	Uncert NFP
USGS	315007106370201	288.03E.27.434 (ST-21)	31.836	-106.621	USF	300	1/22/1993	71	3751	Uncert NFP
Hawley	315010106380601	28S.03E.28.444	31.836	-106.636	USF	325	6/14/1974	128	3772	Uncert NFP
	315020106390001	28S.03E.29.442	31.839	-106.651	USF	268	6/14/1974	63	3845	Uncert NFP
USGS	315919106350901	JL-49-04-163	31.989	-106.584	MSF	205	1/7/2000	148	3752	Uncert NFP
USGS		JL-49-04-439	31.953	-106.593	USF2	135	2/12/1953	79	3766	Uncert NFP
USGS USGS	315656106350701 315427106341801	JL-49-04-498 JL-49-04-804	31.949 31.908	-106.585 -106.581	MSF MSF	300 300	1/20/2004 1/12/1994	165 130	3735 3758	Uncert NFP Uncert NFP
USGS		Well K, 22S.02E.24.113,	32.386	-106.581	USF1	420	9/15/2011	360	4082	Uncert NFP
USGS	320653106521001	25S.01E.19.424A (Bauman Ranch)	32.380	-106.872	USFI	420	2/16/1982	320		No Depth
USGS	320707106521602	25S.01E.19.424A (Bauman Ranch)	32.119	-106.872			2/10/1982	320	3847	No Depth
Hawley		25S.01W.16.331	32.117	-106.955			5/11/1968	395	3831	No Depth
USGS	320053106533701	26S.01W.25.412B	32.015	-106.894			2/13/1990	375	3819	No Depth
USGS		268.02E.32.333	31.998	-106.769			2/20/1984	332	3796	No Depth
USGS	315656106445801	27S.02E.21.111	31.949	-106.751			3/26/1986	304	3788	No Depth
USGS	315637106394801	27S.03E.19.4222	31.943	-106.669			1/11/2001	73	3771	No Depth
USGS		28S.02E.23.222	31.864	-106.702			3/6/1984	334	3777	No Depth
USGS		29S.01E.06.111	31.821	-106.886			2/24/1989	326	3804	No Depth
Hawley	322324106485201	228.01E.14.341	32.390	-106.815	USF2	369	5/17/1974	49	3911	Duplicate
USGS	321745106492501	23S.01E.22.232A (LC-1A)	32.296	-106.824	USF2	305	11/6/1984	6	3883	Duplicate
USGS		23S.01E.22.232B (LC-1B)	32.296	-106.824	USF2	105	7/14/1995	2	3886	Duplicate
USGS			32.296	-106.824	RA	41	8/25/2010	2	3886	Duplicate
USGS			32.296	-106.824	RA	10	7/9/1998	4	3885	Duplicate
USGS	321745106492101	23S.01E.22.241A (LC-2A)	32.296	-106.823	USF2	310	1/31/1995	15 7	3873	Duplicate
USGS USGS		23S.01E.22.241B (LC-2B) 23S.01E.22.241C (LC-2C)	32.296 32.296	-106.823 -106.823	USF2 RA	110 40	7/14/1995 7/20/2009	5	3881 3883	Duplicate Duplicate
USGS		23S.01E.22.241C (LC-2C)	32.290	-106.823	RA	10	7/9/1998	4		Duplicate
		23S.01E.23.244A (LC-3A)	32.295	-106.803				18		Duplicate
USGS		23S.01E.23.244B (LC-3B)	32.295	-106.803	USF2	120	9/17/1996	13	3877	Duplicate
USGS		24S.02E.07.231 (EBID-2-NEST)	32.237	-106.775	USF2	460	7/31/1975	13	3857	Duplicate
USGS		24S.02E.07.234 (EBID-2-NEST)	32.237	-106.775	USF2	310	2/9/1987	16	3855	Duplicate
USGS	321412106462602	24S.02E.07.234A (EBID-2-NEST)	32.237	-106.775	USF2	125	2/9/1987	15	3856	Duplicate
USGS	321342106452202	24S.02E.08.434A (USBR-13)	32.228	-106.757	RA	30	2/14/1996	8	3855	Duplicate
USGS	321332106443701	24S.02E.16.124A (M-4A)	32.226	-106.744	USF2	307	10/24/2000	12	3850	Duplicate
USGS			32.226	-106.744	USF2	120	10/4/1995	11	3851	Duplicate
USGS		24S.02E.17.423C (M-3C)	32.217	-106.755	USF2	310	2/8/1993	10	3850	Duplicate
USGS		24S.02E.17.423D (M-3D)	32.217	-106.755	USF2	121		9	3851	Duplicate
USGS		24S.02E.19.214A (M-1A)	32.210	-106.773	USF2	320	10/24/2000		3850	Duplicate
USGS		24S.02E.19.214B (M-1B)	32.210	-106.773	USF2	125	9/22/1995	7	3852	Duplicate
USGS			32.210	-106.773	RA	45	8/25/2010	6	3853	Duplicate
USGS		24S.02E.19.214E (M-1E)	32.210	-106.773	RA	12	9/1/1998	8	3852	Duplicate
USGS		24S.02E.19.214F (M-1F) 24S.02E.19.223A (M-2A)	32.210	-106.773	RA USE2	13	9/1/1998	7	3852	Duplicate
USGS USGS		24S.02E.19.223A (M-2A) 24S.02E.19.223B (M-2B)	32.211 32.211	-106.772 -106.772	USF2 USF2	319 120	10/24/2000 7/13/1995	9 7	3850 3852	Duplicate Duplicate
USGS		· · · · · ·	32.211	-106.772	RA RA	50	6/27/2005	6	3853	
USGS		25S.02E.25.322 (OLD USBR-5)	32.104	-106.693	RA	21	2/1/1986	9	3812	Duplicate
		25S.02E.31.133	32.091	-106.784	USF2	400		356	3814	Duplicate
USGS	320310106520601	26S.01E.18.222B	32.051	-106.872	MSF2	600	2/16/1984	393	3820	Duplicate
										-r

	USGS Well				Well	Well	Measure		Well	Keep/Lose
Agent ¹	Number	Well Name	Lat	Long	Geo ²	Depth	Date	D2W	Elev	Reason ³
USGS		26S.03E.03.344B	32.068	-106.627	RA	48	1/16/1992	9	3803	Duplicate
USGS	320405106373104	26S.03E.03.344C	32.068	-106.627	RA	75	1/16/1992	9	3803	Duplicate
USGS	320405106373105	26S.03E.03.344D	32.068	-106.627	MSF	150	2/8/1993	10	3802	Duplicate
USGS	320141106390602	26S.03E.20.423B LMV-2B	32.028	-106.652	Κ	1880	1/6/2009	19	3777	Duplicate
USGS	315940106372302	27S.03E.03.211B (ISC-1B)	31.994	-106.623	MSF2	310	3/12/2003	15	3776	Duplicate
USGS	315940106372303	27S.03E.03.211C (ISC-1C)	31.994	-106.623	MSF2	810	3/12/2003	38	3753	Duplicate
USGS	315940106372304	27S.03E.03.211D (ISC-1D)	31.994	-106.623	LSF	1310	3/12/2003	38	3753	Duplicate
USGS	315754106372402	27S.03E.15.213B (ISC-2B)	31.965	-106.623	MSF	295	2/23/2011	17	3765	Duplicate
USGS	315754106372403	27S.03E.15.213C (ISC-2C)	31.965	-106.623	LSF	895	1/28/2008	55	3727	Duplicate
USGS	315754106372404	27S.03E.15.213D (ISC-2D)	31.965			1275	1/28/2008	54	3728	Duplicate
USGS	315622106391705	27S.03E.20.432D LMV-3B	31.940	-106.655	LSF	1765	1/20/2004	33	3747	Duplicate
USGS	315646106374402	27S.03E.22.134B (ISC-3B)	31.946	-106.629	MSF	331	1/27/2010	20	3760	Duplicate
USGS	315646106374403	27S.03E.22.134C (ISC-3C)	31.946	-106.629	LSF	912	3/12/2003	41	3739	Duplicate
USGS	315646106374404	27S.03E.22.134D (ISC-3D)	31.946	-106.629	Κ	1322	3/12/2003	41	3739	Duplicate
USGS	315326106592502	28S.01W.07.113B	31.891	-106.991	MSF2	600	2/22/1984	309	3802	Duplicate
USGS	315245106380602	28S.03E.16.221B (ISC-7B)	31.879	-106.636	MSF	427	1/27/2010	10	3751	Duplicate
USGS	315110106371702	28S.03E.22.432B (ISC-6B)	31.853	-106.622	LSF	404	1/27/2010	2	3750	Duplicate
USGS	315013106362602	28S.03E.26.344B (ISC-5B)	31.837	-106.608	Tli-K	306	1/26/2010	4	3743	Duplicate
USGS	314817106325802	29S.04E.08.223B (ISC-4B)	31.805	-106.550	MSF1	166	1/26/2010	5	3729	Duplicate
USGS		JL-49-03-916B (USBR-36)	31.879	-106.626	RA	29	6/29/1989	5	3750	Duplicate
USGS		JL-49-04-106	31.959	-106.613	LSF	1090	10/16/1958	20	3754	Duplicate
USGS	315556106364301	JL-49-04-410	31.932	-106.612	MSF	462	1/27/1975	7	3763	Duplicate
USGS		JL-49-04-425	31.948	-106.607	MSF	447	1/27/1975	23	3752	Duplicate
USGS		JL-49-04-467	31.953	-106.613	MSF	159	9/22/1986	6	3765	Duplicate
USGS	315712106364303		31.953	-106.613	MSF	299	3/19/1992	12	3759	Duplicate
USGS	315712106364304		31.953	-106.613	LSF	800	3/19/1992	16	3755	Duplicate
USGS		JL-49-04-471	31.954	-106.607	MSF	158	3/19/1993	10	3764	Duplicate
USGS	315712106362303	JL-49-04-472	31.954	-106.607	MSF	298	3/19/1992	17	3757	Duplicate
USGS		JL-49-04-475	31.954	-106.606	MSF	158	3/19/1992	10	3763	Duplicate
USGS		JL-49-04-476	31.954	-106.606	MSF	300	3/19/1992	17	3756	Duplicate
USGS	315712106361804		31.954	-106.606	LSF	799	3/19/1992	19	3754	Duplicate
USGS	315712106361202	JL-49-04-479	31.954	-106.604	MSF	156	3/19/1993	15	3762	Duplicate
USGS		JL-49-04-480	31.954	-106.604	MSF	334	3/19/1992	21	3756	Duplicate
USGS		JL-49-04-481	31.954	-106.604	LSF	803	3/19/1992	22	3755	Duplicate
USGS	315656106350702	JL-49-04-499	31.949			660	1/20/2004	171	3729	Duplicate
Hawley	222200105115501	21S.01W.11.443	32.493	-106.907	Tlvs	930	12/11/1973	64	3956	Too Deep
		22S.02E.21.131	32.383	-106.750	Tlvs	1000	5/22/1905	470	3860	Too Deep
Hawley	322246106405801	22S.02E.24.422	32.380	-106.683	MSF	1175	3/31/1976	381	4100	Too Deep
		23S.01E.20.213A	32.297	-106.861	MSF2	420	1/27/1975	170	3865	Too Deep
USGS	321745106492106	23S.01E.22.241F (LC-2F)	32.296	-106.823	MSF2	650	12/17/2002	20	3868	Too Deep
USGS		23S.01E.23.244D (LC-3D)	32.295	-106.803	MSF2	640		25	3865	Too Deep
Hawley USGS	322028106455501	23S.02E.05.113	32.341	-106.766	MSF2	676	10/7/1977	232	3838	Too Deep
	321956106453101 3219571064534	23S.02E.05.342 (LC-28) 23S.02E.05.342B	32.333 32.332	-106.760 -106.761	MSF1 MSF1	751	3/29/1973 7/16/1991	218 237	3845	Too Deep Too Deep
								237		
	321910106451301 321856106452801	23S.02E.08.433	32.320 32.316	-106.754 -106.758	MSF1	682	2/15/1977 10/7/1977		3834	Too Deep Too Deep
		23S.02E.08.443 (LC-27)	32.310	-106.756	MSF1 MSF1	632 730	1/19/2010	203 211	3836	Too Deep
		23S.02E.09.332	32.313	-106.747	MSF1	612	2/17/1977	233	3830	Too Deep
-		23S.02E.16.1142	32.312	-106.747	MSF1	680	3/19/1975	233	3843	Too Deep
	321842106443101		32.312	-106.747	MSF1 MSF1	630	10/7/1977	328	3767	Too Deep
USGS		23S.02E.17.243 (LC-26)	32.309	-106.756	MSF1	700	1/13/2009	169	3844	Too Deep
		23S.02E.18.441 (LC-32)	32.301	-106.771	MSF1	700	2/3/1994	48	3842	Too Deep
USGS		23S.02E.20.322 (LC-35)	32.292	-106.763	MSF	685	2/3/1994	35		Too Deep
		23S.02E.21.223 (CLC-34)	32.292	-106.738	LSF	698	1/21/2005	236	3846	Too Deep
		23S.02E.28.123 (NMSU-3)	32.283	-106.746	MSF	665	2/2/1990	120	3846	Too Deep
USGS		23S.02E.28.314 (NMSU-8)	32.276	-106.746	MSF	626	1/30/1996	99	3855	Too Deep
USGS		23S.02E.28.333 (NMSU-9)	32.274	-106.749	MSF	525	2/1/1994	78	3854	Too Deep
USGS		23S.02E.29.141 (NMSU-14)	32.274	-106.762	MSF	712	2/8/1994	32		Too Deep
USGS		23S.02E.29.441 (NMSU-10)	32.274	-106.754	MSF	766	2/1/1994	63	3849	Too Deep
USGS		23S.02E.30.123 (CLC-58)	32.284	-106.780	MSF	700	1/13/2004	33	3853	Too Deep
USGS		24S.01W.22.121 (Norwood Ranch)	32.211	-106.934	MSF	355	2/3/1968	320	3910	Too Deep
		24S.02E.14.122	32.227	-106.710	MSF	512	3/31/1976	101	3822	Too Deep
USGS		24S.02E.17.414B (EBID-1-FarNest)		-106.757	MSF	618	2/13/1989	15	3843	Too Deep
USGS		24S.02E.17.414D (EBID-1-NEST)	32.218	-106.754	MSF	686	1/22/2001	8	3851	Too Deep
0000	22120 1100 121 101	= .5.02E.17. (2511 (151D-1-1(1511)	52.210	100.754	11101	550		9	5551	100 Deep

Agent ¹	USGS Well Number	Well Name	Lat	Long	Well Geo ²	Well Depth	Measure Date	D2W	Well Elev	Keep/Lose Reason ³
USGS			32.218	-106.755	MSF	599	2/13/1989	14	3845	Too Deep
USGS	320927106531201	25S.01E.06.331 (James Hay)	32.157	-106.887	MSF	400	2/15/1991	366	3844	Too Deep
USGS	320924106531201	25S.01E.06.333 (Afton Testhole)	32.157	-106.887	MSF	680	2/7/1995	364	3845	Too Deep
USGS	320824106510801	25S.01E.16.111 (Afton Sod Farm)	32.141	-106.854	LSF	1650	2/7/1995	351	3839	Too Deep
Hawley		25S.02E.03.224	32.168	-106.718	LSF	2030	11/4/1974	79	3756	Too Deep
Hawley	320633106424701	25S.02E.26.114	32.109	-106.714	MSF2	704	4/20/1974	14	3809	Too Deep
USGS	320526106470102	25S.02E.31.312B (Fletch Deerman)	32.091	-106.786	MSF1	1000	2/19/1985	350	3821	Too Deep
USGS	320612107003601	25S.02W.26.421 UPRR	32.103	-107.009	MSF	472	3/21/2006	435	3833	Too Deep
Hawley	321013106351901	25S.03E.01.211	32.170	-106.589	Р	580	5/2/1974	427	3825	Too Deep
Hawley	320842106350701	25S.03E.12.441	32.145	-106.586	MSF2	615	4/14/1975	388	3819	Too Deep
Hawley		25S.03E.17.111A	32.141	-106.666	MSF2	716	7/29/1973	27	3800	Too Deep
Hawley	320706106392501	25S.03E.20.411A	32.118	-106.657	MSF	582	1/19/1976	11	3808	Too Deep
Hawley		258.03E.21.244	32.120	-106.633	MSF2	373	1/21/1976	103	3805	Too Deep
Hawley	320550106381501	258.03E.28.434	32.097	-106.638	MSF	1307	12/13/1975	38	3782	Too Deep
USGS	320811106335801	25S.04E.18.243, K-13	32.134	-106.569	MSF	768	1/22/1955	381	3819	Too Deep
USGS	320309106521601	26S.01E.18.222A	32.053	-106.872	MSF2	430	5/6/1976	393	3820	Too Deep
		268.01E.35.332	31.998	-106.819	MSF	500	6/25/1968	358	3800	Too Deep
USGS	320303106542401	26S.01W.14.224 UPRR	32.051	-106.906	MSF2	510	3/12/2010	390	3827	Too Deep
USGS	320227106570801	26S.01W.16.334	32.041	-106.953	MSF	1000	2/22/1990	386	3824	Too Deep
	320054106533901	26S.01W.25.414	32.015	-106.895	MSF	563	1/1/1969	375	3822	Too Deep
USGS	320230107013501	26S.02W.15.434	32.041	-107.028	MSF	437	2/11/1987	408	3842	Too Deep
Hawley	320414106362801	26S.03E.02.342	32.071	-106.608	MSF	718	3/27/1973	89	3809	Too Deep
~		26S.03E.06.442	32.071	-106.667	MSF	597	1/16/1976	12	3799	Too Deep
		26S.03E.15.322	32.045	-106.625	MSF	1212	12/18/1975	35	3765	Too Deep
USGS	320141106390601	26S.03E.20.423A LMV-2A	32.028	-106.652	LSF	700	2/6/2007	8	3788	Too Deep
USGS	320032106381101	26S.03E.33.214	32.009	-106.637	LSF	1050	1/17/1997	23	3770	Too Deep
~	320022106363201	26S.03E.35.141	32.006	-106.610	LSF	800	6/18/1976	33	3757	Too Deep
Hawley USGS	320005106354601 315941106505801	26S.03E.36.321 27S.01E.04.121 (Lanark Test Hole)	32.001 31.994	-106.597 -106.849	MSF MSF	400 560	4/9/1973 2/13/1990	86 383	3760 3806	Too Deep Too Deep
USGS	315811106490401	27S.01E.11.331 UPRR	31.994	-106.849	MSF2	510	3/21/2006	361	3803	Too Deep
USGS	315535106543602	27S.01W.26.433A	31.970	-106.911	MSF2 MSF2	475	2/23/2001	285	3803	Too Deep
USGS	315720106415601	27S.02E.13.331, MT-3, (La Union)	31.920	-106.700	MSF2 MSF2	722	2/13/1987	317	3781	Too Deep
	315908107005001	27S.02W.02.411	31.935	-107.014	MSF2 MSF	406	6/25/1974	381	3824	Too Deep
		27S.02W.02.413	31.987	-107.014	MSF	406	2/13/1990	367	3836	Too Deep
	315611107002601	278.02W.25.111	31.937	-107.008	MSF2	600	1/11/1969	361	3812	Too Deep
	315852106382401	27S.03E.04.344	31.981	-106.641	MSF	320	2/27/1995	21		Too Deep
	315918106391301	27S.03E.05.4211, 10129, Q-223	31.988	-106.655	MSF2	390	12/3/1986	9	3778	Too Deep
	315715106370301	27S.03E.15.444	31.954	-106.618	LSF	1200	12/14/1953	-	3769	Too Deep
		27S.03E.20.432	31.940	-106.655	MSF2	706	7/24/1975	13	3767	Too Deep
Hawley	314915106525101	28S.01E.31.330	31.821	-106.881	MSF2	400	4/5/1976	327	3810	Too Deep
USGS	314932106493401	28S.01E.34.414	31.826	-106.825	MSF	533	9/4/1986	327	3800	Too Deep
USGS	315349106585701	28S.01W.06.323	31.898	-106.985	MSF2	580	1/6/1966	275	3832	Too Deep
USGS	315336106582801	28S.01W.06.333	31.895	-106.991	MSF2	580	2/22/2001	304		Too Deep
USGS	315326106592501	28S.01W.07.113A	31.891	-106.991	MSF2	565	2/22/1984	309	3802	Too Deep
USGS	315154106414401	28S.02E.13.332, ST-25, P-16	31.868	-106.697	MSF2	607	6/13/1974	334	3776	Too Deep
Hawley		28S.02E.13.343	31.865	-106.696	MSF2	607	6/13/1974	335	3775	Too Deep
USGS	315212106420901	28S.02E.14.421, ST-26	31.871	-106.704	MSF2	536	7/10/1973	330	3780	Too Deep
USGS	315118106422601	28S.02E.23.324, ST-14, 10143	31.855	-106.711	MSF2	552	11/8/1974	329	3782	Too Deep
			31.862	-106.691	MSF2	618	6/13/1974	337	3772	Too Deep
USGS		28S.02E.24.444, ST-29,10067	31.851	-106.686	MSF2	524	4/24/1975	307		Too Deep
	315033106412701		31.845	-106.693	MSF2	565	11/7/1974	307		Too Deep
	314921106464401	28S.02E.31.344	31.823	-106.779	MSF	400	4/11/1968	307		Too Deep
		28S.02E.36.142	31.831	-106.694	MSF2	565	2/17/1972	335	3778	Too Deep
USGS	315238106392301	28S.03E.17.214, ST-12, 10162	31.879	-106.657	MSF2	330	8/9/1974	69	3761	Too Deep
USGS		28S.03E.19.133, ST-27, 10175	31.858	-106.683	MSF2	537	1/1/1974	307	3775	Too Deep
		28S.03E.20.123, ST-28	31.863	-106.663	MSF	333	1/26/1979	126	3758	Too Deep
	315114106392201		31.855	-106.656	K	1980	11/5/1974	123	3751	Too Deep
~		28S.03E.29.132	31.846	-106.665	MSF	360	6/14/1974	173	3767	Too Deep
			31.846	-106.655	MSF	360	6/14/1974	130	3764	Too Deep
USGS	315013106395301	28S.03E.29.344 (ST-31)	31.837	-106.665	MSF	550	11/5/1974	324	3741	Too Deep
	315046106403201	28S.03E.30.141	31.845	-106.679	MSF	601	6/13/1974	320	3771	Too Deep
USGS	314941106393201	28S.03E.32.143 (ST-11)	31.830	-106.662	MSF	605 1004	12/25/1976		3769	Too Deep
	314926106375501 314936106372201	28S.03E.34.331 28S.03E.34.413 Sunland Park No.4	31.824 31.827	-106.632 -106.623	MSF MSF	320	9/13/1966 4/26/1996	248 164	3749 3720	Too Deep Too Deep
0202	514930100372201	205.03E.34.413 Suillallu Park NO.4	51.027	-100.023	TCIM	520	+/20/1990	104	5120	100 Deep

