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INTRODUCTION

In the arid regions of the southwestern United States
agricultural productivity is limited by the supply of fresh water.
There also has been a decline in productivity in some areas of the
southwest due to increased soil salinity on irrigated fields. Thus,
the utilization of crops tolerant of salinity offers a potential for
increasing agricultural productivity in the southwest through the use
of brackish water from vast underground resources or through increased
growth on salt-damaged fields. The selection and breeding of salt
tolerant crops will require an understanding of the physiological and
anatomical mechanisms of salt tolerance.

There have been numerous studies of the effects of substrate
salinity on physiology, anatomy and growth of plants (Bernstein and
Hayward, 1958; Waisel, 1972; Poljakoff-Mayber and Gale, 1975;
Jennings, 1976; Flowers, Troke and Yeo, 1977; Dedong, 1978; Longstreth
and Nobel, 1979). However, most studies have dealt with mechanisms of
salt tolerance in native halophytes or agronomic plants which exhibit
some degree of salt tolerance. Another approach to understanding
mechanisms of salt tolerance is to examine the sensitivity of various
aspects of structure and function in plants which are not salt
tolerant. This approach has been used to some extent, mostly in
studies of crop plants such as Phaseolus vulgaris and Zea mays
(Jennings, 1976; Bernstein et al., 1974; Jensen, 1975; Kennedy, 1977)}.
In order to broaden the understanding of salt tolerance, particularly
in plants native to the southwest United States we have designed a
comparative experiment encompassing both of the above approaches.

This experiment focuses on examining the effects of substrate salinity



on a grass which is tolerant of high salinity, Distichlis spicata, and
a grass which is apparently intolerant of salt, Panicum obtusum. Both
Distichlis spicata and Panicum obtusum grow abundantly in the
southwestern United States. Both species have the Cy4 dicarboxylic
acid pathway of photosynthesis (Hansen et al., 1976; Cunningham et
al.; 1974) and both species occur in periodically flooded habitats
(Ludwig, 1974; Cunningham, unpublished). Thus, the greatest
differences between these species appears to be in their tolerance of
salt. A comparative study of their responses to salinity should
provide important details about which plant processes are susceptable

to salinity and in what manner this occurs.
METHODS

Distichlis spicata was collected from near the Rio Grande, 5 km
southwest of Las Cruces, New Mexico. Panicum obtusum was collected
from a playa in the Jornada del Muerte, 25 km northeast of Las Cruces.
The plants were collected as vegetative sods approximately 5 am? in
size. In the laboratory plants were washed free of soil and pieces of
rhizome with shoots and associated roots were established in plastic
pots with styrofoam lids. The pots contained 2 liters of deionized
water, the appropriate amount of NaCl, and the following nutrient
composition: 2 mM KNO3, 0.8 mM Ca(NO3)2, 0.5 mM MgSO4, 0.3 mM
NH4H2P04, 0.1 mM Na2H POy 0.04 mM Fe-EDTA, micronutrients, with a
PH = 5.5, Solutions were replenished with deionized water regularly
and completely replaced every 2 weeks. Preliminary experiments with
D. spicata indicated that growth was equal in aerated and unaerated
pots, thus pots were not aerated. Preliminary experiments with

P. obtusym indicated that growing sufficient material in solution



culture for gas exchange and physiology experiments would be
impossible. ©Plants grown in solution culture (either aerated or
unaerated) produced very few roots and most of the above ground
material produced was leafless stolons. Thus, experimental plants of
P. obtusum were grown in 2 liter pots containing sand and watered
every other day with deionized water or deionized water + NaCl, and
every four days with the above nutrient solution.

There were 3 experimental treatments for each species. One
treatment (or control) for both species consisted of no added NacCl,
The NaCl concentration of the nutrient solution in deionized water was
0.1 mM. D. spicata plants were grown in two other treatment
solutions: 250 mM NacCl (low salt) and 500 mM NaCl (high salt).
P. obtusum rapidly died when watered with 500 mM NaCl. Thus, the
2 other treatments for B. obfusum plants were watering solutions of
125 mM NaCl (low salt) and 250 mM NaCl (high salt). All plants were
grown in controlled environment chambers under 16 h day/8 h night
photoperiods. Quantum flux densities at the leaf surface were
1200 + 200 microeinsteins m %s™! (400-700 nm,PAR) provided by a
combination of fluorescent, incandescent, and low pressure sodium
vapor lamps. The thermoperiod (synchronous with the photoperiod) was
35/25 C.