	USGS Well				Well	Well	Measure		Well	Keep/Lose
Agent ¹	Number	Well Name	Lat	Long	Geo ²	Depth	Date	D2W	Elev	Reason ³
	314810106513601	29S.01E.08.124	31.804	-106.862	MSF2	565	1/13/1982	322	3799	Too Deep
		29S.02E.06.122B	31.822	-106.779	MSF	490	2/12/1987	307	3801	Too Deep
		29S.02E.13.113A	31.789	-106.700	MSF2	500	2/19/1993	307	3775	Too Deep
		29S.03E.13.223	31.790	-106.586	K	450	7/31/1975	177	3743	Too Deep
2		29S.04E.17.112	31.792	-106.562	MSF	420	1/15/1953	39	3730	Too Deep
		JL-49-04-104	31.966	-106.616	LSF	1149	2/11/1958	14	3764	Too Deep
		JL-49-04-105	31.969	-106.609	LSF	950	10/2/1958	14	3761	Too Deep
		JL-49-04-107	31.960	-106.612	MSF	550	2/5/1997	5	3769	Too Deep
		JL-49-04-110	31.972	-106.619	MSF	506	1/27/1975	16	3765	Too Deep
		JL-49-04-111 JL-49-04-113	31.967	-106.613	LSF	1063	4/6/1992 9/11/1961	16	3760	Too Deep
			31.971	-106.619	LSF	1206		23	3760	Too Deep
		JL-49-04-117 JL-49-04-149	31.988 31.996	-106.597 -106.607	MSF LSF	336 600	1/4/1988 1/12/2000	59 29	3764 3768	Too Deep Too Deep
	315817106352301	JL-49-04-149 JL-49-04-177	31.990	-106.591	MSF	310	1/12/2000	29 93	3757	Too Deep
		JL-49-04-189	31.971	-106.607	MSF	641	3/19/2004	93 63	3737	Too Deep
		JL-49-04-189 JL-49-04-190	31.959	-106.609	MSF	646	3/19/2004	61	3721	Too Deep
		JL-49-04-205	31.962	-106.548	KP	517	5/7/1953	467	3801	Too Deep
		JL-49-04-210	31.902	-106.582	LSF	500	1/5/2000	160	3760	Too Deep
		JL-49-04-401	31.955	-106.607	LSF	900	10/31/1958	16	3758	Too Deep
		JL-49-04-402	31.951	-106.612	LSF	1060	2/4/1957	-1	3771	Too Deep
		JL-49-04-416	31.941	-106.611	LSF	1013	9/20/1959	9	3759	Too Deep
		JL-49-04-418	31.932	-106.617	MSF	545	3/26/2001	2	3767	Too Deep
		JL-49-04-419	31.955	-106.612	LSF	1072	2/25/1957	1	3772	Too Deep
		JL-49-04-421	31.931	-106.623	MSF	550	9/10/1962	9	3763	Too Deep
		JL-49-04-422	31.956	-106.607	MSF	400	1/27/1975	15	3765	Too Deep
		JL-49-04-473	31.954	-106.607	LSF	799	3/19/1992	19	3755	Too Deep
USGS	315728106352201	JL-49-04-482	31.958	-106.590	LSF	538	4/5/1985	141	3724	Too Deep
USGS	315428106344801	JL-49-04-801	31.908	-106.581	MSF	315	12/26/1990	133	3757	Too Deep
USGS	325205106301901	17S.04E.02.211	32.868	-106.506		670	2/20/1990	210	3929	OutOfStudy
USGS	324637107101001	18S.03W.05.124	32.777	-107.175			2/14/1989	96	4544	OutOfStudy
USGS	324418107075901	18S.03W.15.432	32.738	-107.133		170	2/7/1985	98	4357	OutOfStudy
USGS	324215107062401	18S.03W.36.114	32.704	-107.107			1/12/1994	12	4244	OutOfStudy
	324628107163401	18S.04W.05.1233	32.778	-107.278	RA	15	4/23/1994	7	4095	OutOfStudy
	324625107164701	18S.04W.05.133	32.774	-107.281	RA	68	2/17/1994	11	4119	OutOfStudy
	324612107163801	18S.04W.05.314	32.770	-107.278	RA	20	4/23/1994	8	4101	OutOfStudy
	324510107162601	18S.04W.08.342	32.753	-107.274	RA	18	4/23/1994	8	4094	OutOfStudy
	324422107152201	18S.04W.16.342	32.739	-107.257	RA	23	3/25/1996	12	4082	OutOfStudy
	324501107162101	18S.04W.17.211	32.750	-107.272			7/27/1959	7	4093	OutOfStudy
	324419107160801	18S.04W.17.4322	32.739	-107.270	RA	23	4/24/1994	12	4088	OutOfStudy
	324236107133701	18S.04W.26.3323	32.710	-107.227	RA	17	5/2/1994	6	4071	OutOfStudy
	324257107142601	18S.04W.27.1441	32.716	-107.241	RA	20	4/22/1994	8	4076	OutOfStudy
	324202107143101	18S.04W.34.1344	32.701	-107.243	RA	24	4/28/1994	12	4064	OutOfStudy OutOfStudy
	324205107121401 324129106470801	18S.04W.36.322	32.700 32.691	-107.209		249	3/28/1991 3/1/1972	13 236	4057	OutOfStudy OutOfStudy
	323844106554601		32.691	-106.780	RA	35		321	4089	
	323917107031601		32.654	-100.930	RA	18	5/5/1994	6	4038	2
	323930107041401		32.658	-107.033	RA	23	5/5/1994	0 11	4034	OutOfStudy
		195.02W.17.1414 19S.02W.20.222A	32.638	-107.061	RA	25 18	3/20/1994	7	4023	OutOfStudy
	323802107024101		32.635	-107.001	RA	17	5/6/1994	6	4009	OutOfStudy
	323802107024101		32.639	-107.045		1,	5/21/1976	8	4009	OutOfStudy
	323733107011001		32.626	-107.019	RA	18	5/6/1994	6	3998	OutOfStudy
		19S.02W.26.321 H-26	32.626	-107.019	RA	23	4/30/2009	8	4000	OutOfStudy
		19S.02W.26.4424	32.622	-107.008	RA	23	5/4/1994	10	4002	OutOfStudy
	323645107010101		32.612	-107.013	1	1	7/23/1958	5	4003	OutOfStudy
	324041107100001		32.678	-107.167	RA	16	4/24/2006	3	4053	OutOfStudy
		19S.03W.07.131A	32.673	-107.196	RA	17	4/27/1994	7	4051	OutOfStudy
		19S.03W.10.4322	32.667	-107.132	RA	21		10	4043	OutOfStudy
	324007107072101	19S.03W.11.323	32.669	-107.123	RA	65	4/18/1995	3	4047	OutOfStudy
USGS	324004107070201	19S.03W.11.413	32.668	-107.117			7/23/1958	4	4042	OutOfStudy
	323920107064601		32.656	-107.113	RA	23	5/7/1994	11	4034	OutOfStudy
		19S.03W.15.243 H-21	32.657	-107.131	RA	29		9	4031	OutOfStudy
	324122107120801		32.690	-107.203	RA	22	4/28/1994	12	4057	OutOfStudy
	324122107120802	19S.04W.01.214 H-13	32.690	-107.203	RA	28	5/13/2009	11	4051	OutOfStudy
	324059107122301		32.683	-107.207	RA	20	4/27/1994	7	4058	OutOfStudy

Agent ¹	USGS Well Number	Well Name	Lat	Long	Well Geo ²	Well Depth	Measure Date	D2W	Well Elev	Keep/Lose Reason ³
USGS		19S.04W.12.241	32.676	-107.199	RA	70	1/25/1999	10	4056	OutOfStudy
USGS	323745107165201	195.04W.29.133	32.630	-107.281	KA	172	1/28/2009	141	4348	OutOfStudy
USGS		19S.05E.17.331 MAR-1SW	32.652	-106.462		550	3/2/1995	212	3920	OutOfStudy
USGS		19S.05E.17.333	32.648	-106.462		650	2/21/1995	218	3917	OutOfStudy
USGS	323857106273201	19S.05E.17.334 MAR-2SW	32.649	-106.459		650	2/24/1995	214	3924	OutOfStudy
USGS	323842106281201	19S.05E.19.413 MAR-4	32.645	-106.471		750	2/1/1967	235	3988	OutOfStudy
USGS	323403106484001	20S.01E.14.144	32.568	-106.812		356	1/24/1994	318	4045	OutOfStudy
USGS		208.01W.11.313	32.579	-106.922			2/15/2001	305	4035	OutOfStudy
USGS	323202106444801	20S.02E.28.334	32.534	-106.747		365	12/8/1967	248	4062	OutOfStudy
USGS	323527107000701	20S.02W.01.343	32.591	-107.003	RA	15	5/15/2008	3	3996	OutOfStudy
USGS USGS	323601107010001 323335107171601	20S.02W.02.1444 20S.04W.19.122	32.600 32.562	-107.017	RA	15 650	1/17/1996 1/27/1977	5 193	3998 4390	OutOfStudy OutOfStudy
USGS		20S.04W.19.131	32.558	-107.290		530	1/27/19/7	195	4390	OutOfStudy
USGS	323243107134301	205.04W.19.131 20S.04W.22.444	32.538	-107.231		200	1/25/1978	143	4835	OutOfStudy
USGS		20S.05E.34.133	32.518	-106.420		1000	3/18/1989	292	3886	OutOfStudy
USGS		20S.05E.34.333 (SMR3)	32.518	-106.428		1000	3/31/2004	296	3885	OutOfStudy
Hawley	2221011002222301	21S.02E.11.324	32.495	-106.710	USF	600	3/22/1973	239	4065	OutOfStudy
Hawley		21S.02E.12.222	32.504	-106.685	USF1	600	3/22/1973	239	4065	OutOfStudy
Hawley		21S.03E.16.411	32.482	-106.639	LSF	1893	10/1/1973	518	4083	OutOfStudy
Hawley		21S.03E.19.333	32.462	-106.683	USF1	347	11/20/1978	314	4076	OutOfStudy
Hawley		21S.03E.31.244	32.439	-106.667	USF1	461		410	4090	OutOfStudy
Hawley		21S.03E.33.142	32.442	-106.640	USF1	720	3/16/1976	594	4056	OutOfStudy
USGS		21S.04E.10.233 (HTA-24)	32.496	-106.520		163	12/10/2008	59	5633	OutOfStudy
USGS		21S.04E.10.321 (HTA34)	32.495	-106.525		103	1/9/2007	40	5755	OutOfStudy
USGS		21S.04E.10.322A (HTA-12)	32.495	-106.523		155	4/9/2007	62	5693	OutOfStudy
USGS		21S.04E.10.324 (HTA-23)	32.493	-106.521		135	6/17/2009	85	5595	OutOfStudy
USGS		21S.04E.10.411B (HTA-11)	32.495	-106.521	RA	85	4/15/2008	64	5627	OutOfStudy
USGS USGS		21S.04E.10.411C (HTA-10A)	32.494	-106.521	RA	80	1/9/2008 9/23/1997	61 89	5627 5607	OutOfStudy OutOfStudy
USGS		21S.04E.10.411D (HTA-14) 21S.04E.10.411E (HTA-20)	32.494 32.495	-106.521	RA	110 100	4/16/2008	89 72	5627	OutOfStudy OutOfStudy
USGS		21S.04E.10.411E (HTA-20) 21S.04E.10.411G (HTA-29)	32.493	-106.520	ĸА	158	10/4/2007	72	5647	OutOfStudy
USGS		21S.04E.10.412 (HTA-25)	32.490	-106.518		120	1/21/2000	81	5562	OutOfStudy
USGS		21S.04E.10.413A (HTA-13)	32.494	-106.521		120	4/15/1998	98	5592	OutOfStudy
USGS		21S.04E.10.413B (HTA-21)	32.493	-106.519	1	110	1/22/2000	64	5556	OutOfStudy
USGS	322938106310801	21S.04E.10.414A (HTA-15)	32.494	-106.519		102	9/23/1997	79	5564	OutOfStudy
USGS	322937106310901	21S.04E.10.414B (HTA-16)	32.494	-106.519		103	9/23/1997	82	5559	OutOfStudy
USGS	322936106311001	21S.04E.10.414C (HTA-17)	32.493	-106.519		110	9/23/1997	82	5560	OutOfStudy
USGS	322937106310902	21S.04E.10.414D (HTA-16D)	32.494	-106.519		159	4/16/1998	79	5559	OutOfStudy
USGS		21S.04E.10.421 (HTA-30)	32.494	-106.516		200	1/22/2000	90	5478	OutOfStudy
USGS		21S.04E.10.422 (HTA-26)	32.494	-106.514		200	1/21/2000	98	5434	OutOfStudy
USGS		21S.04E.10.423 (HTA-19)	32.493	-106.518		147	4/16/1998	123	5472	OutOfStudy
USGS	322924106310501	21S.04E.10.434 (HTA-22)	32.490	-106.518	-	110	1/22/2000	86	5471	OutOfStudy
USGS		21S.04E.10.441 (HTA-18)	32.492	-106.515		130	4/14/1998	107	5430	OutOfStudy
USGS		21S.04E.10.442 (HTA-27)	32.491 32.490	-106.514	-	179	1/23/2000 1/20/2000	98 75		OutOfStudy
		21S.04E.11.333 (HTA-28) 21S.04E.11.343 (HTA32)	32.490	-106.513 -106.508	RA	145 75	5/10/2005	32	5311	OutOfStudy OutOfStudy
USGS		21S.04E.12.414 (Bonney Spring)	32.490	-106.486	RA	62	1/12/2007	28	5012	OutOfStudy
USGS		21S.04E.13.143 (HTA43)	32.483	-106.492	RA	99	1/7/2008	<u>69</u>	4888	OutOfStudy
		21S.04E.13.232 (HTA51)	32.484	-106.484	1	145	6/9/2005	83	4752	,
USGS		21S.04E.13.331 (HTA42)	32.477	-106.496		137	4/10/2003	65	4929	OutOfStudy
		21S.04E.14.114 (HTA-3)	32.487	-106.510		161	6/10/1905	48	5307	OutOfStudy
		21S.04E.14.122 (HTA4)	32.487	-106.506	RA	72	5/10/2005	30	5239	OutOfStudy
USGS		21S.04E.14.142 (HTA31)	32.484	-106.507	RA	85	4/10/2007	42	5210	OutOfStudy
USGS		21S.04E.14.223 (HTA46)	32.485	-106.501		145	10/9/2002	83	5076	OutOfStudy
		21S.04E.15.422 (HTA33)	32.480	-106.516		107	1/10/2007	54	5315	OutOfStudy
		21S.04E.22.222 (EMRE Windmill)	32.473	-106.848	<u> </u>	ļ	8/1/1979	36	5176	OutOfStudy
USGS		21S.04E.22.411 (HTA5)	32.466	-106.522	I		10/4/2007	65	5295	OutOfStudy
USGS		21S.04E.23.233B (EMRE-1)	32.468	-106.505	-	180	1/22/2000	93	4951	OutOfStudy
USGS		21S.04E.23.233C (EMRE-2)	32.467	-106.503	RA	100	1/22/2000	56	4938	OutOfStudy
		21S.04E.23.432 (HTA44)	32.463	-106.501	D 4	139	10/9/2002	94 62	4844	OutOfStudy
USGS USGS		21S.04E.25.311 (HTA36) 21S.04E.25.412 (HTA35)	32.451	-106.496 -106.486	RA	97 150	10/2/2006	62 70	4737	OutOfStudy OutOfStudy
USGS		21S.04E.25.412 (HTA35) 21S.04E.35.222 (HTA37)	32.451 32.444	-106.486	1	159 138	10/9/2002 7/12/2007	70 87	4549 4609	OutOfStudy OutOfStudy
		21S.04E.35.232 (HTA37)	32.444	-106.497	1	138	10/3/2006	83	4609	OutOfStudy
0000	322027100300201	215.0TL.33.232 (111A30)	52.770	100.501	1	117	10/3/2000	55	1041	Sucoistudy

• 1	USGS Well	W/ II N	T (T	Well	Well	Measure	Daw		Keep/Lose
Agent ¹ USGS	Number	Well Name 21S.04E.35.422 (HTA39)	Lat 32.437	Long -106.497	Geo ² RA	Depth 149	Date 6/17/2009	D2W 75	Elev 4574	Reason ³ OutOfStudy
USGS	322609106291401	× /	32.437	-106.497	КA	149	10/3/2006	73 78	4374	OutOfStudy
USGS	322941107171701	21S.04W.07.433	32.495	-107.288		474	2/25/1970	391	4419	OutOfStudy
USGS	322834106273201	21S.05E.17.334 (HTA50)	32.476	-106.459		516	1/15/2002	497	3870	OutOfStudy
USGS	322838106264401	21S.05E.17.424 (SMR2)	32.479	-106.447		747	9/29/1960	304	3892	OutOfStudy
USGS	322823106283501	21S.05E.19.112 (HTA45)	32.473	-106.477		139	7/10/2002	74	4564	OutOfStudy
USGS	322827106280101	21S.05E.19.212 (HTA47A)	32.474	-106.468		184	4/10/2003	71	4421	OutOfStudy
USGS	322735106271301	21S.05E.20.434 (SMR4)	32.460	-106.451		580	12/29/1967	274	3888	OutOfStudy
USGS	322731106281901	21S.05E.30.122 (HTA41)	32.459	-106.472		125	10/11/2002	104	4398	OutOfStudy
USGS	322635106264401	21S.05E.32.222 T-13	32.443	-106.446		522	5/17/1967	209	3847	OutOfStudy
USGS	322248106584701	22S.01W.19.322	32.376	-106.986		400	1/21/1982	152	4303	OutOfStudy
USGS	322233106590902	22S.01W.19.332	32.376	-106.986		250	1/27/2009	173	4287	OutOfStudy
USGS	322233106590901	22S.01W.19.332 (Hawkins Well)	32.376	-106.986		250	1/23/1984	156	4304	OutOfStudy
Hawley	322316106411001	22S.02E.13.443	32.388	-106.687		670	6/3/1975	408	4067	OutOfStudy
Hawley	322352106462401	22S.02E.15.142	32.398	-106.727		850	2/15/1994	285	4068	OutOfStudy
	322222107031401	22S.02W.21.343	32.373	-107.054		280	11/15/1973	240	4368	OutOfStudy
	322519106361001	22S.03E.02.412	32.422	-106.603		253	3/22/1973	56	4959	OutOfStudy
	322548106405701	22S.03E.06.111	32.430	-106.683	USF1	1202	9/3/1976	354	4076	OutOfStudy
Hawley		22S.03E.07.444	32.403	-106.667	USF1	564	3/1/1974	452	4076	OutOfStudy
	322440106392701	22S.03E.08.144	32.411	-106.658	Tmrv	590	11/27/1978	482	4073	OutOfStudy
USGS	322538106285701	22S.04E.01.223 (HTA48)	32.427	-106.483	USF1	159	10/8/2002	113	4293	OutOfStudy
USGS	322508106291001	22S.04E.01.431 (HTA49)	32.419	-106.487	USF	419	1/2/2002	323	4089	OutOfStudy
USGS	322503106290801	22S.04E.01.431 T-9	32.418	-106.486	USF1	598	3/14/1989	368	4043	OutOfStudy
USGS	322434106295001	22S.04E.11.224 T-8	32.410	-106.498	USF1	1060	7/7/1966	551	3890	OutOfStudy
USGS	322446106290801	22S.04E.12.214 SW-20	32.413	-106.486		838	1/21/1965	462	3892	OutOfStudy
USGS	322424106290301	22S.04E.12.414 SW-19	32.407	-106.485		800	7/22/1964	409	3885	OutOfStudy
USGS	322405106290101	22S.04E.12.434 SW-18	32.401	-106.484		800	5/6/1964	402	3862	OutOfStudy
USGS	322339106304301	22S.04E.14.133 T-6	32.394	-106.512		515	8/15/1991	187	4320	OutOfStudy
USGS	322323106314701 322250106302501	22S.04E.15.331 BLM WELL	32.390	-106.530		295	3/1/1985 3/14/1989	47 223	4575	OutOfStudy OutOfStudy
USGS	322309106302301	22S.04E.23.214 OS-12 22S.04E.24.212A SW-10A	32.381 32.386	-106.507 -106.484		570 805	2/23/1995	223 393	4147 3880	OutOfStudy OutOfStudy
USGS USGS	32226107172702	22S.04E.24.212A SW-10A 22S.04W.19.343	32.380	-106.484		805	1/28/1993	393 184	4429	OutOfStudy OutOfStudy
USGS	322106107171101	22S.04W.19.545 22S.04W.31.411	32.376	-107.291			2/16/1982	73	4429 4437	OutOfStudy
USGS	322417106281501	22S.05E.07.342	32.405	-106.471		970	1/1/1964	314	3871	OutOfStudy
USGS	322401106245201	22S.05E.15.221	32.488	-106.415		315	1/11/1968	131	3819	OutOfStudy
USGS	322401100243201	22S.05E.16.111 T-4	32.400	-106.444		336	6/21/1953	223	3828	OutOfStudy
USGS	322256106282601	22S.05E.19.141 SW-22	32.382	-106.474		733	5/11/1993	353	3864	OutOfStudy
USGS	322237106282801	22S.05E.19.323 SW-21	32.377	-106.475		700	2/22/1995	337	3870	OutOfStudy
USGS	322311106274101	22S.05E.20.111 T-5	32.386	-106.462		351	12/22/1967	270	3880	OutOfStudy
USGS	322209106260201	22S.05E.28.144	32.369	-106.434		225	1/17/2008	196	3808	OutOfStudy
USGS	322209106255401	228.05E.28.233b	32.369	-106.432		223	1/17/2008	190	3808	OutOfStudy
USGS	322201106260201	22S.05E.28.234 T-34	32.367	-106.434		400	3/17/1989	190	3825	OutOfStudy
USGS		22S.05E.29.412 T-11	32.365	-106.451		576	3/14/1989	272	3728	OutOfStudy
	322220106281701	22S.05E.30.122		-106.472		420	2/23/1995	307	3883	OutOfStudy
		22S.05E.31.424 OS-9	32.348	-106.463		348	9/10/1947	234	3894	
USGS		22S.05E.33.244 T-15	32.352	-106.430		670	6/24/1969	179	3811	OutOfStudy
	322536107051601		32.427	-107.088		3007	1/8/1973	746	4014	OutOfStudy
USGS			32.336	-106.998	<u> </u>	300	2/5/2002	181	4259	OutOfStudy
USGS		23S.02W.12.122 (Corralitos Ranch)		-107.001	ļ	300	1/23/1984	175	4288	OutOfStudy
USGS	321814107000401	23S.02W.12.341 (Corralitos Ranch)	32.317	-107.004		300	2/27/2002	165	4264	OutOfStudy
USGS	321828107000501	23S.02W.13.134 (Corralitos Ranch)	32.309	-107.004	Tlvs	260	2/5/2002	150	4281	OutOfStudy
Hawley	201545107005001	23S.02W.13.311	32.306	-107.007	 	300	1/4/1977	134	4304	OutOfStudy OutOfStudy
	321545107005201	23S.02W.35.411	32.263	-107.015		1050	2/10/1072	720	3710	OutOfStudy OutOfStudy
USGS	322029106370701 321828107165501	23S.03E.03.232	32.341 32.305	-106.619 -107.297		120	3/19/1973 1/27/1975	32	5043 4398	OutOfStudy OutOfStudy
		23S.04W.18.311 23S.05E.05.321 T-18	32.305	-107.297	Tmrs	704	2/22/1995	14 234	4398 3831	OutOfStudy OutOfStudy
USGS	321910106250701	23S.05E.10.413 T-16	32.330	-106.458	Thrs	704	1/21/1995	234 178	3802	OutOfStudy
USGS	321647106251301	23S.05E.10.415 1-16 23S.05E.27.142 T-17	32.320	-106.421	USF1	564	3/24/1970	242	3778	OutOfStudy
USGS		23S.05E.27.142 1-17 23S.05E.34.132A (SC-3A)	32.261	-106.421	0.51/1	810	12/31/1991		3778	OutOfStudy
USGS		24S.02W.36.111 (Arrington N)	32.207	-100.424		510	3/30/2005	314	4008	OutOfStudy
USGS		24S.02W.36.111A (Arrington N)	32.184	-107.006		420	3/2/2011	314	4008	OutOfStudy
USGS	320947107042201		32.164	-107.000		140	1/30/2009	110	4322	OutOfStudy
	320604107051201	· · · · · · · · · · · · · · · · · · ·	32.104	-107.073	1	220	1/22/1973	217	4071	OutOfStudy
USGS		25S.02W.30.324 (McKenna Ranch)	32.101	-107.088	1		2/3/1992	217	4075	OutOfStudy
										sussiantly