Physiological and anatomical parameters were measured on leaves
and roots which had developed under the experimental conditions for 3
to 6 weeks with the exception of P, gbtusum plants treated with 250 mM
NaCl. These plants did not grow at that salinity, and therefore these

leaves were developed on plants grown with no added NaCl and then

maintained under the 250 mM NaCl treatment for 2 weeks,



Measurements of carbon dioxide and water vapor exchange were made
using standard techniques (Sestak et al., 1971) with an infrared gas
analyzer (Beckman model 215B) and a dew point hygrometer (EG&G model
880~cl) in an open system similar to that described by Williams and
Kemp (1978). Resistances to Co, exchange were calculated according to
the methods of Longstreth and Strain (1977). The air source was
collected from outside the building and averaged 340 ul 1-1 CO5.
Temperature responses of net gas exchange (10 to 45 C) at 2000
microeinsteins m"zs_l PAR were measured on 5 to 10 attached leaves
that were sealed into an acrylic cuvette in which temperatures were
regulated by circulating water through a surrounding water jacket.
Leaf temperature was measured with a fine wire thermocouple inserted
between the ligule of the leaf and the culm. Light was provided by a
300 W incandescent flood lamp filtered through 4 cm of acidified 0.06
M Fe4(NH)2(SO4)2. Leaf thicknesses were measured microscopically from
cross sections cut at 5 to 10 mm from the ligule. Stomatal densities
were measured microscopically from paradermal sections cut at 5 to 10
mm from the ligule. Leaf water potentials were measured just prior to
illumination of the chamber ("predawn") and after midday
("afternoon”). Leaf water potentials were measured using a xylem
tension pressure chamber (PMS Instruments) for D. gpicata and using a

thermocouple psychrometer (Wescor) for P. obiusum.
RESULTS AND DISCUSSION

Differences in salinity tolerance between these two species were
conspicuously demonstrated in some preliminary experiments,
D. spicata grows well in solution cultures up to 500 mM NaCl.

P. obtusum rapidly dies when subjected to salinities over 250 mM NaCl



and it will not grow in salinity greater than 125 mM NaCl. Another
difference between these species is the poor growth that B. obtusum
exhibits in solution culture compared to D. spicata. Since both
species occur in periodically flooded habitats, this difference was
not expected and remains unexplained.

The temperature response curves of net photosynthesis indicate
that maximal rates occur near 40 C for both species in the absence of
added NaCl (Figs. 1 and 2) which is consistent with most other C4
plants grown at warm temperatures (Downton, 1971; Black, 1973;
Kennedy, 1977). However, rates of net photosynthesis were
significantly different between species at all leaf temperatures when
both were grown without added NaCl. Net photosynthesis rates of
D. spicata were more than twice those of P. obtusum at all leaf
temperatures. Maximal rates of net photosynthesis of D. spicata (41
mg CO, dm"2 hr_l) fall at the lower end of the range reported for Cy
plants (Black, 1973). However, maximal rates of P. obtusum (18 mg Co,
drn_2 hr_l) are far below those reported for other C4 grasses (Ludlow,
1970; Gifford, 1971; Doley and Yates, 1976), but very similar to rates
reported previously by Cunningham et al. (1974). These very low rates
of net photosynthesis in P. obiusum are due to both high stomatal and
high internal resistances to CO, uptake (Figs. 3 and 4). Minimum
stomatal and internal resistances in P. gobifusum (at 40 C leaf
temperature) were 556 s n~! and 390 s n"L, respectively, while minimum
resistances in D. gpicata (at 40 C leaf temperature) were 250 s L
for stomatal and 160 s m ! for internal. Minimum resistances in other
C4 grasses range from 150 to 400 s m~t for stomatal and 60 to 150 for
internal (mesophyll) (Ludlow, 1970; Rawson et al., 1977; Kemp and

Williams, 1980).



Treating plants with NaCl caused significant declines in net
photosynthesis in both species (Figs. 1 and 2), although rates of net
photosynthesis in D. gpicata grown in 500 mM NaCl were still greater
or equal to rates of net photosynthesis of P. obtusum grown without
added NaCl. Decreased net photosynthesis in plants grown at low salt
was caused by stomatal closure in D, spicata (Fig. 5) and both
stomatal closure and increased internal resistance to CO, uptake in

P, obtusum (Figs. 3 and 4). Growing plants at high salinity further

reduced net photosynthesis in both species by causing increases in
both stomatal and internal resistances to CO, assimilation (Figs. 3
to 6). It should be noted that high salinity was only 250 mM in
P, obtusum, compared to 500 mM in D, spicata and yet net
photosynthesis was reduced almost to zero in P, obtusum. Net
photosynthesis is generally reduced in plants not tolerant of salinity
(Gale, 1975; Kennedy, 1977), but usually not so severely. Kennedy
{(1977) found that rates of net photosynthesis in corn were reduced to
43% of controls when grown in solution culture of approximately
250 mM NaCl. Thus, photosynthesis in P, obtusum is apparently much
more sensitive to salt stress than even corn. Photosynthesis in some
salt tolerant plants is unaffected by salt concentrations equivalent
to 500 mM NaCl (Longstreth and Strain, 1977; Mallott et al., 1975).
However, photosynthesis in other salt tolerant species declines at
salinities equivalent to 350-500 mM NaCl, (Abdulrahman and Williams,
1981; DedJong, 1978). Thus, net photosynthesis in D, spicata, while
far more resistant to salt stress than P, obtusum, is not as resistant

as some salt tolerant species.