USGS 231000107065001 255.03% 0.2.214 (Aden Station) 321.07 107.11 Thys 327.00 257.09 37.41 OunorStaudy USGS 320000106302901 255.0441.11.23. key. Data Aua. 32.152 106.510 R00 1227.0797 S8.8 73.41 OunorStaudy USGS 32007010632901 255.0441.11.23. key. Data Aua. 23.154 106.497 USP 900 1227.1979 S8.8 73.41 OunorStaudy USGS 32007010621901 255.045.3.21.5.1.4.61.0116 23.028 106.533 USP 446 421.995 369 737.1 OunorStaudy USGS 320080106255701 256.056.1.3.22.1.1.11.23. 23.013 107.074 Thy. 450 428 41.014.9 318 73.1 OunorStaudy USGS 32004110621101 250.056.4.3.1.2.2.3.1.4.1.2.1 23.034 106.442 944 94.1.943 37.01 OunorStaudy USGS 2201410621101 250.056.4.3.1.2.2.3.1.4.1.1.11.2.1.2.50 20.2.2.2.1 10.0.421 428.41 10.0.411.1.1.2.1.1.1.2.1.2.1.2.1.2.	Agent ¹	USGS Well Number	Well Name	Lat	Long	Well Geo ²	Well Depth	Measure Date	D2W	Well Elev	Keep/Lose Reason ³
USGS 230081200631701 258.04E.10.334 HBNN-1, K.31 21.42 106.510 Woll 277.079 258.374 Quard/Stady USGS 2007010602201 258.04E.11.21.8, C.9.Dania Ana 3 23.154 106.540 E660 121.31.999 38.3 740 Quard/Stady USGS 200731062401 258.04E.13.33, K-14.0114 32.128 106.547 428 416.193 300 3751 Quard/Stady USGS 20050106238501 258.04E.12.23, H014 32.08 106.476 428 416.193 300 3751 Quard/Stady USGS 20040107054001 256.00F.31.24.149 32.011 107.097 Tvc 800 320.201 307.01 448 389 370 Quard/Stady USGS 2020010625701 256.056.33.24.1.1.23, 102.101 31.04 106.429 454 161.954 31.737 Quard/Stady USGS 20201010625701 256.056.33.24.1.1.23, 102.101 31.838 107.089 22.194.017.013 31.838 107.089 22.194.017.013 31.838 106.640				1	U						
USGS S20906106302010 258.04F11123.8.7-29.Doia Aus.3 21.152 106.472 606 12.217.979 38.8 733 OunOTSudy USGS 320741062710 258.04F1.123.12.046.aux.Aux.2 31.154 106.547 USF.2 900 122/1955 349 3733 OunOTSudy USGS 32048010623501 258.04F1.023.1 110.116 30.02 106.533 454 622/1974 448 31.01 0.0075mdy USGS 320305107034001 258.04F1.023.1 110.116 30.02 10.07704 TW 800 622/1974 448 32.01 10.0704 TW 800 22.0207 76.882 0.00075mdy USGS 32030107034001 268.057.21.23.1.4.1-23.10126 32.074 10.04.24 504 98.1994 339 37.01<0unOTStudy			· · · · · · · · · · · · · · · · · · ·								~
USGS 220914106292701 255.0412.12.12, Donia Anna 2A. 221.14 -100.492 -106 492 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.012</td><td></td><td></td><td></td><td></td><td></td></t<>						0.012					
USGN 202544106301501 255.0147.50216.1232.11BNA2.1_41 22.103 53.41 67.271993 367 771 OuerOSmuy USGN 202500106285501 255.0521.333.1_1.3, (Petie Well) 32.083 106.476 42.84 41.611963 367 370.00075040 Marky 20230510703401 265.0571.31 31.07104 107.044 106.422 504 971.714 448 827.0007504 107.044 106.422 504 971.714 448 827.0007504 107.044 107.042 504 971.764 387.771 700.1007504 100.0451 106.0561.011.21.021.0126.50.0252.01 265.0552.21.31.0119.11.31 32.032 106.429 552.1 167.1976 316.337 700.10075107 285.0522.31.31.0119.13 31.835 107.089 23.271973 31.81 81.00075109 285.0279.31.111 31.835 107.089 23.271973 31.81 81.00075109 285.0279.01 100.0017.0108 22.071973 31.81 81.00078.01 31.81 81.0107.83 31.81 100.015192 28.0599.000.231 31.816 100.015192 20.0058.000	USGS						660	12/13/1999	338	3743	
USGB S2080810025570 255.0811.334, 1.3, PC 1.3 1.0 1.0 1.4 1.4 1.9 1.5 DucrOSnug USGB 250305107034901 265.02W, J.2 14 32.01 107.064 TW 450 625.1974 448 416.1936 36 77.9 0ucrOSnug USGB 230305107034901 265.02W, J.2 14. 32.011 107.067 W8 800 322.02007 46 882 0ucrOSnug USGB 2304310625101 265.08E2.23.14, L.2 10.118 32.04 406.424 425 11/51.976 31 810 0ucrOSnug USGB 320141106251201 265.08E2.33.44, L.1 21.0127 32.02 106.429 423 17.15 181.44 0ucrOSnug USGB 31502106925201 285.01W, 39.111 31.835 107.089 22.14/23.1973 31.84 0ucrOSnug USGB 31904107051901 285.02W, 31.114 31.835 107.081 81.02 22.1991 31.83 0ucrOSnug USGB 31904107051901 285.00W, 31.114			-	32.128		USF2	900	1/22/1955			OutOfStudy
USGB S2080810025570 255.0811.334, 1.3, PC 1.3 1.0 1.0 1.4 1.4 1.9 1.5 DucrOSnug USGB 250305107034901 265.02W, J.2 14 32.01 107.064 TW 450 625.1974 448 416.1936 36 77.9 0ucrOSnug USGB 230305107034901 265.02W, J.2 14. 32.011 107.067 W8 800 322.02007 46 882 0ucrOSnug USGB 2304310625101 265.08E2.23.14, L.2 10.118 32.04 406.424 425 11/51.976 31 810 0ucrOSnug USGB 320141106251201 265.08E2.33.44, L.1 21.0127 32.02 106.429 423 17.15 181.44 0ucrOSnug USGB 31502106925201 285.01W, 39.111 31.835 107.089 22.14/23.1973 31.84 0ucrOSnug USGB 31904107051901 285.02W, 31.114 31.835 107.081 81.02 22.1991 31.83 0ucrOSnug USGB 31904107051901 285.00W, 31.114	USGS	320544106301501	25S.04E.35.213, K-16, 10116	32.092	-106.503		544	6/22/1953	356	3751	OutOfStudy
Hawkg 32005107034001 265.02W.17.214 32.01 107.064 Tws 800 622.1074 444 3820 OutOStudy USGS 320430100261301 265.00W.25.443 32.011 107.007 Tws 800 398.1964 339 3734 OutOStudy USGS 32041100255701 265.05E.21.21.L.21.0127 32.002 106.424 425 11/15/1976 316 3707 OutOStudy USGS 320141100252701 265.00W.31.111.0 31.355 107.089 22.21984 316 3317 OutOStudy USGS 31004107051901 255.02W.31.111.0 31.355 107.089 22.21984 316 3320 OutOStudy USGS 31004107051901 255.02W.31.31.3 31.316 107.089 22.21985 120.3855 OutOStudy USGS 31498.007045201 255.02W.05.231 31.316 107.089 22.241985 123.385 OutOStudy USGS 31499.00702501 26.02W.05.314 31.355 107.089 22.241985 124.385 <	USGS	320808106255701	25S.05E.16.232, HBNM-2, L-41	32.136	-106.434		345	9/9/1985	309		OutOfStudy
Hawkg 32005107034001 265.02W.17.214 32.01 107.064 Tws 800 622.1074 444 3820 OutOStudy USGS 320430100261301 265.00W.25.443 32.011 107.007 Tws 800 398.1964 339 3734 OutOStudy USGS 32041100255701 265.05E.21.21.L.21.0127 32.002 106.424 425 11/15/1976 316 3707 OutOStudy USGS 320141100252701 265.00W.31.111.0 31.355 107.089 22.21984 316 3317 OutOStudy USGS 31004107051901 255.02W.31.111.0 31.355 107.089 22.21984 316 3320 OutOStudy USGS 31004107051901 255.02W.31.31.3 31.316 107.089 22.21985 120.3855 OutOStudy USGS 31498.007045201 255.02W.05.231 31.316 107.089 22.241985 123.385 OutOStudy USGS 31499.00702501 26.02W.05.314 31.355 107.089 22.241985 124.385 <	USGS	320500106283501	25S.05E.31.334, L-3, (Petite Well)	32.083	-106.476		428	4/16/1936	336	3739	OutOfStudy
USGS 20243006261301 268.568.03.121.12.52.10118 320.74 106.442 98.1964 339 734 OutORSup USGS 320141106251201 268.058.21.21.12.12.1118 320.85 106.424 425 11/51/076 316 307 OutORSup USGS 32014110625201 268.058.32.34.1.12.10127 32.002 106.429 425 11/51/076 316 337 OutORSup USGS 3152210692201 285.01W.13.111 31.857 100.991 USF 52.1 42.5179.1 31.8 31.8 100.991 USF 32.194.1 31.8 100.001 31.8 100.991 USF 32.194.1 31.8 100.001 32.194.8 34.8 100.015.00 32.2194.8 34.8 100.015.00 32.2194.8 34.8 100.015.00 32.2194.8 34.8 100.015.00 32.2194.8 34.8 100.015.00 32.2194.8 34.8 100.015.00 32.2194.8 100.015.00 34.8 100.015.00 34.8 100.015.00 32.2194.8 100.05.01 32.8 100	Hawley			32.051	-107.064	Tlvs	450	6/25/1974	444	3829	OutOfStudy
USIGS 3200710625701 265.852.214.10.19.1-A1 320.85 106.438 P00 12271979 347 370.1 DucOrSung USIGS 32010106251201 265.852.314.10.19.1-A1 320.88 106.429 455 1/61.976 316 323 323 310.0007Sung USIGS 315004107051901 285.0783.1111A 31.835 107.089 22.21991 316 337.0007Sung USIGS 315004107051902 285.0783.1111A 31.835 107.089 2.22.1991 316 337.0007Sung USIGS 314916107083001 285.0783.013.31 31.816 107.08 1.27.21.918 324.50 306.007Sung USIGS 31439010705201 29.6333.413 31.85 107.108 1.27.26.198.52 24.50 306.009 471 462.50 0007Sung USIGS 314391010705201 29.6333.443 31.854 107.108 1.22.26.198.52 340.0007Sung 32.457 106.649 322 2.26.198.52 340.0007Sung 32.457 1006.649 322 32.26.018.350 31.450	USGS	320040107054601	26S.03W.25.443	32.011	-107.097	Tlvs	800	3/20/2007	476	3892	OutOfStudy
USGS 320141106231201 265.05E2.3344. 12.10127 32.002 106.424 44.5 11/4/1976 3723 OutORsup Busol 31532106592201 285.01W.19.111 31.847 107.0991 USF 521 472.1973 513 3841 OutORsup Busol 3150210052201 285.01W.19.111 31.845 107.089 22.27194 316 3837 OutORsup Busol 315001107051001 285.02W.31.111A 31.845 107.089 22.27194 216 3321 0utORsup Busol 314708107062501 285.02W.06.211 31.816 -107.083 MBF 715 2.261985 264 3845 OutORsup Busol 32.02910638501 BLM-7-509 32.205 106.649 525 332.0094170 4067 OutORsup Busol 32.22016420301 CLC Malule 32.427 106.691 173.2011 385 4033 OutORsup USGS 32230106412001 CLC Ad.1R.64.30, S-26 32.447 106.674 117.2011	USGS			32.074			504		339	3734	
USGS 32001010622201 265.00E3.3244. L-12, 10127 32.002 -106.429 545 16/1944 32 372.3 OutORSuby USGS 315004107051001 285.01W.19.111 31.847 107.089 -222.1991 321.1984 101.083 322.1984 106.383 100.058 322.1984 126.382 100.058.01 332.01984 126.382 100.058.01 332.01984 126.382 100.058.01 322.1984 126.382 100.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.058.01 343.000.059.01 343.000.000.01 332.010.041.200 340.000.000.01 332.010.041.200 340.000.000.01 343.000.000.01 343.000.000.01 343.000.000.01 343.000.000.01 340.000.000.01 343.000.000.000.01 343.000.000.000.000.01 343.000.000.000.000.000.000.000.000.000.	USGS			32.035	-106.438		700				~
Hawley 315322106592201 288.01W.19.111 31.847 -106.5911 USF 521 472.1793 551 3814 OurORsudy USGS 315004107051901 285.02W.31.111B 31.835 107.089 222.7194 116 3837 OurORsudy USGS 31491617083500 285.02W.30.443 31.815 107.089 222.71944 126 322.71944 126 322.71944 126 322.71945 126 8485 OurORsudy USGS 314708107062501 285.02W.06.231 31.816 -107.083 MIS.1495 127 8485 OurORsudy USGS 2320510643200 CLC Dep 32.208 106.649 52.5 330.009 471 4062 OurORsudy USGS 23230910641200 CLC Middle 32.427 106.691 478 1/13.2011 385 4033 OurORsudy USGS 3223010642200 CLC Al.1.RC4.30, 8-28 32.427 106.674 1170 11.52.209 44 4032 OurORsudy 4033 OurORsudy											
USGS 315004107051002 285.02W.31.111A 31.815 107.089 322/1991 316 3832 0urORsuby USGS 315004107051002 285.02W.31.111B 31.835 107.089 222.1991 21.332 0urORsuby USGS 31485107045501 285.03W.34.43 31.824 107.146 32.71984 220.1985 192.3850 0urORsuby USGS 31430107062501 285.03W.13.143 31.854 107.108 2.201.985 192.3850 0urORsuby USGS 32301710635501 BLM-10.517 2.2508 106.649 532 5.30.2009 471 40c2 0urORsuby USGS 322530106412002 CLC Madle 2.2427 106.691 728 1/13.2011 385 4033 0urORsuby USGS 322530106412002 CLC-40.LRG-430, S-26 3.2417 106.691 485 1/13.2001 384 4033 0urORsuby 3000 11.5200 446 4023 0urORsuby 3035 322557106391801 CLC-41.LRG-430, S-26 3.2417 106.674					-						2
USGS 115004107051902 288.02W.31111B 31.835 107.089 22/21991 321 8822 0urORsudy USGS 314908107062501 295.02W.06.231 31.816 107.088 MSF 715 2261985 242 3845 0urORsudy USGS 314708107062501 295.02W.06.231 31.816 107.088 MSF 715 2261985 192 3885 OurORsudy USGS 323029106385501 BLM-10-517 32.205 106.649 525 57262010 470 4067 OurORsudy USGS 32239106412902 IC.C Madde 32.427 106.691 728 11352011 385 4033 OurORsudy USGS 32239106412901 IC.C.40.1RG-430, S-26 32.417 106.674 980 11/5/2009 446 4023 OurORsudy USGS 32259106422701 IC.C.43.1RG-430, S-29 32.432 106.674 1176 11/5/2009 446 4023 OurORsudy USGS 32255106423301 IC.C.43.1RG-430, S-20 3						USF	521				
USGS 314916107083001 285.03W.33.443 31.824 -107.146 32261984 226 3916 OutORsudy USGS 314858107045501 295.03W.13.143 31.785 107.088 MSF 715 2261985 192 3858 OutORsudy USGS 323017106385501 BLM-10-517 32.505 106.649 532 57.62010 471 4062 OutORsudy USGS 32239106412903 CLC Deep 32.427 106.691 1702 117.52011 385 4033 OutORsudy USGS 322539106412901 CLC.40.HLRG-430, S-26 32.417 106.674 1170 117.52007 446 4033 OutORsudy USGS 32255710639701 CLC-41, LRG-430, S-28 32.432 106.674 1170 117.52007 446 4033 OutORsudy USGS 32255710639710 CLC-41, LRG-430, S-30 32.422 106.675 1175 1/2/2009 514 4050 OutORsudy USGS 32255710639710 CLC-42, LRG-430, S-30 32.412					-						
USGS 314858107045501 295.02W.06.231 31.816 107.083 MSF 715 22611985 244 8445 OurOBmudy USGS 31200106385501 BLM-10-517 32.505 106.649 532 526/2010 470 4067 OurOBmudy USGS 323020106385501 BLM-10-517 32.508 106.649 525 3/0.0200 471 4062 OurOBmudy USGS 322339106412902 CLC Medle 32.427 106.691 728 1/13/2011 385 4033 OurOBmudy USGS 32230106412003 CLC-41. LRG-430, S-26 32.427 106.674 980 11/5/2009 459 4019 OurOBmudy USGS 322597106393701 CL-41. LRG-430, S-28 32.423 106.674 980 11/5/2009 304 4060 OurOBmudy USGS 322597106393801 CL-43. LRG-430, S-29 32.432 106.679 1130 12/2/2012 495 4037 OurOBmudy USGS 322557106393801 CL-43. LRG-430, S-29											
ISGS 14708107062301 29S.03W.13.143 31.785 107.108 P 220/1985 192 3858 DurORsmody USGS 32302910638550 BLM-10-517 32.505 106.649 525 3/30/2001 471 4062 OurORsmody USGS 323259106412902 CLC Deep 32.427 106.691 1000 11/3/2011 385 4033 OurORsmody USGS 322539106412902 CLC 40. ILGC-40.0. S-26 32.417 106.674 1170 11/5/2009 446 4033 OurORsmody USGS 322539106402001 CLC-41. LRG-430, S-26 32.432 106.674 1176 11/5/2009 446 4023 OurORsmody USGS 3225910642301 CLC-43. LRG-430, S-30 32.432 106.675 1150 12/4/2009 511 4051 OurORsmody USGS 3225010642301 CLC-43. LRG-430, S-30 32.432 106.675 1150 12/4/2009 511 4051 OurORsmody USGS 3225210642301 CLC-43. LRG-430, S-30 <											~
USGS 32307106385901 BLM-10-517 32.505 106.649 532 572/2010 470 4067 OutORSmudy USGS 323029106412903 CLC Deep 32.427 -106.691 1000 1/13/2011 885 4033 OutORSmudy USGS 322539106412901 CLC Middle 32.427 -106.691 728 1/13/2011 885 4033 OutORSmudy USGS 322539106412901 CLC-41, LRG-430, S-26 32.417 -106.674 1170 1/15/2009 459 4019 OutORSmudy USGS 32255710639301 CLC-41, LRG-430, S-28 32.425 -106.674 1175 1/2/2009 400 OutORSmudy USGS 32255710639301 CLC-43, LRG-430, S-29 32.431 -106.709 8115 1/2/2009 310 4060 OutORSmudy USGS 32255710642301 CL-43, LRG-430, S-20 32.431 -106.709 815 1/2/4/2009 310 4030 OutORSmudy USGS 3159910622501 JL-49-05-301 31.971 -10						MSF	715				
USGS 3230210638501 BLM-7:509 32.638 1/06.691 1200 1/13/2011 385 4033 OutOfStudy USGS 322539106412900 CLC Deep 32.427 -106.691 1728 1/13/2011 385 4033 OutOfStudy USGS 322539106412900 CLC Middle 32.427 -106.674 173 1/17 1/15 4033 OutOfStudy USGS 322539106412901 CLC-40. LRG-430, S-28 32.442 -106.674 980 1/15/2009 446 4023 OutOfStudy USGS 322557106393701 CLC-41. LRG-430, S-29 32.432 -106.655 1150 1/2/2009 314 4051 OutOfStudy USGS 322557106393701 CLC-43. LRG-3290 32.432 -106.655 1150 1/2/2009 310 4051 OutOfStudy USGS 322557106393701 CLC-69. LRG-3291 32.431 -106.709 1033 371 0utOfStudy USGS 3158106245101 JL-49-05-301 31.971 -106.425 151											
USGS 322539106412903 CLC Deep 32.427 106.691 1000 1/13/2011 885 4033 OutONSmuty USGS 322539106412900 CLC Middle 32.427 106.691 728 1/13/2011 885 4033 OutONSmuty USGS 322539106412001 CLC-41, LRG-430, S-26 32.417 -106.674 11170 117.2001 485 4013 OutONSmuty USGS 32255710639301 CLC-41, LRG-430, S-29 32.432 -106.674 1170 117.2001 440 0.010NSmuty USGS 32255710639301 CLC-42, LRG-430, S-29 32.432 -106.679 1150 12/4/2009 511 0.010Nsmuty USGS 32255710639301 CLC-43, LRG-430, S-30 32.432 -106.479 1030 5/13/2009 388 4060 OutONSmuty USGS 31595710637801 CL-49, LRG-3291 32.431 -106.479 1130 11/40.433 OutONSmuty USGS 31595710637801 CL-49, LRG-3291 31.941 106.425 515 15/1/50/											
USGS 322539106412902 CLC Middle 32.427 -106.691 728 /1/3/2011 385 4033 OurOfStudy USGS 322539106412901 CLC Shallow 32.417 -106.674 1170 11/5/2009 449 4015 OurOfStudy USGS 322579106402701 CLC -40, LRG-430, S-28 32.425 -106.674 980 11/5/2009 446 4023 OurOfStudy USGS 322557106397301 CLC -43, LRG-430, S-29 32.431 -106.675 11150 12/4/2009 511 4037 OurOfStudy USGS 322557106397101 CLC -48, LRG-3290 32.424 -106.709 1030 5//3/2009 308 4060 OurOfStudy USGS 315816106232701 L4-905-204 31.971 -106.425 S15 1/5/1960 332 3700 OurOfStudy USGS 3158210622401 L-49-05-303 31.971 -106.409 671 6/16/195 338 3706 OurOfStudy USGS 3158210622101 L-49-05-303 31.975											~
USGS 322539106412901 CLC.Shallow 32.427 106.691 485 1/13/2011 885 4033 OutOfStudy USGS 322539106412901 CLC.41, LRG-430, S-26 32.417 -106.674 1175 11/5/2009 445 4019 OutOfStudy USGS 322529106402701 CLC.41, LRG-430, S-29 32.433 -106.660 1175 4/22009 511 4023 OutOfStudy USGS 3225710639300 CLC.43, LRG-430, S-30 32.432 -106.679 1030 5/132009 308 4060 OutOfStudy USGS 32252106423301 CLC.48, LRG-3290 32.441 -106.709 815 12/4/2009 310 4039 OutOfStudy USGS 315816106232101 L.49-05-301 31.971 -106.427 520 7/28/194 317 7/28/194 3172 OutOfStudy USGS 31581106243101 L.49-05-303 31.975 -106.387 773 7/15/195 338 3716 OutOfStudy USGS 3159811062435010 L.49-05-3											
USGS 322503106402201 CLC-41, LRG-430, S-26 32,417 -106,674 1170 11/52009 446 4023 OutOfStudy USGS 322527106393701 CLC-41, LRG-430, S-29 32,433 -106,660 1175 4/2/2012 445 4033 OutOfStudy USGS 322557106393101 CLC-42, LRG-430, S-29 32,432 -106,650 1175 4/2/2012 445 4037 OutOfStudy USGS 32252106423101 CLC-64, LRG-3290 32,434 -106,709 B15 12/4/2009 310 4039 OutOfStudy USGS 32552106423101 CLC-69, LRG-3290 32,431 -106,709 B15 12/4/2009 310 4039 OutOfStudy USGS 315816106252101 L-49-05-205 32,001 -106,427 520 72,81944 317 3725 OutOfStudy USGS 3158110623101 L-49-05-303 31.976 -106,387 753 71/51.955 388 3700 OutOfStudy USGS 31590106243501 L-49-05-321 3											
USGS 322529106402701 CLC-41, LRG-430, S-28 32,433 -106,674 980 11/5/2009 446 4023 OutOfStudy USGS 322557106391801 CLC-42, LRG-430, S-29 32,433 -106,660 1175 4/2/2012 495 4037 OutOfStudy USGS 322557106391801 CLC-43, LRG-430, S-30 32,432 -106,679 1130 5/13/2009 308 4060 OutOfStudy USGS 322557106391801 CLC-69, LRG-3291 32,441 -106,709 815 12/4/2009 310 4039 OutOfStudy USGS 31581610623101 LL-49.05-204 31.971 -106,427 520 7/28/1944 317 3725 OutOfStudy USGS 31581106232101 JL-49.05-301 31.971 -106.396 870 5/16/1955 338 3707 OutOfStudy USGS 31581106232101 JL-49.05-301 31.975 -106.387 753 7/15/1955 338 3712 OutOfStudy USGS 3159310624301 JL-49.05-322											2
USGS 32257106393701 CLC-42, LRG-430, S-29 32,433 -106.660 1175 4/2/2012 495 4037 OutOfStudy USGS 32257106391801 CLC-43, LRG-430, S-30 32,432 -106.655 1150 12/4/2009 511 4051 OutOfStudy USGS 32252106423101 CLC-69, LRG-3290 32,442 -106.709 815 12/4/2009 310 4039 OutOfStudy USGS 315816106252701 IL-49-05-204 31.971 -106.427 520 7/28/1940 317 3725 OutOfStudy USGS 31581610623101 JL-49-05-303 31.976 -106.390 671 6/1/31/1960 316 3699 OutOfStudy USGS 31582106234201 JL-49-05-303 31.975 -106.877 753 7/15/1955 338 370 OutOfStudy USGS 31582106242101 JL-49-05-321 31.986 -106.410 500 12/6/1983 383 3674 OutOfStudy USGS 3159106245101 JL-49-05-323 31.992											
USGS 322557106391801 CLC-43, LRG-430, S-30 32,432 -106,655 1150 12/4/2009 511 4051 OutOfStudy USGS 322526106423101 CLC-68, LRG-3290 32,431 -106,709 815 12/4/2009 310 4050 OutOfStudy USGS 32552106423301 CLC-69, LRG-3291 32,431 -106,709 815 12/4/2009 310 4309 OutOfStudy USGS 3158516106243101 LL-9-05-204 31,971 -106,409 671 6718/1960 316 31699 OutOfStudy USGS 315816106243101 L-9-05-301 31.975 -106,396 870 5716/1955 338 3717 OutOfStudy USGS 31581106243101 L-49-05-309 32,001 -106,410 705 12/29/1965 313 3712 OutOfStudy USGS 31592106245101 L-49-05-321 31.982 -106,410 500 12/6/1988 3674 OutOfStudy USGS 31592106242010 L-49-05-503 31.942 -106,410											2
USGS 322526106423101 CLC-68, LRG-3290 32.424 -106.709 1030 5/13/2009 308 4060 OutOfStudy USGS 32552106423301 CLC-69, LRG-3291 32.431 -106.709 815 12/4/2009 310 4039 OutOfStudy USGS 3158100252701 JL-49-05-205 32.001 -106.427 520 7/28/1944 317 3725 OutOfStudy USGS 3158100232101 JL-49-05-303 31.976 -106.396 870 5/16/1955 338 3717 OutOfStudy USGS 31583100231201 JL-49-05-304 31.975 -106.387 753 7/15/1955 338 3712 OutOfStudy USGS 315907106243301 JL-49-05-321 31.986 -106.410 500 12/6/1988 380 3674 OutOfStudy USGS 315915106245101 JL-49-05-523 31.992 -106.410 500 12/6/1988 3686 OutOfStudy USGS 3159210623201 JL-49-05-601 31.987 -106.391 <											*
USGS 322552106423301 CLC-69, LRG-3291 32.431 -106.709 815 12/4/2009 310 4039 OutOfStudy USGS 315816106252701 IL-49-05-205 32.001 -106.427 520 7/28/194 317 3725 OutOfStudy USGS 315816106243101 IL-49-05-301 31.971 -106.409 671 6/13/1960 316 3699 OutOfStudy USGS 315831106231201 IL-49-05-303 31.976 -106.396 870 571.61/5155 338 7016 OutOfStudy USGS 315831106231201 IL-49-05-304 31.975 -106.410 795 12/29/1965 313 3712 OutOfStudy USGS 315915106245101 IL-49-05-322 31.986 -106.410 500 12/6/1968 3686 OutOfStudy USGS 31593210622401 IL-49-05-323 31.992 -106.416 500 10/1/1988 353 6850 OutOfStudy USGS 31572510624201 IL-49-05-601 31.942 -106.416											
USGS 315816106252701 JL-49-05-204 31.971 -106.425 515 1/5/1960 332 3709 OutOfStudy USGS 315959106222001 JL-49-05-205 32.001 -106.427 520 7/281944 31.7325 OutOfStudy USGS 315816106243101 JL-49-05-303 31.976 -106.396 870 5/16/1955 338 3706 OutOfStudy USGS 315831106231201 JL-49-05-309 32.001 -106.410 795 12/29/1965 313 3712 OutOfStudy USGS 315907106243501 JL-49-05-321 31.986 -106.410 500 12/6/1988 380 3674 OutOfStudy USGS 315932106245101 JL-49-05-322 31.982 -106.416 500 12/6/1988 353 3685 OutOfStudy USGS 315932106245101 JL-49-05-603 31.942 -106.424 570 12/6/1963 349 3676 OutOfStudy USGS 3157210623201 JL-49-05-603 31.942 -106.407 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
USGS 315951106252901 IL-49-05-205 32.001 -106.407 520 7/28/1944 317 3725 OutOfStudy USGS 315816106243101 JL-49-05-303 31.976 106.396 671 6/13/1960 316 369 OutOfStudy USGS 315831106231201 JL-49-05-304 31.976 106.387 753 7/15/1955 338 3717 OutOfStudy USGS 315071106245301 JL-49-05-321 31.986 106.410 795 12/29/1965 31.3 3712 OutOfStudy USGS 315915106245101 JL-49-05-322 31.988 -106.416 500 2/6/1986 366 OutOfStudy USGS 315932106245101 JL-49-05-602 31.942 -106.424 570 12/6/1963 34 3685 OutOfStudy USGS 31563710622301 JL-49-05-601 31.947 -106.407 690 1/6/1959 3697 OutOfStudy USGS 31563710623201 JL-49-05-602 31.947 -106.391 802 2/13/1											
USGS 315816106243101 IL-49-05-301 31.971 -106.409 671 6/13/1960 316 3699 OutOfStudy USGS 315832106234201 IL-49-05-303 31.976 -106.387 773 7/15/1955 338 3706 OutOfStudy USGS 3158310623101 IL-49-05-304 31.975 -106.387 7753 7/15/1955 338 3717 OutOfStudy USGS 315907106243501 IL-49-05-321 31.986 -106.416 500 12/6/1988 3664 OutOfStudy USGS 315932106245101 IL-49-05-323 31.982 -106.416 500 12/6/1963 343 3665 OutOfStudy USGS 315932106245101 IL-49-05-503 31.942 -106.416 500 1/6/1959 349 3676 OutOfStudy USGS 315725106232801 IL-49-05-602 31.957 -106.407 650 1/6/1959 310 3692 OutOfStudy USGS 315725106232801 IL-49-05-602 31.957 -106.407 6											~
USGS 315832106234201 JL-49-05-303 31.976 -106.396 870 5/16/1955 338 3706 OutOfStudy USGS 315831106231201 JL-49-05-304 31.975 -106.387 753 7/15/1955 338 3717 OutOfStudy USGS 315907106243301 JL-49-05-321 31.986 -106.410 500 12/2/1965 313 3712 OutOfStudy USGS 315915106245101 JL-49-05-322 31.988 -106.416 500 10/11/1988 353 3685 OutOfStudy USGS 315632106252401 JL-49-05-503 31.942 -106.407 690 1/6/1959 299 3697 OutOfStudy USGS 315632106252401 JL-49-05-601 31.957 -106.392 699 1/6/1959 310 3065 OutOfStudy USGS 31563710623201 JL-49-05-603 31.943 -106.391 802 2/13/1958 279 3691 OutOfStudy USGS 31563710623201 JL-49-05-605 31.942 -106.3											
USGS 315831106231201 JL-49-05-304 31.975 -106.387 753 7/15/1955 338 3717 OutOfStudy USGS 320002106243301 JL-49-05-309 32.001 -106.410 795 12/29/1965 313 3712 OutOfStudy USGS 315915106245101 JL-49-05-322 31.986 -106.416 500 12/6/1988 3664 OutOfStudy USGS 315932106245101 JL-49-05-323 31.992 -106.416 500 10/11/1988 353 3685 OutOfStudy USGS 315725106224201 JL-49-05-601 31.957 -106.407 690 1/6/1959 310 3695 OutOfStudy USGS 315725106232801 JL-49-05-602 31.943 -106.407 657 1/6/1959 310 3695 OutOfStudy USGS 315637106232701 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 315637106232701 JL-49-05-607 31.928 -106.376 <t< td=""><td>USGS</td><td></td><td></td><td>31.976</td><td>-106.396</td><td></td><td>870</td><td>5/16/1955</td><td>338</td><td>3706</td><td>OutOfStudy</td></t<>	USGS			31.976	-106.396		870	5/16/1955	338	3706	OutOfStudy
USGS 315907106243501 JL-49-05-321 31.986 -106.410 500 12/6/1988 380 3674 OutOfStudy USGS 315915106245101 JL-49-05-322 31.988 -106.416 500 12/6/1988 3645 OutOfStudy USGS 315932106245101 JL-49-05-503 31.942 -106.416 500 10/11/1988 353 3685 OutOfStudy USGS 31572510623201 JL-49-05-601 31.957 -106.407 690 1/6/1959 310 3695 OutOfStudy USGS 31572510623201 JL-49-05-602 31.947 -106.392 699 1/6/1959 310 3695 OutOfStudy USGS 3156310623201 JL-49-05-603 31.944 -106.376 769 1/2/1958 279 3691 OutOfStudy USGS 31554010623201 JL-49-05-607 31.928 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 315571106231201 JL-49-05-614 31.950 -106.408 810 <td>USGS</td> <td></td> <td>JL-49-05-304</td> <td>31.975</td> <td>-106.387</td> <td></td> <td>753</td> <td>7/15/1955</td> <td>338</td> <td>3717</td> <td>OutOfStudy</td>	USGS		JL-49-05-304	31.975	-106.387		753	7/15/1955	338	3717	OutOfStudy
USGS 315915106245101 JL-49-05-322 31.988 -106.416 500 2/6/1996 364 3686 OutOfStudy USGS 315932106245101 JL-49-05-323 31.992 -106.416 500 10/11/1988 333 3685 OutOfStudy USGS 315725106242401 JL-49-05-601 31.957 -106.407 690 1/6/1959 291 3697 OutOfStudy USGS 315725106232801 JL-49-05-602 31.957 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 315633106242301 JL-49-05-603 31.943 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 31563710623201 JL-49-05-607 31.942 -106.376 769 1/2/1962 296 3690 OutOfStudy USGS 315540106232601 JL-49-05-614 31.953 -106.408 810 11/30/200 316 3674 OutOfStudy USGS 315657106231201 JL-49-05-622 31.950 -106.408	USGS	320002106243301	JL-49-05-309	32.001	-106.410			12/29/1965			OutOfStudy
USGS 315932106245101 JL-49-05-323 31.992 -106.416 500 10/11/1988 353 3685 OutOfStudy USGS 315632106252401 JL-49-05-503 31.942 -106.424 570 12/6/1963 349 3676 OutOfStudy USGS 315725106242401 JL-49-05-601 31.957 -106.407 690 1/6/1959 291 3692 OutOfStudy USGS 315632106223201 JL-49-05-603 31.943 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 315632106223201 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 31575110623201 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 3157110623201 JL-49-05-614 31.953 -106.391 705 1/2/8/190 353 3646 OutOfStudy USGS 315657106231501 JL-49-05-622 31.950 -106.38	USGS	315907106243501	JL-49-05-321	31.986	-106.410		500	12/6/1988	380	3674	OutOfStudy
USGS 315632106252401 JL-49-05-503 31.942 -106.424 570 12/6/1963 349 3676 OutOfStudy USGS 315725106242401 JL-49-05-601 31.957 -106.407 690 1/6/1959 299 3697 OutOfStudy USGS 31572510623201 JL-49-05-602 31.957 -106.407 657 1/6/1959 211 3692 OutOfStudy USGS 31563106242301 JL-49-05-603 31.943 -106.391 802 2/13/1958 279 3691 OutOfStudy USGS 31554010623201 JL-49-05-607 31.922 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 31554010623201 JL-49-05-614 31.923 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 31554010623201 JL-49-05-621 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231501 JL-49-05-622 31.949 -106.388 </td <td>USGS</td> <td>315915106245101</td> <td>JL-49-05-322</td> <td>31.988</td> <td>-106.416</td> <td></td> <td>500</td> <td>2/6/1996</td> <td>364</td> <td>3686</td> <td>OutOfStudy</td>	USGS	315915106245101	JL-49-05-322	31.988	-106.416		500	2/6/1996	364	3686	OutOfStudy
USGS 315725106242401 IL-49-05-601 31.957 -106.407 690 1/6/1959 299 3697 OutOfStudy USGS 315725106232801 IL-49-05-602 31.947 -106.392 699 1/6/1959 310 3695 OutOfStudy USGS 315637106232701 IL-49-05-603 31.943 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 315637106232701 IL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 315540106232601 IL-49-05-607 31.928 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 3157110623201 IL-49-05-618 31.954 -106.391 705 1/2/18/190 353 3646 OutOfStudy USGS 315657106231501 IL-49-05-622 31.949 -106.408 709 12/24/1986 342 3646 OutOfStudy USGS 315657106241301 IL-49-05-625 31.949 -106.405 751 12/24/1986 342 3642 OutOfStudy	USGS	315932106245101	JL-49-05-323		-106.416		500		353	3685	OutOfStudy
USGS 315725106232801 JL-49-05-602 31.957 -106.392 699 1/6/1959 310 3695 OutOfStudy USGS 315633106242301 JL-49-05-603 31.943 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 315637106232701 JL-49-05-604 31.944 -106.391 802 2/13/1958 279 3691 OutOfStudy USGS 31563210623201 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 315540106232601 JL-49-05-614 31.953 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 31571106242401 JL-49-05-618 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231201 JL-49-05-622 31.949 -106.388 709 12/24/1986 340 3642 OutOfStudy USGS 315657106241301 JL-49-05-625 31.949 -106.4											
USGS 315633106242301 JL-49-05-603 31.943 -106.407 657 1/6/1959 291 3692 OutOfStudy USGS 315637106232701 JL-49-05-604 31.944 -106.391 802 2/13/1958 279 3691 OutOfStudy USGS 315637106232201 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 315540106232601 JL-49-05-614 31.953 -106.408 810 11/30/2000 316 3674 OutOfStudy USGS 315571106232301 JL-49-05-618 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231201 JL-49-05-621 31.950 -106.388 709 12/24/1986 340 3645 OutOfStudy USGS 315657106241301 JL-49-05-625 31.950 -106.405 751 12/24/1986 340 3642 OutOfStudy USGS 315657106241301 JL-49-05-628 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>OutOfStudy</td></t<>											OutOfStudy
USGS315637106232701JL-49-05-60431.944-106.3918022/13/19582793691OutOfStudyUSGS315632106223201JL-49-05-60531.942-106.3767691/26/19622963690OutOfStudyUSGS315540106232601JL-49-05-60731.928-106.3918261/3/19632503675OutOfStudyUSGS315711106242401JL-49-05-61431.953-106.40881011/30/20003163674OutOfStudyUSGS315715106232301JL-49-05-61831.954-106.39170512/18/19903533646OutOfStudyUSGS315657106231201JL-49-05-62131.950-106.38870912/24/19863423645OutOfStudyUSGS315657106231301JL-49-05-62231.949-106.40575112/24/19863403645OutOfStudyUSGS3156510623101JL-49-05-62631.949-106.40575112/24/19863423646OutOfStudyUSGS31565106241001JL-49-05-62831.949-106.4046251/71/1983443636OutOfStudyUSGS31565106241002JL-49-05-63031.950-106.4044808/14/19923453635OutOfStudyUSGS31565106241001JL-49-05-63131.950-106.4044808/14/19923453635OutOfStudyUSGS31565106241001JL-49-05-63131.950-106.4044808/14/1992345 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>OutOfStudy</td></t<>											OutOfStudy
USGS 315632106223201 JL-49-05-605 31.942 -106.376 769 1/26/1962 296 3690 OutOfStudy USGS 315540106232601 JL-49-05-607 31.928 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 315711106242401 JL-49-05-614 31.953 -106.408 810 11/30/2000 316 3674 OutOfStudy USGS 315715106232301 JL-49-05-618 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231201 JL-49-05-621 31.950 -106.388 709 12/24/1986 342 3645 OutOfStudy USGS 315657106241301 JL-49-05-622 31.949 -106.389 709 12/24/1986 342 3642 OutOfStudy USGS 315655106241701 JL-49-05-626 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241001 JL-49-05-628 31.949 -106.406 751 12/24/1986 342 3645 OutOfStudy <											
USGS 315540106232601 JL-49-05-607 31.928 -106.391 826 1/3/1963 250 3675 OutOfStudy USGS 315711106242401 JL-49-05-614 31.953 -106.408 810 11/30/2000 316 3674 OutOfStudy USGS 315715106232301 JL-49-05-618 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231201 JL-49-05-621 31.950 -106.388 709 12/24/1986 342 3646 OutOfStudy USGS 315657106231501 JL-49-05-622 31.949 -106.389 709 12/24/1986 340 3642 OutOfStudy USGS 315657106241301 JL-49-05-626 31.949 -106.405 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241001 JL-49-05-628 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241002 JL-49-05-632 31.949 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>											2
USGS 315711106242401 JL-49-05-614 31.953 -106.408 810 11/30/2000 316 3674 OutOfStudy USGS 315715106232301 JL-49-05-618 31.954 -106.391 705 12/18/1990 353 3646 OutOfStudy USGS 315657106231201 JL-49-05-621 31.950 -106.388 709 12/24/1986 342 3646 OutOfStudy USGS 315655106231501 JL-49-05-622 31.949 -106.389 709 12/24/1986 340 3645 OutOfStudy USGS 315655106231501 JL-49-05-622 31.949 -106.405 751 12/24/1986 340 3642 OutOfStudy USGS 315655106241001 JL-49-05-626 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241002 JL-49-05-628 31.949 -106.404 625 1/7/1998 344 3635 OutOfStudy USGS 315659106241102 JL-49-05-630 31.949 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td></t<>											,
USGS315715106232301JL-49-05-61831.954-106.39170512/18/19903533646OutOfStudyUSGS315657106231201JL-49-05-62131.950-106.38870912/24/19863423646OutOfStudyUSGS315655106231501JL-49-05-62231.949-106.38970912/24/19863403645OutOfStudyUSGS315657106241301JL-49-05-62531.949-106.40575112/24/19863403642OutOfStudyUSGS315655106241001JL-49-05-62631.949-106.40675112/24/19863423642OutOfStudyUSGS315655106241002JL-49-05-62831.949-106.4046251/7/19983443636OutOfStudyUSGS315655106241002JL-49-05-63031.949-106.4044908/14/19923453635OutOfStudyUSGS315651106241101JL-49-05-63131.950-106.4044908/14/19923443636OutOfStudyUSGS315651106241801JL-49-05-63131.950-106.4044801/11/19943473634OutOfStudyUSGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241801JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315448106242801JL-49-05-90631.913-106.4077277/30/1956257											
USGS 315657106231201 JL-49-05-621 31.950 -106.388 709 12/24/1986 342 3646 OutOfStudy USGS 315655106231501 JL-49-05-622 31.949 -106.389 709 12/24/1986 340 3645 OutOfStudy USGS 315657106241301 JL-49-05-625 31.950 -106.405 751 12/24/1986 340 3642 OutOfStudy USGS 315657106241701 JL-49-05-626 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241001 JL-49-05-628 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241002 JL-49-05-628 31.949 -106.404 625 1/7/1998 344 3636 OutOfStudy USGS 315655106241002 JL-49-05-630 31.950 -106.404 490 8/14/1992 345 3635 OutOfStudy USGS 315651106241801 JL-49-05-632 31.949 -106.404 480 1/11/1994 347 3634 OutOfStudy <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
USGS 315655106231501 JL-49-05-622 31.949 -106.389 709 12/24/1986 340 3645 OutOfStudy USGS 315657106241301 JL-49-05-625 31.950 -106.405 751 12/24/1986 340 3642 OutOfStudy USGS 315657106241701 JL-49-05-626 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241001 JL-49-05-628 31.949 -106.404 625 1/7/1998 344 3636 OutOfStudy USGS 315655106241002 JL-49-05-629 31.949 -106.404 490 8/14/1992 345 3635 OutOfStudy USGS 315659106241101 JL-49-05-630 31.950 -106.404 490 8/14/1992 345 3635 OutOfStudy USGS 315659106241102 JL-49-05-631 31.950 -106.404 480 1/11/194 347 3634 OutOfStudy USGS 315651106241801 JL-49-05-632 31.948 -106.406 625 8/18/1992 350 3633 OutOfStudy											
USGS 315657106241301 JL-49-05-625 31.950 -106.405 751 12/24/1986 340 3642 OutOfStudy USGS 315654106241701 JL-49-05-626 31.949 -106.406 751 12/24/1986 342 3642 OutOfStudy USGS 315655106241001 JL-49-05-628 31.949 -106.404 625 1/7/1998 344 3636 OutOfStudy USGS 315655106241002 JL-49-05-629 31.949 -106.404 490 8/14/1992 345 3635 OutOfStudy USGS 315655106241002 JL-49-05-630 31.950 -106.404 490 8/14/1992 345 3635 OutOfStudy USGS 315659106241101 JL-49-05-631 31.950 -106.404 625 1/11/1994 347 3634 OutOfStudy USGS 315651106241801 JL-49-05-632 31.948 -106.406 625 8/18/1992 350 3633 OutOfStudy USGS 315651106241802 JL-49-05-633 31.948 -1											,
USGS315654106241701JL-49-05-62631.949-106.40675112/24/19863423642OutOfStudyUSGS315655106241001JL-49-05-62831.949-106.4046251/7/19983443636OutOfStudyUSGS315655106241002JL-49-05-62931.949-106.4044908/14/19923453635OutOfStudyUSGS315659106241101JL-49-05-63031.950-106.4046251/11/19943463635OutOfStudyUSGS315659106241102JL-49-05-63131.950-106.4044801/11/19943473634OutOfStudyUSGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241802JL-49-05-63331.948-106.4064808/19/19923493634OutOfStudyUSGS315448106242401JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315445106224801JL-49-05-90631.913-106.38195012/28/19672513672OutOfStudyUSGS315305106232002JL-49-05-91831.885-106.3909401/31/19953163606OutOfStudyUSGS315240106233601JL-49-05-91931.878-106.39435110/20/19953133603OutOfStudy											
USGS315655106241001JL-49-05-62831.949-106.4046251/7/19983443636OutOfStudyUSGS315655106241002JL-49-05-62931.949-106.4044908/14/19923453635OutOfStudyUSGS315659106241101JL-49-05-63031.950-106.4046251/11/19943463635OutOfStudyUSGS315659106241102JL-49-05-63131.950-106.4044801/11/19943473634OutOfStudyUSGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241802JL-49-05-63331.948-106.4064808/19/19923493634OutOfStudyUSGS315448106242401JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315305106232002JL-49-05-91831.885-106.3909401/31/19953163606OutOfStudyUSGS315240106233601JL-49-05-91931.878-106.39435110/20/19953133603OutOfStudy						<u> </u>					~
USGS315655106241002JL-49-05-62931.949-106.4044908/14/19923453635OutOfStudyUSGS315659106241101JL-49-05-63031.950-106.4046251/11/1943463635OutOfStudyUSGS315659106241102JL-49-05-63131.950-106.4044801/11/1943473634OutOfStudyUSGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241802JL-49-05-63331.948-106.4064808/19/19923493634OutOfStudyUSGS315448106242401JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315445106224801JL-49-05-90631.913-106.38195012/28/19672513672OutOfStudyUSGS315305106232002JL-49-05-91831.885-106.3909401/31/19953163606OutOfStudyUSGS315240106233601JL-49-05-91931.878-106.39435110/20/19953133603OutOfStudy						<u> </u>					2
USGS315659106241101JL-49-05-63031.950-106.4046251/1/1943463635OutOfStudyUSGS315659106241102JL-49-05-63131.950-106.4044801/11/1943473634OutOfStudyUSGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241802JL-49-05-63331.948-106.4064808/19/19923493634OutOfStudyUSGS315448106242401JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315445106224801JL-49-05-90631.913-106.38195012/28/19672513672OutOfStudyUSGS315305106232002JL-49-05-91831.885-106.3909401/31/19953163606OutOfStudyUSGS315240106233601JL-49-05-91931.878-106.39435110/20/19953133603OutOfStudy						<u> </u>					2
USGS 315659106241102 JL-49-05-631 31.950 -106.404 480 1/11/1994 347 3634 OutOfStudy USGS 315651106241801 JL-49-05-632 31.948 -106.406 625 8/18/1992 350 3633 OutOfStudy USGS 315651106241802 JL-49-05-633 31.948 -106.406 480 8/19/1992 349 3634 OutOfStudy USGS 315651106241802 JL-49-05-633 31.948 -106.406 480 8/19/1992 349 3634 OutOfStudy USGS 315448106242401 JL-49-05-901 31.913 -106.407 727 7/30/1956 257 3685 OutOfStudy USGS 315445106224801 JL-49-05-906 31.913 -106.381 950 12/28/1967 251 3672 OutOfStudy USGS 315305106232002 JL-49-05-918 31.885 -106.390 940 1/31/1995 316 3606 OutOfStudy USGS 315240106233601 JL-49-05-919 31.878 -1						<u> </u>					2
USGS315651106241801JL-49-05-63231.948-106.4066258/18/19923503633OutOfStudyUSGS315651106241802JL-49-05-63331.948-106.4064808/19/19923493634OutOfStudyUSGS315448106242401JL-49-05-90131.913-106.4077277/30/19562573685OutOfStudyUSGS315445106224801JL-49-05-90631.913-106.38195012/28/19672513672OutOfStudyUSGS315305106232002JL-49-05-91831.885-106.3909401/31/19953163606OutOfStudyUSGS315240106233601JL-49-05-91931.878-106.39435110/20/19953133603OutOfStudy						1					
USGS 315651106241802 JL-49-05-633 31.948 -106.406 480 8/19/1992 349 3634 OutOfStudy USGS 315448106242401 JL-49-05-901 31.913 -106.407 727 7/30/1956 257 3685 OutOfStudy USGS 315445106224801 JL-49-05-906 31.913 -106.381 950 12/28/1967 251 3672 OutOfStudy USGS 315305106232002 JL-49-05-918 31.885 -106.390 940 1/31/1995 316 3606 OutOfStudy USGS 315240106233601 JL-49-05-919 31.878 -106.394 351 10/20/1995 313 3603 OutOfStudy						ł					2
USGS 315448106242401 JL-49-05-901 31.913 -106.407 727 7/30/1956 257 3685 OutOfStudy USGS 315445106224801 JL-49-05-906 31.913 -106.381 950 12/28/1967 251 3672 OutOfStudy USGS 315305106232002 JL-49-05-918 31.885 -106.390 940 1/31/1995 316 3606 OutOfStudy USGS 315240106233601 JL-49-05-919 31.878 -106.394 351 10/20/1995 313 3603 OutOfStudy						1					
USGS 315445106224801 JL-49-05-906 31.913 -106.381 950 12/28/1967 251 3672 OutOfStudy USGS 315305106232002 JL-49-05-918 31.885 -106.390 940 1/31/1995 316 3606 OutOfStudy USGS 315240106233601 JL-49-05-919 31.878 -106.394 351 10/20/1995 313 3603 OutOfStudy						1					2
USGS 315305106232002 JL-49-05-918 31.885 -106.390 940 1/31/1995 316 3606 OutOfStudy USGS 315240106233601 JL-49-05-919 31.878 -106.394 351 10/20/1995 313 3603 OutOfStudy						1					OutOfStudy
USGS 315240106233601 JL-49-05-919 31.878 -106.394 351 10/20/1995 313 3603 OutOfStudy						1					OutOfStudy
						1					
						1	520	1/7/1954			

	USGS Well				Well	Well	Measure		Well	Keep/Lose
Agent ¹	Number	Well Name	Lat	Long	Geo ²	Depth	Date	D2W	Elev	Reason ³
USGS		JL-49-06-111	31.971	-106.342		560	5/20/1986	309	3705	OutOfStudy
USGS		JL-49-06-401	31.957	-106.362		451	12/29/1965	308	3690	OutOfStudy
USGS	315724106222501		31.957	-106.374		670	10/30/1963	326	3687	OutOfStudy
USGS	315717106222801		31.955	-106.375		710		354	3661	OutOfStudy
USGS	315636106191901	JL-49-06-501	31.943	-106.322		450	1/6/1954	267	3685	OutOfStudy
USGS	315636106191902	JL-49-06-503	31.943	-106.322		601	1/29/1985	272	3701	OutOfStudy
USGS	315541106171701	JL-49-06-603	31.928	-106.287		600	6/6/1985	319	3679	OutOfStudy
USGS	315305106222001	JL-49-06-701	31.884	-106.369		819	1/25/1955	273	3671	OutOfStudy
USGS	315452106203201	JL-49-06-702	31.913	-106.340		450	2/4/1952	273	3700	OutOfStudy
USGS	315452106203202	JL-49-06-703	31.915	-106.343		550	6/12/2007	339	3644	OutOfStudy
USGS		JL-49-06-901	31.891	-106.286		550	7/23/1983	319	3686	OutOfStudy
USGS	315146106255201		31.862	-106.432		532	12/23/1981	277	3635	OutOfStudy
USGS		JL-49-13-220	31.835	-106.437		900	2/28/1992	297	3599	OutOfStudy
USGS		JL-49-13-301	31.870	-106.416		640	3/20/1965	224	3658	OutOfStudy
USGS		JL-49-13-307	31.859	-106.406		812	12/29/1980	271	3626	OutOfStudy
USGS	315211106241901		31.870	-106.407		812	1/8/1979	267	3633	OutOfStudy
USGS		JL-49-13-312	31.859	-106.390		935	12/12/1990	301	3604	OutOfStudy
USGS		JL-49-13-402	31.819	-106.466		1000	3/26/1995	337	3880	OutOfStudy
USGS		JL-49-13-506	31.809	-106.435		736	4/15/1953	230	3652	OutOfStudy
USGS	314937106252101		31.827	-106.423		753	1/20/1975	239	3630	OutOfStudy
USGS	314815106260501		31.821	-106.436		1045		271	3609	OutOfStudy
USGS		JL-49-13-525	31.815	-106.431		850	1/27/1995	303	3574	OutOfStudy
USGS		JL-49-13-610	31.798	-106.396		754	1/27/1956	262	3663	OutOfStudy
USGS	314933106234102		31.826	-106.395		1026	3/5/1977 12/22/1980	307 290	3607	OutOfStudy
USGS USGS	314933106241701 314940106233701		31.826 31.830	-106.405 -106.394		1120 1035	1/2/1980	290 316	3610 3597	OutOfStudy OutOfStudy
USGS		JL-49-13-628 JL-49-13-630	31.830	-106.394		990	1/2/1980	291	3597	OutOfStudy
USGS		JL-49-13-630 JL-49-13-634	31.813	-106.386		990 900	7/5/1994	320	3601	OutOfStudy
USGS	314603106290401		31.768	-106.484		220	7/20/1994	114	3628	OutOfStudy
USGS		JL-49-13-807	31.787	-106.434		542	12/29/1948	136	3668	OutOfStudy
USGS	314518106255001		31.756	-106.432		622	1/22/1951	18	3678	OutOfStudy
USGS		JL-49-13-823	31.755	-106.421		770	1/6/1961	25	3670	OutOfStudy
USGS	314553106272301		31.766	-106.456		535	5/16/1975	84	3616	OutOfStudy
USGS		JL-49-13-830	31.769	-106.437		788	12/9/1976	92	3608	OutOfStudy
USGS		JL-49-13-832	31.775	-106.447		160	6/21/1976	47	3652	OutOfStudy
USGS	314619106271202	JL-49-13-833	31.772	-106.454		960	12/20/1977	107	3593	OutOfStudy
USGS	314615106270701	JL-49-13-837	31.771	-106.452	RA	96	6/1/1984	75	3629	OutOfStudy
USGS	314612106271701	JL-49-13-840	31.770	-106.453	RA	98	6/1/1984	73	3627	OutOfStudy
USGS	314513106253502	JL-49-13-842	31.754	-106.427	RA	79	9/8/1988	34	3657	OutOfStudy
USGS	314559106253301	JL-49-13-845	31.766	-106.426		130	9/8/1988	63	3633	OutOfStudy
USGS		JL-49-13-846	31.776	-106.449		530	12/1/1995	98	3602	OutOfStudy
USGS	314652106235701	JL-49-13-903	31.781	-106.401		750	12/21/1979	241	3629	OutOfStudy
USGS		JL-49-13-909	31.762	-106.390		671	11/1/1958	69	3661	OutOfStudy
	314648106230001		31.780	-106.384						OutOfStudy
	314505106240501		31.751	-106.402		192	9/20/1979	35		OutOfStudy
	314632106244601		31.776	-106.413		215	6/2/1976	116	3658	
	314510106241301		31.753	-106.404		120		38	3657	OutOfStudy
USGS	314538106230501		31.761	-106.385		102	5/19/1982	70	3645	OutOfStudy
	314607106244701		31.769	-106.414		109	9/18/1984	60	3637	OutOfStudy
	314609106244501		31.770	-106.414		620				OutOfStudy
	314639106231901 314517106231501		31.778	-106.389		290	1/26/1988	247	3422	OutOfStudy OutOfStudy
USGS			31.755	-106.388		230	3/21/1989 9/21/1989	189	3625	OutOfStudy OutOfStudy
USGS USGS	314624106241801 314551106224801		31.773 31.763	-106.406 -106.381	ł	179 665	9/21/1989 8/15/1990	134 185	3631 3585	OutOfStudy OutOfStudy
	314638106232801		31.763	-106.381		882	8/15/1990	185 290	3585 3564	OutOfStudy
	315121106204401		31.856	-106.392		404	1/18/1955	290 254	3699	OutOfStudy
	315124106181901		31.856	-106.304		501		316	3687	OutOfStudy
USGS	315123106174501		31.856	-106.296		520	2/5/1985	308	3664	OutOfStudy
-	315004106163902		31.835	-106.277	1	500	12/30/1982		3677	OutOfStudy
	314930106221201		31.825	-106.371	1	960	1/15/1976	319	3619	OutOfStudy
	314836106180201		31.811	-106.301		500		329	3671	OutOfStudy
USGS	314836106180301		31.811	-106.301		480	12/20/1989	359	3641	OutOfStudy
USGS	314811106152601		31.803	-106.258	1	660	12/7/1989	327	3671	OutOfStudy
-	314912106153701		31.820	-106.261	İ	720	1/5/1997	310	3670	OutOfStudy