This comparative study identified several factors which may
underlie the differential effects of salinity on the primary processes
of CO, assimilation in these species. Both stomatal and internal
aspects of co, assimilation in P, obtusum are adversely affected by
salinity to a strong degree. The great increases in stomatal
resistance in B, obtusum with added NaCl were not due to changes in
stomatal density (Table 1) as there was no significant difference in
stomatal density with increased salinity. Likewise, salinity did not
influence stomatal density in D, spicata. There was also no
significant difference in stomatal density between species, indicating
that this factor did not account for the much higher stomatal
resistance of P, obtusum compared to D. spicata in 0.1 mM NacCl.

Internal resistances of P, obtusum were higher than D, spicata
under all treatments and were greatly increased by salinity. Thus,
D, spicata has a more efficient internal C02 assimilation mechanism
and this mechanism is more resistant to or more protected from
salinity than in P, obitusum. This difference does not appear to be
related to internal mesophyll anatomy, which has been shown to be
affected by salinity in many species and which can affect internal CO,
resistances (Jennings, 1976; Longstreth and Noble, 1979). In
P, obtusum and D. spicata microscopic examination showed no change in
mesophyll cell size or arrangement and little change in leaf thickness
(succulence) (Table 1l). Thus, in neither species does leaf succulence
appear to affect CO, assimilation. However, one anatomical feature
distinctly different between these species is the external salt glands
found on D. spicata leaves (Hansen et al., 1976). No structure exists
on P, obtusum for excreting salt from leaves., Thus, part of the

ability of D, spicata to resist internal effects of salt may be



related to its ability to excrete NaCl, since NaCl can have
detrimental effects on enzyme systems even in salt tolerant plants
(Flowers et al., 1977). Experiments are underway now to examine
concentrations of NaCl in the leaves of these two species. It is also
necessary to determine the intracellular distribution of NacCl.
Mechanisms for sequestering salts in the vacuole could protect enzyme
systems in the cytoplasm and other organelles from high salt
(Flowers et al., 1977). It is possible that P, obiusum is not able
to exclude salt form cells by either of the above mechanisms.

An investigation of the internal ion localization is necessary to
understand the water relations in these two species. An apparent
difference between glycophytes and halophytes is that the former tend
to restrict the movement of salts into the leaves, whereas the latter
tend to accumulate salts in the leaves (Flowers et al., 1977). If
plants are to grow and extract water from saline substrates they must
have sufficiently low leaf water potentials. Water potentials in both
species examined here declined with increasing salinity (Table 1).
However, there were differences between the species. Distichlis
spicata exhibited a significant diurnal change in leaf water potential
(as measured with a pressure bomb), whereas P, obtusum showed no
diurnal change in leaf water potential (as measured with a
thermocouple psychrometer). This difference may be due to the
different measuring techniques or may reflect the fact that P, obtusum
has extremely high stomatal resistance and avoids afternoon water
depletion. On the other hand the "predawn" water potentials of
P, obtusum are much lower than in D, spicata at corresponding salinity

treatments. This may reflect a state of dehydration or stress in



P, obtusum or a very low osmotic potential accomplished through ion
accumulation or organic solute accumulation. Further investigation in

this area will be needed to evaluate these questions.
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Figure 1. Response of net photosynthesis to
leaf temperature in Panicum obfusum grown at
0.1 mM NaCl (e), 125 mM NacCl (m), and 250 mM
NaCl (&). The vertical bars in this and

subsequent figures indicate *1 standard error
of the mean (n = 4),.
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Figure 2. Response of net photosynthesis to
leaf temperature in Distichlis spicata grown at
0.1 mM NaCl (®), 250 mM NaCl (®), and 500 mM
NaCl (&).
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Figure 3, Response of stomatal resistance to
leaf temperature in Panicum obtusum grown at

0.1 mM NaCl (), 125 mM NaCl (@), and 250 mM
NaCl (4).
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resistance to leaf temperature in 2Panicum
obtusum grown at 0.1 mM NaCl (@), 125 mM
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