	USGS Well			r	Wall	Well	Maaguna		Wall	Voor/Logo
Agent ¹	Number	Well Name	Lat	Long	Well Geo ²		Measure Date	D2W	Well Elev	Keep/Lose Reason ³
USGS		JL-49-14-713	31.753	-106.368	960	562	12/29/1980	102	3628	OutOfStudy
USGS		JL-49-14-713 JL-49-14-720	31.750	-106.357		190	1/1/1978	116	3638	OutOfStudy
		JL-49-14-905	31.787	-106.264		495	4/4/1984	346	3664	OutOfStudy
		JL-49-15-701	31.786	-106.222		596	6/19/1953	341	3682	OutOfStudy
USGS		JL-49-15-704	31.752	-106.222		650	3/23/1994	326	3659	OutOfStudy
USGS		JL-49-15-705	31.755	-106.232		660	1/15/1996	320	3692	OutOfStudy
USGS		JL-49-21-101	31.750	-106.490	RA	50	3/26/1968	30	3680	OutOfStudy
USGS		JL-49-21-104	31.750	-106.491	10.1	150	6/19/1989	76	3633	OutOfStudy
USGS		JL-49-21-304	31.738	-106.380	RA	50	7/18/1968	11	3671	OutOfStudy
USGS		JL-49-21-306	31.745	-106.403	RA	52	7/9/1969	7	3680	OutOfStudy
USGS	314440106240802		31.745	-106.404	RA	30		9	3677	OutOfStudy
	314441106240801		31.745	-106.404	RA	30	12/24/1990		3679	OutOfStudy
-	314421106233403		31.740	-106.393	101	363	10/20/1994	-	3598	OutOfStudy
USGS	314421106233404		31.740	-106.393		196	10/20/1994	34	3649	OutOfStudy
USGS	314421106233405		31.740	-106.393		129	10/20/1994	23	3659	OutOfStudy
	314421106233406		31.740	-106.393		1059	1/28/1993	97	3586	OutOfStudy
USGS		JL-49-21-322	31.740	-106.393		674	5/17/1994	101	3582	OutOfStudy
USGS		JL-49-21-322 JL-49-21-323	31.740	-106.393		581	1/28/1993	90	3593	OutOfStudy
USGS		JL-49-21-324	31.740	-106.393	RA	38	6/6/1995	9	3675	OutOfStudy
USGS		JL-49-22-108	31.740	-106.372	RA	50	9/22/1970	6	3672	OutOfStudy
-		JL-49-22-100 JL-49-22-126	31.743	-106.351	1011	560	3/3/1978	69	3641	OutOfStudy
USGS		JL-49-22-120 JL-49-22-136	31.743	-106.375	RA	25	12/31/1986		3673	OutOfStudy
USGS		JL-49-22-130 JL-49-22-138	31.719	-106.373	RA	25	12/15/2000	4	3677	OutOfStudy
USGS		JL-49-22-215	31.734	-106.295	KA	370	3/9/1978	4 229	3651	OutOfStudy
	314111106203701		31.687	-106.344	RA	15	7/1/1984	4	3669	OutOfStudy
		JL-49-22-501	31.700	-106.326	RA	50	9/23/1970	4 7	3663	OutOfStudy
		JL-49-22-501 JL-49-22-515	31.700	-106.299	KA	147	11/16/1956	-	3652	OutOfStudy
USGS		JL-49-22-536	31.674	-106.327	RA	96	1/24/1975	10	3657	OutOfStudy
		JL-49-22-530 JL-49-22-539	31.672	-106.327	RA	90 92	10/9/1973	9	3657	OutOfStudy
USGS		JL-49-22-541	31.670	-106.304	RA	100	10/5/1973	12	3653	OutOfStudy
	314120106194301		31.689	-106.330	RA	72	12/15/1976		3666	OutOfStudy
USGS		JL-49-22-601	31.683	-106.273	RA	50	6/20/1969	8	3657	OutOfStudy
USGS	314142106173001		31.696	-106.292	KA	126	1/6/1978	12	3655	OutOfStudy
USGS		JL-49-22-602 JL-49-22-613	31.705	-106.292		312	12/10/1963	108	3657	OutOfStudy
USGS		JL-49-22-613 JL-49-22-618	31.685	-106.264		240	1/7/1982	89	3656	OutOfStudy
USGS		JL-49-22-619	31.692	-106.271		233	1/2/1981	92	3658	OutOfStudy
USGS		JL-49-22-805	31.645	-106.300	RA	255	8/14/1951	92 8	3651	OutOfStudy
USGS		JL-49-22-809	31.661	-106.300		85	1/24/1975	6 6	3658	OutOfStudy
USGS		JL-49-22-809 JL-49-22-825	31.647	-106.321	RA RA	74	1/24/19/5		3646	OutOfStudy
USGS		JL-49-22-825 JL-49-22-826	31.647	-106.319	RA	83	2/18/1986	14 5	3655	OutOfStudy
USGS		JL-49-22-820 JL-49-22-834	31.630	-106.297	RA	72			3654	OutOfStudy
USGS		JL-49-22-834 JL-49-22-842	31.638	-106.314	RA	25	12/24/1984		3659	OutOfStudy
USGS		JL-49-22-843	31.638	-106.314	RA	23	3/19/1986	2	3658	OutOfStudy
	313829106183301			-106.310	RA			1		OutOfStudy
			31.659	1		29	8/14/1951	7		
-	313932106162201 313914106150601		31.659	-106.273 -106.253	RA RA	29 80	8/14/1951		3648 3647	ý
	313914106150601		31.654	-106.255	RA RA	80 85	8/3/1981	0 8	3647	
	313942106141401		31.643	-106.281	11/1	235	12/31/1988		3651	OutOfStudy
	313807106143501		31.636	-106.238		233 50	8/4/1981	8	3640	~
	313942106141402		31.662	-106.238		310	12/20/1990		3653	
	313804106043001		31.635	-106.076		560	12/7/2000	423	3629	OutOfStudy
	313713106180601		31.620	-106.302	RA	31	12/7/2000		3652	OutOfStudy
	315511106171101		31.587	-106.287		50		5	3643	· · ·
	323018106400001		32.505	-106.287	RA	440	10/29/2010		4064	OutOfStudy OutOfStudy
	323039106400001		32.505	-106.667		440 462		382 388	4064	OutOfStudy
	322225106254201		32.311	-106.428		205	7/16/2008	388 184	3809	OutOfStudy
-	322225106254201		32.374	-106.428		205 190	7/16/2008	184 169	3809	OutOfStudy
		MPL-06 MPL-07	32.369	-106.426		210	1/17/2008		3807	OutOfStudy
-								176		· · ·
	322145106263601		32.362	-106.443		275	7/14/2008	245	3814	· · ·
	322222106263501		32.373	-106.443		270	1/17/2008	239	3811	OutOfStudy OutOfStudy
	322225106265801		32.374	-106.450		260	2/17/2008	206	3875	OutOfStudy OutOfStudy
USGS		MPL-17	32.360	-106.427		220	1/17/2008	175	3805	OutOfStudy OutOfStudy
USGS USGS	322218106252801 322147106265001		32.372	-106.424		230	7/14/2008	170	3808	OutOfStudy OutOfStudy
		MPL-25	32.363	-106.447	1	275	7/14/2008	253	3825	OutOfStudy

Agent ¹	USGS Well Number	Well Name	Lat	Long	Well Geo ²		Measure Date	D2W		Keep/Lose Reason ³
USGS	322148106261001	MPL-29	32.363	-106.436		225	7/14/2008	213	3810	OutOfStudy
USGS	323039106392301	PL-3-453	32.511	-106.656		469	3/31/2011	433	4066	OutOfStudy
USGS	321757106241401	SCMW-03 (No TR)	32.299	-106.404			9/12/2008	182	3789	OutOfStudy
USGS	322207106264901	SMW-03	32.369	-106.447		277	1/17/2008	254	3820	OutOfStudy
USGS	322413106392101	Well A, 22S.03E.17.142	32.404	-106.656		800	3/10/2009	556	4017	OutOfStudy
USGS	322438106421901	Well B, 22S.02E.02.11, LRG-01683	32.411	-106.705		450	3/5/2009	365	4029	OutOfStudy
USGS	322411106422801	Well C, 22S.02E.11.344	32.403	-106.709		490	2/14/1984	318	4077	OutOfStudy
USGS	322400106440201	Well D, 22S.02E.15.11, LRG-04300	32.400	-106.734		430	3/26/2009	288	4057	OutOfStudy
USGS	322734106432801	Well E, 21S.02E.27.211	32.459	-106.725		572	3/26/2009	255	4045	OutOfStudy
USGS	322839106424501	Well F, 21S.02E.14.34, LRG-13964	32.477	-106.712		333	1/20/2010	235	4067	OutOfStudy
USGS	322953106424201	Well G, 21S.02E.11.143	32.498	-106.712		320	1/19/2010	239	4070	OutOfStudy
USGS	322811106393401	Well I, 21S.03E.20.1	32.470	-106.660		560	3/27/2009	455	4049	OutOfStudy
USGS	322620106401301	Well J, 21S.03E.31.41, LRG-00567	32.439	-106.670		515	8/4/2010	439	4037	OutOfStudy
USGS	322651106412901	Well L, 21S.02E.25.43	32.447	-106.692		350	3/5/2009	259	4148	OutOfStudy
USGS	323106106395601	WW-1-452	32.518	-106.666		468	2/27/2009	398	4059	OutOfStudy

¹ USGS. Downloaded at waterdata.usgs.gov/nwis/gw (accessed September 6, 2012). *Hawley*: Extracted from Hawley and Kennedy (2004).

² Geology types present at the bottom of the well based on depth cross-referenced with cross sections in WRRI TR 332 (Hawley and Kennedy 2004), with descriptions found in Table B-4. Not all were completed.

³ Cert FP - Certainly shallow in floodplain. Uncert FP - Uncertainly shallow in floodplain. Uncert NFP - Uncertainly shallow non-floodplain. No Depth - Well did not have measurements. Duplicate: Both USGS and Hawley has this well on file. Too Deep - Well met depth or bottom geology strata requirements for exclusion. OutOfStudy - Well is not in main study area.

Table B-2: Soil Family Rating System Used in Proje	e B-2: Soil Family Rating Sys	stem Used in Project
--	-------------------------------	----------------------

Soil Family	Sr	Soil Family	Sr
Bedrock	1	Loamy Fine Sand	7
Caliche	1	Loamy Sand	8
Cemented	1	Loamy Very Fine Sand	6
Clay	1	Pits	1
Clay Loam	3	Rock Outcrop	1
Dumps	1	Sand	9
Extremely Gravelly Loamy Sand	9	Sandy Clay Loam	4
Extremely Gravelly Sandy Loam	9	Sandy Loam	7
Fine Sand	8	Silty Clay	2
Fine Sandy Loam	6	Silty Clay Loam	3
Gravel	10	Silty Loam	5
Gravelly Coarse Sand	10	Stony Clay Loam	4
Gravelly Fine Sand	9	Stony Loam	6
Gravelly Fine Sandy Loam	7	Very Fine Sand	7
Gravelly Loam	6	Very Fine Sandy Loam	5
Gravelly Loamy Sand	9	Very Gravelly Fine Sandy Loam	8
Gravelly Sandy Loam	8	Very Gravelly Loam	7
Lime Coated Basalt Rock	1	Very Gravelly Loamy Sand	9
Limestone	1	Very Gravelly Sandy Loam	9
Loam	5	Water	10

MUSVM	Soil Series ^{1,2,3}	County	Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	Si
12	Infantry-Sonic complex	BASE		3	8	24	60	6	2	12
			Extremely Gravelly Sandy Loam	8	9	72				
			Cemented	4	1	4				
			Extremely Gravelly Loamy Sand	38	9	342				
- 21	**	DAGE	Loamy Sand	7	8	56	60	4	~	0
21	Hueco	BASE	Loamy Fine Sand	5	7	35	60	4	2	8
			Fine Sandy Loam	25	6	150				
			Caliche	4	1	4				
22	Caria Nationa and	DACE	Loam	26	5	130	(0)	7	2	14
22	Copia-Nations complex	BASE		5	7	35	60	7	2	14
24	D'au ia	DACE	Loamy Fine Sand	55	7	385	(0)	9	2	10
24	Piquin	BASE	Very Gravelly Sandy Loam	27	9 8	18	60	9	2	18
			Gravelly Sandy Loam		8 9	56				
			Very Gravelly Sandy Loam	21	9	189				
			Gravelly Sandy Loam	20 10	8 10	160 100				
28	Crossen Tinney compley	BASE	Gravelly Coarse Sand	3	5	100	60	3	2	6
28	Crossen-Tinney complex	DASE	Loam Gravelly Loam	5 6	5	36	00	3	2	0
			Caliche	13	0	13				
			Very Gravelly Loam	38	7	266				
29	Tinney	BASE	Loam	17	5	85	60	5	2	10
2)	Thiney	DASL	Sandy Clay Loam	19	4	76	00	5	2	10
			Loam	24	5	120				
30	Crossen	BASE		7	6	42	60	3	2	6
50		DIIDE	Caliche	13	1	13	00	5	-	Ŭ
			Very Gravelly Loam	40	7	280				
42	Copia-Patriot complex	BASE	Sand	3	9	27	60	7	2	14
	1 1		Loamy Fine Sand	57	7	399				
52	Rock outcrop-Bissett complex	BASE	Very Gravelly Loam	9	7	63	60	1	2	2
	1 1		Bedrock	51	1	51				
53	Rock outcrop-Bissett complex	BASE	Very Gravelly Loam	9	7	63	60	1	2	2
			Bedrock	51	1	51				
72	Yippin	BASE	Loamy Sand	5	8	40	60	7	2	14
			Sandy Loam	55	7	385				
156	Missile	BASE	Very Gravelly Fine Sandy Loam	2	8	16	60	5	2	10
			Extremely Gravelly Sandy Loam	6	9	54				
			Cemented	4	1	4				
			Loam	6	5	30				
			Gravelly Loam	42	6	252				
W	Water	BASE	Water	60	10	600	60	10	2	20

	Soil Series ^{1,2,3}		Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness		Sw	Si
Ad	Adelino sandy clay loam	DANM	Sandy Clay Loam	21	4	84	60	5	2	10
			Sandy Clay Loam	19	4	76				
			Sandy Loam	20	7	140				
Ae	Adelino clay loam	DANM	Clay Loam	5	3	15	60	4	2	8
			Clay Loam	11	3	33				
			Silty Clay Loam	11	3	33				
			Loam	33	5	165				
AF	Rock outcrop-Aftaden	DANM	Loamy Sand	2	8	16	60	1	2	2
	association		Fine Sandy Loam	16	6	96				
			Lime Coated Basalt Rock	42	1	42				
Ag	Agua loam	DANM		12	5	60	60	6	2	12
			Loam	23	5	115				
			Fine Sand	25	8	200				
Ah	Agua clay loam	DANM	Clay Loam	12	3	36	60	5	2	10
			Loam	24	5	120				
			Sand	24	9	216				
AJ	Agua Variant soil, moderately	DANM	Fine Sandy Loam	11	6	66	60	6	2	12
	wet		Very Fine Sandy Loam	17	5	85				
			Fine Sand	32	8	256				
AK	Agua variant and Belen variant	DANM	Fine Sandy Loam	13	6	78	60	7	2	14
	soils		Very Fine Sandy Loam	10	5	50				
			Fine Sand	37	8	296				
AL	Rock outcrop-Akela complex	DANM	Very Gravelly Sandy Loam	14	9	126	60	1	2	2
			Caliche	46	1	46				
AM	Aladdin-Coxwell association		Gravelly Fine Sandy Loam	60	7	420		7	2	14
An	Anapra silt loam	DANM	Silty Loam	16	5	80	60	5	2	10
			Silty Clay Loam	12	3	36				
			Fine Sand	32	8	256				
Ao	Anapra clay loam	DANM	Clay Loam	30	3	90	60	4	2	8
			Fine Sand	30	8	240			-	
Ар	Anthony-Vinton fine sandy	DANM	Fine Sandy Loam	13	6	78	60	6	2	12
	loams		Loamy Very Fine Sand	16	6	96				
			Fine Sandy Loam	31	6	186			_	
Ar	Anthony-Vinton loams	DANM		16	5	80	60	6	2	12
			Loamy Very Fine Sand	13	6	78				
			Fine Sandy Loam	31	6	186				
As	Anthony-Vinton clay loams	DANM	Clay Loam	15	3	45	60	5	2	10
			Loamy Very Fine Sand	14	6	84				
		 	Fine Sandy Loam	31	6	186				
At	Armijo loam	DANM		10	5	50	60	2	2	4
			Clay	21	1	21				
			Clay Loam	21	3	63				
			Loamy Sand	8	8	64				

	Soil Series ^{1,2,3}		Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	
Aw	Armijo clay loam	DANM	Clay Loam	15	3	45	60	2	2	4
			Clay	9	1	9				
			Silty Clay Loam	9	3	27				
			Silty Clay	9	2	18				
			Very Fine Sandy Loam	18	5	90		-		
	Armijo clay	DANM		60	1	60	60	1	2	2
Be	Belen loam	DANM		12	5	60	60	3	2	6
			Clay	12	1	12				
			Silty Loam	36	5	180		-		
Bf	Belen clay loam	DANM	Clay Loam	11	3	33	60	4	2	8
			Silty Clay	15	2	30				
			Very Fine Sand	34	7	238				
Bg	Belen clay	DANM	Clay	11	1	11	60	2	2	4
			Clay	10	1	10				
			Silty Clay Loam	9	3	27				
			Very Fine Sandy Loam	30	5	150				
BH	Belen Variant soils	DANM	Silty Clay	21	2	42	60	4	2	8
			Very Fine Sandy Loam	11	5	55				
			Very Fine Sand	28	7	196				
BJ	Berino-Bucklebar association	DANM	Sandy Loam	2	7	14	60	5	2	10
			Sandy Loam	16	7	112				
			Sandy Clay Loam	15	4	60				
			Sandy Clay Loam	27	4	108				
BK	Berino-Doña Ana association	DANM	Fine Sandy Loam	8	6	48	60	6	2	12
			Sandy Clay Loam	13	4	52				
			Sandy Loam	39	7	273				
BL	Berino-Pintura complex	DANM	Loamy Fine Sand	8	7	56	60	6	2	12
	1		Sandy Clay Loam	20	4	80				
			Sandy Loam	32	7	224				
Bm	Bluepoint loamy sand, 1 to 5%	DANM	Loamy Sand	60	8	480	60	8	2	16
	grade				-					
Bn	Bluepoint loamy sand, 5 to 15%	DANM	Loamy Sand	18	8	144	60	7	2	14
	grade		Loamy Fine Sand	42	7	294				
	ľ									
BO	Bluepoint loamy sand, 1 to 15% grade	DANM	Loamy Sand	60	8	480	60	8	2	16
BP	Bluepoint-Caliza-Yturbide	DANM	Loamy Sand	15	8	120	60	8	2	16
	complex		Very Gravelly Sandy Loam	5	9	45				
	1		Loamy Sand	40	8	320				
Br	Brazito loamy fine sand	DANM	Loamy Fine Sand	5	7	35	60	8	2	16
	5		Fine Sand	55	8	440				
Bs	Brazito very fine sandy loam,	DANM	Very Fine Sandy Loam	15	5	75	60	7	2	14
	thick surface		Fine Sand	45	8	360				
CA	Cacique-Cruces association	DANM	Loamy Sand	2	8	16	60	2	2	4
	1		Sandy Clay Loam	12	4	48		-	-	
			Sandy Loam	11	7	77				
		1	Caliche	35	<u></u>	35				1

I	Soil Series ^{1,2,3}		Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	
Cb	Canutillo and Arizo gravelly	DANM	Gravelly Sandy Loam	15	8	120	60	9	2	18
	sandy loams		Very Gravelly Loamy Sand	5	9	45				
			Very Gravelly Sandy Loam	40	9	360				
CH	Cave-Harrisburg association	DANM	Fine Sandy Loam	3	6	18	60	1	2	2
			Gravelly Sandy Loam	6	8	48				
			Caliche	51	1	51				
DR	Doña Ana-Reagan association	DANM	Clay Loam	2	3	6	60	4	2	8
			Sandy Clay Loam	14	4	56				
			Sandy Clay Loam	44	4	176				
DS	Dumps	DANM		60	1	60	60	1	2	2
Ge	Glendale loam	DANM		12	5	60	60	4	2	8
			Clay Loam	28	3	84				
			Very Fine Sandy Loam	20	5	100				
Gf	Glendale clay loam	DANM	Clay Loam	12	3	36	60	3	2	6
			Clay Loam	28	3	84				
			Very Fine Sandy Loam	20	5	100				
Gg	Glendale clay loam, alkali	DANM	Clay Loam	12	3	36	60	3	2	6
			Clay Loam	22	3	66				
			Clay Loam	26	3	78				
GP	Gravel pit	DANM		60	1	60	60	1	2	2
HD	Haplargids, dissected	DANM	Very Gravelly Sandy Loam	12	9	108	60	6	2	12
			Sandy Loam	24	7	168				
			Loam	24	5	120				
Hf	Harkey fine sandy loam	DANM	Fine Sandy Loam	13	6	78	60	5	2	10
			Very Fine Sandy Loam	22	5	110				
			Silty Loam	21	5	105				
			Fine Sand	4	8	32				
Hg	Harkey loam	DANM		18	5	90	60	5	2	10
			Very Fine Sandy Loam	20	5	100				
			Silty Loam	22	5	110				
Hh	Harkey loam, saline-alkali	DANM		10	5	50	60	5	2	10
			Very Fine Sandy Loam	37	5	185				
			Loamy Sand	13	8	104				
Hk	Harkey clay loam	DANM	Clay Loam	12	3	36	60	5	2	10
			Fine Sandy Loam	24	6	144				
			Silty Loam	24	5	120				
Mo	Mimbres silty clay loam	DANM	Silty Clay Loam	10	3	30	60	3	2	6
			Silty Clay Loam	9	3	27				
			Silty Clay Loam	41	3	123				
NB	Nickel-Badland complex	DANM	Sandy Loam	2	7	14	60	9	2	18
			Very Gravelly Sandy Loam	58	9	522				
NU	Nickel-Upton association	DANM	Gravelly Sandy Loam	5	8	40	60	9	2	18
L			Very Gravelly Sandy Loam	55	9	495				
OP	Onite-Pajarito association	DANM	Fine Sandy Loam	8	6	48	60	7	2	14
			Sandy Loam	13	7	91				
			Loamy Sand	39	8	312				

	Soil Series ^{1.2,3}		Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	Si
OR	Onite-Pintura complex	DANM	Loamy Fine Sand	5	7	35	60	7	2	14
			Sandy Loam	55	7	385				
Pa	Pajarito fine sandy loam	DANM	Fine Sandy Loam	12	6	72	60	6	2	12
			Fine Sandy Loam	16	6	96				
			Fine Sandy Loam	32	6	192				
Pb	Pajarito-Pintura complex	DANM	Loamy Fine Sand	10	7	70	60	7	2	14
			Fine Sandy Loam	14	6	84				
			Very Fine Sand	36	7	252		-		
PN	Pinaleno-Nolam association	DANM	Very Gravelly Fine Sandy Loam	2	8	16	60	9	2	18
			Very Gravelly Sandy Loam	18	9	162				
			Very Gravelly Sandy Loam	17	9	153				
			Very Gravelly Loamy Sand	23	9	207				
RE	Riverwash	DANM	Very Gravelly Loamy Sand	60	9	540	60	9	2	18
RF	Riverwash-Arizo complex	DANM	Gravelly Loamy Sand	12	9	108	60	9	2	18
	-		Sand	24	9	216				
			Gravel	24	10	240				
RG	Rock outcrop-Argids association	DANM	Rock Outcrop	60	1	60	60	1	2	2
	Rock outcrop-Argids, cool, assoc		Rock Outcrop	60	1	60	60	1	2	2
RL	Rock outcrop-Lozier association		Stony Loam	11	6	66	60	1	2	2
	I		Rock Outcrop	49	1	49				
RT	Rock outcrop-Torriorthents	DANM	Stony Loam	5	6	30	60	1	2	2
	association		Rock Outcrop	55	1	55				
SH	Simona-Harrisburg association	DANM	Loamy Sand	8	8	64	60	1	2	2
	6		Sandy Loam	6	7	42				
			Caliche	46	1	46				
ST	Stellar association	DANM	Clay Loam	60	3	180	60	3	2	6
TE	Tencee-Upton association		Sandy Loam	8	7	56	60	1	2	2
		211111	Caliche	52	1	52	00	-	-	-
TF	Terino-Casito association	DANM	Very Gravelly Sandy Loam	2	9	18	60	3	2	6
		2111 (1)1	Sandy Clay Loam	13	4	52	00	5	-	Ŭ
			Cemented	17	1	17				
			Very Gravelly Sandy Loam	28	9	252				
Vf	Vinton variant fine sandy loam	DANM	Fine Sandy Loam	14	6	84	60	6	2	12
• 1	vinton variant fine sandy fount	DIM	Loamy Fine Sand	18	7	126	00	U	2	12
			Silty Clay Loam	10	3	30				
			Sand	18	9	162				
Vg	Vinton variant sandy clay loam	DANM	Sandy Clay Loam	16	4	64	60	2	2	4
•5	vinton variant sandy city foam		Fine Sand	17	8	136	00	4	2	-
			Clay	27	0	27				
WH	Wink-Harrisburg association	DANM	Loamy Fine Sand	4	7	27	60	7	2	14
** 11	mk-manisourg association		Fine Sandy Loam	24	6	144	00	1	-	14
			Sandy Loam	32	7	224				
WP	Wink-Pintura complex	DANM	Fine Sand	10	8	80	60	7	2	14
W P	wink-rintura complex	DAININ		10			00	/		14
			Fine Sandy Loam		6 7	60 280				
	<u> </u>		Sandy Loam	40	/	280]		I

MUSUM	Soil Series ^{1,2,3}	County	Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	Si
AGB	Agustin association	EPTX	Gravelly Loam	30	6	180	60	6	2	12
			Very Gravelly Loam	30	7	210				
	Bluepoint association, rolling		Loamy Fine Sand	60	7	420	60	7	2	14
DCB	Delnorte-Canutillo association,	EPTX	Very Gravelly Sandy Loam	11	9	99	60	2	2	4
	undulating		Gravelly Loam	6	6	36				
			Caliche	24	1	24				
			Very Gravelly Sandy Loam	19	9	171				
DCD	Delnorte-Canutillo association	EPTX	Very Gravelly Sandy Loam	11	9	99	60	3	2	6
	hilly		Very Gravelly Loam	8	7	56				
			Caliche	14	1	14				
			Gravelly Fine Sand	27	9	243				
Ga	Gila fine sandy loam	EPTX	Fine Sandy Loam	15	6	90	60	5	2	10
			Fine Sandy Loam	12	6	72				
			Silty Loam	11	5	55				
			Silty Clay Loam	11	3	33				
			Loamy Fine Sand	11	7	77				
Gc	Gila loam	EPTX	Loam	17	5	85	60	6	2	12
			Fine Sandy Loam	12	6	72				
			Loamy Fine Sand	11	7	77				
			Silty Loam	10	5	50				
			Gravelly Sandy Loam	10	8	80				
Gd	Glendale loam	EPTX	Loam	19	5	95	60	3	2	6
			Silty Clay Loam	41	3	123				
Ge	Glendale silty clay loam	EPTX	Silty Clay Loam	17	3	51	60	3	2	6
			Silty Clay Loam	35	3	105				
			Silty Loam	8	5	40				
Gs	Glendale silty clay	EPTX	Silty Clay	18	2	36	60	3	2	6
			Silty Clay Loam	35	3	105				
			Silty Loam	7	5	35			_	
На	Harkey loam	EPTX	Loam	17	5	85	60	5	2	10
			Very Fine Sand	12	7	84				
			Fine Sandy Loam	11	6	66				
			Loam	20	5	100				
IN	Igneous Rock land-Brewster	EPTX	Stony Clay Loam	10	4	40	60	1	2	2
	Association		Bedrock	50	1	50				
LM	Rock outcrop-Lozier association	EPTX	Stony Loam	5	6	30	60	1	2	2
x ==	· · · · · · · · · · · · · · · · · · ·		Rock Outcrop	55	1	55			_	
LOD	Lozier association, hilly	EPTX	Stony Loam	5	6	30	60	1	2	2
L			Limestone	55	1	55		-	-	
Mg	Made land, Gila soil material	EPTX	Loamy Fine Sand	10	7	70	60	8	2	16
	T		Fine Sand	50	8	400		-		
PAA	Pajarito association, level	EPTX	Fine Sandy Loam	18	6	108	60	6	2	12
			Fine Sandy Loam	18	6	108				
			Fine Sandy Loam	24	6	144				

MUSUM	Soil Series ^{1,2,3}	County	Soil Family Components ⁴	Thickness (in)	Rating	Score	Total Thickness	Sr	Sw	Si
Sa	Saneli silty clay loam	EPTX	Silty Clay Loam	18	3	54	60	2	2	4
			Clay	16	1	16				
			Loamy Fine Sand	8	7	56				
			Fine Sand	18	8	144				
Sc	Saneli silty clay	EPTX	Silty Clay	12	2	24	60	3	2	6
			Clay	12	1	12				
			Fine Sand	18	8	144				
			Silty Loam	9	5	45				
			Loam	9	5	45				
Tg	Tigua silty clay	EPTX	Silty Clay	10	2	20	60	1	2	2
			Clay	40	1	40				
			Very Fine Sandy Loam	10	5	50				
Vn	Vinton fine sandy loam	EPTX	Fine Sandy Loam	10	6	60	60	6	2	12
			Very Fine Sandy Loam	25	5	125				
			Fine Sandy Loam	25	6	150				

¹ Sources: *BASE* –USDA, NRCS Revised December 2000. 1997 National Resources Inventory. USDA, NRCS 2009a. *DANM* – Bulloch and Neher 1980. USDA, NRCS 2008. *EPTX* - Jaco 1971.USDA, NRCS 2009a

² Associations and Complexes take their first name from the underlying material and substitutes the A-horizon of the second name and B-horizon of the third name (personal interview by S. Walker with Curtis Monger on June 26, 2012).

³ Soils with slope elements are treated like normal soils for components, but slope is calculated in the Topography component.

⁴ Caliche and cemented soils are mostly impermeable, but still affected by thickness. If the thickness of caliche is large enough that the high impermeability can surpass the permeability of the other horizons, the soil type becomes impermeable.

HSU	Zone	Description	Age Laid	Max Thick (ft)		LFA	Vadose Range	Ir	Iw	Ii
!P	Bedrock/	Undifferentiated; primarily limestone, sandstone and red-bed mudstones	Permian and Pennsylvanian					4		20
BF	Basin Floor	Undifferentiated deposits of ephemeral drainage ways (alluvial flats) on the floors of the Mesilla and southern Jornada structural basins (Jornada Draw); has some intercalated gypsum (selenite) and weak to strong argillic and calcic soil profile development, includes many small areas of HSU-BFP. Undivided alluvial flat deposits, including fills of small playa depressions	Late to Middle Quaternary		Primarily, Entirely vadose	c	Silt/Clay	1	5	5

Table B-4: Detailed Descriptions of Surface Hydrogeology Used in Project¹

				Max Thick						
HSU	Zone	Description	Age Laid	(ft)	Zone	LFA	Vadose Range	I.	I.	I;
BFP	Basin Floor	Playa lake deposits in shallow depressions on basin floor alluvial flats in the Mesilla and southern Jornada basins (Flat and Isaacks Lakes); has some intercalated gypsum (selenite) and local Vertisol development in local depressions on basin-floor alluvial	Late to Middle Quaternary		Entirely vadose	C	Silt/Clay	1	5	5
Б	Piedmont	plains (unit BF)	T . /	20	E (* 1		0 1 1	4	-	20
E	Slope	Eolian Sand - Stipple pattern or superposed symbols (e.g., E/TA, E/PAU, E/Qb) indicate HSUs or bedrock units with thin (<10 ft.) eolian cover.	Late Quaternary Upper Quaternary	30	Entirely vadose		Sand and Gravel with Silt and Clay	4	5	20
E/Qb	Basalt	Olivine basalt flows and cinder cones	Late				Basalt	4	5	20
-	Capping	with eolian sand covering them	Quaternary							
K	Bedrock/ Sedimentary	Sarten and Dakota Sandstone; yellow, tan, and gray, weathering, soft sandstone, shale and siltstone and massive, cross-bedded, gray quartzite; minor pelecypod coquina; approximately 260 ft. thick in southern San Andres Mountains	Upper Cretaceous	260			Sandstone	3	5	15
KI	Bedrock/ Pre-Santa Fe	Marine rocks; limestone pebble conglomerate, sandy limestone, calcareous sandstone, pelecypod coquina, and silty, shaly limestone; approximately 1550 ft. exposed in East Potrillo Mountains; 1050 ft. reported in the Grimm and others deep oil test, 15 mi northeast of East Potrillo Mountains	Lower Cretaceous				Thin Bedded Sandstone, Limestone, Shale Sequence	4	5	20
MSF1	Santa Fe Group		Middle to Late Miocene, Upper Tertiary	1000	Mostly saturated	5 to 7 to 8	Sand and Gravel with Silt and Clay	4	5	20
РА	Piedmont Slope	Undifferentiated alluvial deposits of major ephemeral streams with headwaters in mountain areas bordering the Mesilla and southern Jornada structural basins. Younger (PAY) and older (PAO) piedmont-slope deposits, undivided, stippled where up to 10 ft. of Late Quaternary eolian cover is present	Late to Middle Quaternary	30	Entirely vadose	5, 6	Sand and Gravel with Silt and Clay	4	5	20
PAO	Piedmont Slope		Middle Pleistocene	15	Entirely vadose	5, 6	Sand and Gravel with Silt and Clay			20
PAU	Piedmont Slope	Undifferentiated piedmont-slope deposits (PA) and uppermost Santa Fe basin fill (USF1). Older and younger piedmont-slope deposits and correlative Upper Santa Fe piedmont facies (5 to 8), undivided	Middle to Early Pleistocene	50	Entirely vadose	5 to 8	Sand and Gravel with Silt and Clay	4	5	20

				Max					ſ	
HOL	7			Thick		TEA	V I D	-	-	-
HSU		Description	Age Laid	(ft)	Zone		Vadose Range	I_r		
PAUC	Piedmont Slope	Undifferentiated coarse-grained piedmont deposits (PA) and uppermost	Middle to Early	50	Entirely vadose	6, 8	Sand and Gravel with	4	5	20
	Slope	Santa Fe basin fill (USF1, USFc). Older			vauose		Silt and Clay			
		and younger course-grained piedmont	Quaternary				Shit and Chay			
		facies, undifferentiated, thin over upper	and Tertiary							
		and middle Santa Fe group								
PAY	Piedmont	Younger piedmont-slope deposits	Late	15	Entirely	5,6	Sand and	4	5	20
	Slope	(mostly alluvial fans and terraces) with	Quaternary		vadose		Gravel with			
		weak soil-profile development					Silt and Clay			
Pz	Bedrock/	Pzu/Pzm/Pzl Undifferentiated	Paleozoic				Thin Bedded	4	5	20
	Pre-Santa Fe						Sandstone,			
							Limestone,			
Pzl	Bedrock/	Undifferentiated; primarily limestone	Lower				Shale Sequence Limestone	4	5	20
F ZI		and dolomite, with thin basal (Cambro-	Paleozoic,				Linestone	4	5	20
	1 ie-Santa i e	Ordovician) sandstone. Primarily	Cambrian,							
		carbonate types	Silurian							
Pzm	Bedrock/	Undifferentiated, primarily carbonate	Middle				Thin Bedded	4	5	20
	Pre-Santa Fe	types, with shale	Paleozoic,				Sandstone,			
			Devonian,				Limestone,			
			Mississippian				Shale Sequence			
Qb	Basalt	Olivine basalt flows and cinder cones	Middle to Late				Basalt	4	5	20
	Capping	associated with extrusive-volcanic	Pleistocene							
		centers in the southwestern Mesilla								
		Basin - West Potrillo Mountains, Black								
		Mountain, Little Black Mountain, and								
		Afton volcanic fields. Mostly, if not entirely, alkali-olivine basalt								
Qba	Basalt	Alkali-olivine basalt of Aden Shield	Late				Basalt	4	5	20
Qua	Capping	Volcano	Pleistocene				Dasan	4	5	20
Qbac	Basalt	Alkali-olivine basalt of the lava-lake	Late				Basalt	4	5	20
C	Capping	basalt of Aden Crater	Pleistocene						-	
Qbc	Basalt	Cinder Cones					Basalt	4	5	20
-	Capping									
Qt	Basalt	Air-fall tuffs and breccia, including	Late				Sandstone	3	5	15
	Capping	base-surge deposits; associated with	Pleistocene							
		Potrillo Maar, Kilbourne Hole, and								
	D 1 G 1	Hunt's Hole volcanoes	-	100		<u> </u>	a 1 1		-	<u> </u>
RA	Rio Grande	Channel and floodplain deposits of the	Late	100	Mostly	a1,	Sand and	9	5	45
	Valley	Rio Grande; up to 30 m. saturated thickness; primarily lithofacies	Quaternary, Holocene and		saturated	a2	Gravel			
		assemblages	Late							
		assemblages	Pleistocene							
TA	Rio Grande	Channel and overbank deposits	Middle	60	Entirely	a1	Sand and	9	5	45
	Valley	associated with ancestral river terraces,	Quaternary,	00	vadose		Gravel	-	0	
		terrace deposits of the Rio Grande;	Holocene and							
		•	Late							
			Pleistocene							
Tb	Bedrock/	Basalt flows and plugs	Miocene				Basalt	4	5	20
	Pre-Santa Fe									
Tba	Bedrock/	Basaltic-andesite and other intermediate	Oligocene				Basalt	4	5	20
	Pre-Santa Fe	compositions (including Uvas Basalts)								

				Max Thick						
HSU	Zone	Description	Age Laid	(ft)	Zone	LFA	Vadose Range	Ir	Iw	Ii
Tli	Bedrock/	Intermediate volcanic rocks, including latite, dacite, and andecite intrusions, flows, and laharic breccia; aphyric to	Eocene, Lower Tertiary				Metamorphic/ Igneous		5	20
		moderately porphyritic, and generally fine grained, locally intercalated with clastic sedimentary rocks derived from Tli. Includes intrusions in the Vado Hill								
		to Paso del Norte, and Mt. Riley-Cox areas and correlative with Tlvs. Silicic to intermediate intrusive rocks, mainly dikes and small plugs								
Tls	Bedrock/ Pre-Santa Fe	Mostly sedimentary rocks, sandstones, mudstones, and conglomerates with minor or no volcaniclastic constituent, including Love Ranch Formation	Lower Eocene and Paleocene				Thin Bedded Sandstone, Limestone, Shale Sequence	4	5	20
Tlvs	Bedrock/ Pre-Santa Fe	Volcaniclastic sedimentary rocks and some andesite flows and breccias, including Palm Park, Rubio Peak, and Orejon Andesite Formations; interbedded andesite and dacitic flows, laharic breccia, and other volcaniclastic rocks in the Organ Mountains, generally dark-gray, greenish-gray, or purple- gray; conspicuous epidote alteration; approximately 2000 ft. thick; correlative with Palm Park and Rubio Peak Formations	Eocene, Lower Tertiary				Shale	2	5	10
Tmi	Bedrock/ Pre-Santa Fe	Intermediate to silicic plutonic rocks, including monzodiorite to syenite stocks in the Organ and Doña Ana Mountains, Intermediate intrusive rocks, including scattered andesite prophyry bodies	Oligocene, Middle Tertiary				Metamorphic/ Igneous	4	5	20
Tmrp	Bedrock/ Pre-Santa Fe	Undifferentiated ash-flows, partly to densely welded, mostly rhyolitic. Tuff of Achenback Park; dark gray to dark reddish-brown, densely welded, purniceous ash flow tuff as much as 3100 ft. thick in the Organ Cauldron; compound cooling unit; compositionally zoned from aphyric rhyolite at the base of aphyric at the top; including Tuff of Cox Ranch, Achenback Park, and Cueva Tuff. Tuff of Cox Ranch is densely welded, dark-brown to gray, aphyric, purniceous, rhyolitic ash flow tuff with SiO2 content of approximately 76N					Sandstone	3	5	15
Tmrv	Bedrock/ Pre-Santa Fe	Silicic to intermediate composition lavas, mainly rhyolite, latite and dacite domes and flows; with some dacite breccias, silicic ash flows tuffs and andesite flows. Includes Soledad Rhyolite in Organ Mountains and flow- banded rhyolite dikes and roots of rhyolite domes in the Doña Ana Mountains and at Picacho Mountain	Oligocene, Middle Tertiary				Metamorphic/ Igneous	4	5	20

HSU	Zone	Description	Age Laid	Max Thick (ft)	Zone	IFA	Vadose Range	7	7	I.
Tmsp	Bedrock/ Pre-Santa Fe	Sedimentary rocks and tuffs	Oligocene, Middle Tertiary		Zone		Thin Bedded Sandstone, Limestone, Shale Sequence	4	1w 5	20
USF1	Santa Fe Group	Upper Santa Fe HSUs, medial to distal piedmont facies, mostly coalescent alluvial-fan deposits, includes Camp Rice Formation, stippled where up to 3 m. of upper Quaternary eolian cover is present with calcic and argillic paleosols	Early to Middle Pleistocene, to Late Miocene	330	Mostly vadose	5 to 7 (6)	Sand and Gravel with Silt and Clay	4	5	20
USF2	Santa Fe Group	Upper Santa Fe HSUs, basin-floor facies: fluvial (channel and overbank) deposits of the ancestral Rio Grande; undivided, includes upper Camp Rice and Fort Hancock Formation subdivisions, stippled where up to 3 m. of upper Quaternary eolian cover is present	Pliocene to Middle Pleistocene, Early to Late Miocene	1000	Partly vadose	1 to 3 (4)	Sand and Gravel	9	5	45
USFc	Santa Fe Group	Upper Santa Fe HSUs, conglomeratic	Late Pliocene to Early Pleistocene, Pliocene to Late Miocene	200	Mostly vadose	8, 6b	Sand and Gravel with Silt and Clay	4	5	20
USL M	Santa Fe Group	Upper Santa Fe HSUs, surficial basin- floor facies, sandy, fluvial and eolian sediments and petrocalcic paleosols associated (with partially indurated calcic paleosols) with the La Mesa geomorphic surface; stippled where up to 3 m. of upper Quaternary eolian cover is present	Early Pleistocene, Middle Pleistocene to Pliocene	20	Entirely vadose	2	Sand and Gravel	9	5	45
VA	Rio Grande Valley	Undifferentiated alluvial deposits of (VAY and VAO) of major ephemeral tributaries in areas bordering the inner valley of the Rio Grande system; includes thin hillslope-colluvial and eolian sediments	Late to Middle Quaternary	120	Mostly vadose	b, 5, 6	Sand and Gravel with Silt and Clay	4	5	20
VAO	Rio Grande Valley	Older valley fill deposits, associated with graded surface fans and terraces formed during at least two major episodes of entrenchment and partial backfilling of major tributaries to the Rio Grande; with calcic paleosols. Includes tongues of ancestral river alluvium; overlap and intertongued with TA	Middle Pleistocene	100	Entirely vadose	a, b, 5 to 6(8)	Sand and Gravel with Silt and Clay	4	5	20
VAY	Rio Grande Valley	Younger valley fill deposits (mostly alluvial fans and terraces) associated with entrenchment and backfilling of major tributaries to the Rio Grande valley; weak soil profile development; overlap and intertongued with RA	Late Quaternary	100	Mostly vadose	b, 5, 6	Sand and Gravel with Silt and Clay	4	5	20

¹ Excerpted from Hawley and Kennedy (2004).

Lithofacies	Hydraulic Conductivity	K (ft/day)	K (gpd/ft ²)	Rating	Index
1	High	65.0	486.2	4	12
2	High to Moderate	40.8	304.8	4	12
3	Moderate	16.5	123.4	2	6
4	Moderate	16.5	123.4	2	6
5	Moderate to Low	12.0	90.0	1	3
5a	Moderate	16.5	123.4	2	6
5b	Moderate to Low	12.0	90.0	1	3
6	Moderate to Low	12.0	90.0	1	3
6a	Moderate to Low	12.0	90.0	1	3
6b	Low to Moderate	4.8	36.1	1	3
7	Low	1.6	11.6	1	3
8	Low	1.6	11.6	1	3
9	Very Low	0.1	0.4	1	3
10	Very Low	0.1	0.4	1	3
a	High to Moderate	40.8	304.8	4	12
a1	High	65.0	486.2	4	12
a2	Moderate	16.5	123.4	2	6
a3	Moderate to Low	12.0	90.0	1	3
b	Moderate to Low	12.0	90.0	1	3
c	Low	1.6	11.6	1	3

Table B-5: Hydrogeology Rating System Calculations for Lithofacies¹

¹ Excerpted from Hawley and Kennedy (2004).

Table B-6: Hydrogeology Rating System Calculations for New Lithofacies Divisions

Lithofacies ¹	Hydraulic Conductivity ²	K (ft/day)	K (gpd/ft ²)	Rating	Index
1,2	$= 2 \times 1 + 1 \times 2$	56.9	425.8	4	12
1,2,3	$= 3 \times 1 + 2 \times 2 + 1 \times 3$	48.8	365.3	4	12
1,3	$= 2 \times 1 + 1 \times 3$	48.8	365.3	4	12
2,1	$= 2 \times 2 + 1 \times 1$	48.8	365.3	2	6
2,3	$= 2 \times 2 + 1 \times 3$	32.7	244.4	2	6
3,2	$=2\times3+1\times2$	24.6	183.9	2	6
3,5	$= 2 \times 3 + 1 \times 5$	15.0	112.3	2	6
5,4,3	$= 3 \times 5 + 2 \times 4 + 1 \times 3$	14.3	106.7	2	6
5,6	$=2\times5+1\times6$	12.0	90.0	1	3
6,5	$= 2 \times 6 + 1 \times 5$	12.0	90.0	1	3
3,7	$=2\times3+1\times7$	11.5	86.2	1	3
3,9	$= 2 \times 3 + 1 \times 9$	11.0	82.4	1	3
5,6,7,8	$= 4 \times 5 + 3 \times 6 + 2 \times 7 + 1 \times 8$	8.9	66.5	1	3
6,8	$= 2 \times 6 + 1 \times 8$	8.5	63.9	1	3
7,3	$= 2 \times 7 + 1 \times 3$	6.5	48.9	1	3
9,3	$= 2 \times 9 + 1 \times 3$	5.5	41.4	1	3
7,8	$= 2 \times 7 + 1 \times 8$	1.6	11.6	1	3
8,7	$=2\times8+1\times7$	1.6	11.6	1	3

¹ Excerpted from hydrogeological cross sections found in Hawley and Kennedy (2004).

² "A Lithofacies Assemblage that has more than one ranking is a combination of all ranks, with the first number indicating the highest concentration followed by the next highest concentration" (Quoted from personal interview by S. Walker with John Hawley on December 15, 2012). This number is weighted by multiplying the first by the total number of ranks, the second by the total -1, and so forth, then adding them and dividing by the total weight. [i.e. (3×A + 2×B + 1×C) / 6]

Rating	K (ft/day)	Ave	K (gpd/ft2)
High	30 to 100	65	224 to 748
High to Moderate	3 to 100	40.75	22 to 748
Moderate	3 to 30	16.5	22 to 224
Moderate to Low	0.1 to 30	12.03	0.75 to 224
Low to Moderate	0.1 to 30	4.83	0.75 to 224
Low	0.1 to 3	1.55	0.75 to 22
Very Low	0 to 0.1	0.05	0 to 0.75

Table B-7: Summary of Groundwater Production Potential for Lithofacies ¹	
Table D 7. Summary of Groundwater Troduction Totential for Entholactes	

¹ Excerpted from Hawley and Kennedy (2004).

Table B-8: Pollution Risk Results Sent to New Mexico Environment Department

38DA CountyVerified95420 3.55 0.18 154 1 68Santa TheresaVerified 682 125 23.0 0.18 110 26DA CountyVerified 587 35 8.47 0.24 127 20San YsidroVerified 441 63 21.2 0.34 148 112 20San YsidroVerified 440 46 15.5 0.34 148 112 23San YsidroVerified 423 69 23.7 0.34 145 1123 23San YsidroVerified 420 33 11.7 0.35 147 1144 4DA CountyVerified 419 326 79.6 0.24 102 5Las CrucesPartial 462 35 4.54 0.13 60 65Santa TheresaLikely 947 83 14.5 0.18 155 63Santa TheresaLikely 912 124 22.0 0.18 155 64Santa TheresaLikely 772 127 27.9 0.22 155 59CanutilloLikely 738 104 29.3 0.28 157 64Santa TheresaLikely 691 157 25.6 0.16 108 44MesquiteLikely 590 29 8.18 0.28 157 58CanutilloLikely 556	
38DA CountyVerified95420 3.55 0.18 154 1 68Santa TheresaVerified 682 125 23.0 0.18 110 26DA CountyVerified 587 35 8.47 0.24 127 20San YsidroVerified 441 63 21.2 0.34 148 112 20San YsidroVerified 440 46 15.5 0.34 148 112 23San YsidroVerified 423 69 23.7 0.34 145 1123 23San YsidroVerified 420 33 11.7 0.35 147 1144 4DA CountyVerified 419 326 79.6 0.24 102 5Las CrucesPartial 462 35 4.54 0.13 60 65Santa TheresaLikely 947 83 14.5 0.18 156 63Santa TheresaLikely 912 124 22.0 0.18 155 64Santa TheresaLikely 772 127 27.9 0.22 155 59CanutilloLikely 738 104 29.3 0.28 157 64Santa TheresaLikely 691 157 25.6 0.16 108 44MesquiteLikely 590 29 8.18 0.28 157 58CanutilloLikely 556	XX7 1 1
68 Santa Theresa Verified 682 125 23.0 0.18 110 26 DA County Verified 587 35 8.47 0.24 127 20 San Ysidro Verified 441 63 21.2 0.34 148 1 12 DA County Verified 423 69 23.7 0.34 148 1 13 San Ysidro Verified 420 33 11.7 0.35 147 1 4 DA County Verified 419 326 79.6 0.24 102 5 Las Cruces Partial 462 35 4.54 0.13 60 63 Santa Theresa Likely 912 124 22.0 0.18 155 63 Santa Theresa Likely 798 33 4.03 0.12 95 60 Canutillo Likely 772 127 27.9 0.22 155	
26 DA County Verified 587 35 8.47 0.24 127 20 San Ysidro Verified 441 63 21.2 0.34 148 1 12 DA County Verified 440 46 15.5 0.34 148 1 16 San Ysidro Verified 423 69 23.7 0.34 145 1 23 San Ysidro Verified 420 33 11.7 0.35 147 1 4 DA County Verified 419 326 79.6 0.24 102 5 Las Cruces Partial 462 35 4.54 0.13 60 65 Santa Theresa Likely 912 124 22.0 0.18 155 63 Santa Theresa Likely 772 127 27.9 0.22 155 59 Canutillo Likely 738 104 29.3 0.28 1	Here
20San YsidroVerified 441 63 21.2 0.34 148 1 12DA CountyVerified 440 46 15.5 0.34 148 1 16San YsidroVerified 423 69 23.7 0.34 145 1 23San YsidroVerified 420 33 11.7 0.35 147 1 4DA CountyVerified 419 326 79.6 0.24 102 5Las CrucesPartial 462 35 4.54 0.13 60 65Santa TheresaLikely 947 83 14.5 0.18 156 63Santa TheresaLikely 912 124 22.0 0.18 155 69Santa TheresaLikely 772 127 27.9 0.22 155 59CanutilloLikely 773 104 29.3 0.28 157 64Santa TheresaLikely 691 157 25.6 0.16 108 44MesquiteLikely 641 148 43.0 0.29 165 1 61Santa TheresaLikely 616 303 56.7 0.19 113 37FairacresLikely 512 158 32.5 0.21 104 42DA CountyLikely 434 236 55.6 0.24 101 8Las CrucesLikely 434 236 <	
12DA CountyVerified4404615.5 0.34 148116San YsidroVerified4236923.7 0.34 145123San YsidroVerified4203311.7 0.35 14714DA CountyVerified41932679.6 0.24 1025Las CrucesPartial46235 4.54 0.13 6065Santa TheresaLikely9478314.5 0.18 15663Santa TheresaLikely91212422.0 0.18 15569Santa TheresaLikely77212727.9 0.22 15559CanutilloLikely77310429.3 0.28 15764Santa TheresaLikely69115725.6 0.16 10844MesquiteLikely64114843.0 0.29 165161Santa TheresaLikely59029 8.18 0.28 15758CanutilloLikely55612628.4 0.23 11267Santa TheresaLikely43423655.6 0.24 1018Las CrucesLikely43423655.6 0.24 10144DA CountyLikely43423655.6 0.29 16965Santa TheresaLikely43423655.6 0	
16San YsidroVerified 423 69 23.7 0.34 145 1 23San YsidroVerified 420 33 11.7 0.35 147 1 4DA CountyVerified 419 326 79.6 0.24 102 5Las CrucesPartial 462 35 4.54 0.13 60 65Santa TheresaLikely 947 83 14.5 0.18 156 63Santa TheresaLikely 912 124 22.0 0.18 155 69Santa TheresaLikely 798 33 4.03 0.12 95 60CanutilloLikely 772 127 27.9 0.22 155 59CanutilloLikely 738 104 29.3 0.28 157 64Santa TheresaLikely 691 157 25.6 0.16 108 44MesquiteLikely 641 148 43.0 0.29 165 1 61Santa TheresaLikely 590 29 8.18 0.28 157 58CanutilloLikely 556 126 28.4 0.23 112 67Santa TheresaLikely 512 158 32.5 0.21 104 42DA CountyLikely 434 236 55.6 0.24 101 8Las CrucesLikely 427 58 13.1 0.23 <td>Here</td>	Here
23San YsidroVerified4203311.70.3514714DA CountyVerified41932679.60.241025Las CrucesPartial462354.540.136065Santa TheresaLikely9478314.50.1815663Santa TheresaLikely91212422.00.1815569Santa TheresaLikely798334.030.129560CanutilloLikely77212727.90.2215559CanutilloLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely43423655.60.241018Las CrucesLikely43423655.60.241018Las CrucesLikely43423655.60.241018Las CrucesLikel	Here
4DA CountyVerified41932679.60.241025Las CrucesPartial462354.540.136065Santa TheresaLikely9478314.50.1815663Santa TheresaLikely91212422.00.1815569Santa TheresaLikely798334.030.129560CanutilloLikely77212727.90.2215559CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.191131337FairacresLikely55612628.40.2311210442DA CountyLikely51215832.50.211041442DA CountyLikely43423655.60.24101148Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135 <td>Here</td>	Here
5 Las Cruces Partial 462 35 4.54 0.13 60 65 Santa Theresa Likely 947 83 14.5 0.18 156 63 Santa Theresa Likely 912 124 22.0 0.18 155 69 Santa Theresa Likely 798 33 4.03 0.12 95 60 Canutillo Likely 772 127 27.9 0.22 155 59 Canutillo Likely 738 104 29.3 0.28 157 64 Santa Theresa Likely 691 157 25.6 0.16 108 44 Mesquite Likely 641 148 43.0 0.29 165 1 61 Santa Theresa Likely 616 303 56.7 0.19 113 37 Fairacres Likely 590 29 8.18 0.28 157 58 Canutillo Likely 556 126 28.4 0.23 112	Here
65Santa TheresaLikely9478314.50.1815663Santa TheresaLikely91212422.00.1815569Santa TheresaLikely798334.030.129560CanutilloLikely77212727.90.2215559CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely43423655.60.241018Las CrucesLikely4275813.10.239511DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
63Santa TheresaLikely91212422.00.1815569Santa TheresaLikely798334.030.129560CanutilloLikely77212727.90.2215559CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
69Santa TheresaLikely798334.030.129560CanutilloLikely77212727.90.2215559CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
60CanutilloLikely77212727.90.2215559CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
59CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
59CanutilloLikely73810429.30.2815764Santa TheresaLikely69115725.60.1610844MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
44MesquiteLikely64114843.00.29165161Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
61Santa TheresaLikely61630356.70.1911337FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
37FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	Here
37FairacresLikely590298.180.2815758CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
58CanutilloLikely55612628.40.2311267Santa TheresaLikely51215832.50.2110442DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
42DA CountyLikely4447729.90.3916966Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
66Santa TheresaLikely43423655.60.241018Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
8Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
8Las CrucesLikely4275813.10.23951DA CountyLikely40210448.00.4618443DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
43DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
43DA CountyLikely3705326.50.5018573Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
73Sunland ParkUncertain8315913.60.2319076Sunland ParkUncertain793428.030.19135	
76 Sunland Park Uncertain 793 42 8.03 0.19 135	
71 Sunland Park Uncertain 714 406 65.3 0.16 111	
13 Las Cruces Uncertain 693 163 24.7 0.15 100	1
62 Sunland Park Uncertain 691 411 60.2 0.15 98	1
78 Sunland Park Uncertain 664 21 3.22 0.15 99	+
72 Sunland Park Uncertain 661 475 72.4 0.15 99	1
70 Sunland Park Uncertain 637 50 8.97 0.18 110	+
70 Summary and Fund Supervision <	-
77 Sunland Park Uncertain 603 1295 202 0.16 91	

						Ave Parcel	Ave	
#	Community	On Septic	DRASTIC _{PR}	Parcels	Area		DRASTIC	Workshop
" 75	Sunland Park	Uncertain	598	202	30.6	0.15	90	workshop
21	Las Cruces	Uncertain	581	163	28.0	0.13	96	
55	Anthony	Uncertain	552	245	38.3	0.16	85	
14	Las Cruces	Uncertain	543	39	7.56	0.19	101	
24	DA County	Uncertain	539	26	7.53	0.29	149	Here
<u>-</u> . 74	Sunland Park	Uncertain	513	28	10.2	0.36	181	
25	Las Cruces	Uncertain	512	132	23.4	0.18	88	
22	Las Cruces	Uncertain	499	102	17.2	0.17	84	
57	Anthony	Unlikely	882	46	6.91	0.15	130	
53	Anthony	Unlikely	715	172	31.7	0.18	118	
49	Anthony	Unlikely	695	284	48.5	0.17	113	
56	Anthony	Unlikely	666	780	137	0.18	108	
54	DA County	Unlikely	556	23	6.98	0.30	163	
51	Anthony	Unlikely	503	112	23.6	0.21	101	
52	Anthony	Unlikely	484	672	147	0.22	98	
40	San Pablo	Partial	436	20	7.19	0.36	156	
27	Las Cruces	On Sewage	0	167	21.4	0.13	179	
41	San Pablo	On Sewage	0	86	29.5	0.34	170	
28	Las Cruces	On Sewage	0	45	7.90	0.18	153	
<u>-</u> 0 47	Anthony	On Sewage	0	97	20.7	0.21	124	
48	Anthony	On Sewage	0	55	15.0	0.27	121	
46	Anthony	On Sewage	0	108	19.1	0.18	114	
29	DA County	On Sewage	0	67	7.91	0.12	114	
18	Las Cruces	On Sewage	0	123	15.1	0.12	114	
45	DA County	On Sewage	0	94	14.9	0.16	112	
10	Las Cruces	On Sewage	0	143	19.5	0.14	109	
30	DA County	On Sewage	0	47	8.67	0.18	107	
36	DA County	On Sewage	0	22	3.36	0.15	104	
11	Las Cruces	On Sewage	0	334	52.4	0.16	102	
15	Las Cruces	On Sewage	0	38	8.79	0.23	102	
50	Anthony	On Sewage	0	70	11.6	0.17	101	
33	DA County	On Sewage	0	108	18.8	0.17	100	
39	Las Cruces	On Sewage	0	91	16.3	0.18	100	
19	Las Cruces	On Sewage	0	171	30.9	0.18	96	
17	Las Cruces	On Sewage	0	63	13.5	0.21	95	
31	DA County	On Sewage	0	30	5.88	0.20	93	
35	DA County	On Sewage	0	30	5.92	0.20	90	
34	DA County	On Sewage	0	20	2.21	0.11	88	
6	Las Cruces	On Sewage	0	235	30.1	0.13	88	
32	DA County	On Sewage	0	41	7.76	0.19	84	
3	Las Cruces	On Sewage	0	137	15.3	0.11	75	
7	Las Cruces	On Sewage	0	78	10.6	0.14	73	
2	DA County	On Sewage	0	68	10.6	0.16	72	
9	Las Cruces	On Sewage	0	125	18.1	0.15	69	