DEMONSTRATION OF IRRIGATION RETURN FLOW WATER QUALITY IN THE MESILLA VALLEY, NEW MEXICO by Theodore W. Sammis New Mexico Water Resources Research Institute New Mexico State University Las Cruces, New Mexico 88003 in cooperation with Department of Agricultural Engineering and New Mexico Agricultural Experiment Station New Mexico State University Las Cruces, New Mexico 88003 EPA Grant No. S803565-03-0 Project Officer Arthur G. Hornsby Source Management Branch Robert S. Kerr Environmental Research Laboratory Ada, Oklahoma 74820 The work upon which this report is based was supported in part by funds provided by the United States Environmental Protection Agency under Grant No. S803565-03-0 through the New Mexico Water Resources Research Institute as authorized under the Water Resources Research Act of 1978, Public Law 95-467. for ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY ADA, OKLAHOMA 74820 The purpose of WRRI technical reports is to provide a timely outlet for research results obtained on projects supported in whole or in part by the Institute. Through these reports we are promoting the free exchange of information and ideas and hope to stimulate thoughtful discussion and action which may lead to resolution of water problems. The WRRI, through peer review of draft reports, attempts to substantiate the accuracy of information contained in its reports but the views expressed are those of the author(s) and do not necessarily reflect those of the WRRI or its reviewers. #### ABSTRACT The general objective of this project was to demonstrate the feasibility of alternative water management practices on the quality of drainage return flow and soil salinity in the Mesilla Valley, New Mexico. The project consisted of a 450-acre demonstration farm having a combination of present day irrigation technology used to show how, through modern water management, the return flow quality and quantity can be improved. The results of this study indicated that by using irrigation scheduling, farm irrigation efficiency can be increased 13 to 23 percent. However, field irrigation efficiency was found to vary from 80 percent down to 35 percent regardless of type of crop or field size. Trickle irrigation on a 1.3 hectare pecan orchard resulted in irrigation efficiencies near 100 percent with apparent above average yields. ## TABLE OF CONTENTS | | <u> </u> | age? | |-----------|---|--| | ABSTRACT | | iii | | TABLE OF | CONTENTS | iv | | LIST OF T | TABLES | vi | | LIST OF I | FIGURES | riii | | SECTIONS | | | | 1 | INTRODUCTION | 1 | | 2 | PHYSICAL DESCRIPTION OF THE MESILLA VALLEY | 4 | | 3 | Topography | 12
14
16
17
17
21
21
24 | | | Groundwater Monitoring | 27
27
28
28 | | 4 | RESULTS AND DISCUSSION | 38
48 | | | Trickle-Irrigation System Used to Irrigate a Pecan Orchard . Trickle Irrigation and the Plant Water Potential of Pecan Trees | 53
53
56
58
62
62
67 | | 5 | CONCLUSION | 72 | | 6 | RECOMMENDATIONS | . 74 | | REFERENCES | | Page 75 | |------------|---|----------------| | APPENDICES | | | | Α. | Climatic Data | 77 | | В. | Daily Flow of Irrigation Return Water | 115 | | C. | Electrical Conductivity and Flow of La Mesa Drain | 118 | | D. | Complete Water Analyses of La Mesa Drain Water | 122 | | Ε. | Piezometer Heights | 135 | | F. | Water Quality Sample Site Wells | 140 | | G. | Water Quality of the Trickle Irrigation Well | 147 | . , . · ## LIST OF TABLES | Table | | <u>P</u> | age | No. | |-------|---|----------|-----|-----| | 1 | Soils of the Mesilla Valley, New Mexico | | • | 7 | | 2 | Gross annual diversions of irrigation water from the Rio Grande in the Mesilla Valley, for the period 1938 through 1976 | | | 13 | | 3 | Monthly deliveries of surface water to the lands in the Mesilla Division, Elephant Butte Irrigation District, New Mexico, 1960-1976 | | | 15 | | 4 | Hectares and yields per hectare by crop for the Demonstration Farm, 1975, 1976, and 1977 | | • | 23 | | 5 | Groundwater quality at the Demonstration Farm | • | | 25 | | 6 | Soil composition with depth of the trickle irrigation well at the Demonstration Farm | | ٠ | 26 | | 7 | Table of methods used to analyze water samples | • | • | 30 | | 8 - | Example of irrigation schedule information received by the farmer | • | | 34 | | 9 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for alfalfa on the Demonstration Farm | | | 39 | | 10 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for cotton on the Demonstration Farm | • | • | 40 | | 11 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for lettuce on the Demonstration Farm | | | 42 | | 12 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for peppers on the Demonstration Farm | • | | 43 | | 13 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for tomatoes on the Demonstration Farm | | | 45 | | 14 | Irrigation water application, irrigation efficiency, and computed evapotranspiration for wheat on the Demonstration Farm | | | 47 | | 15 | Applied water for the Demonstration Farm in 1975 and 1976 | | • | 50 | | <u> Fable</u> | | <u>Pa</u> | ge | No. | |---------------|--|-----------|----|-----| | 16 | Applied water for the Demonstration Farm in 1977 . | | • | 51 | | 17 | Applied water information for the drip irrigated row crop demonstration of tomatoes and peppers | ٠ | • | 55 | | 18 | Soil analysis for salt content for selected samples, EPA Demonstration Farm, 1977 | | | 57 | | 19 | Infiltration rate in the Upper Chamberino and farm supply ditch | | • | 60 | | 20 | A table of water quality data significant at the 95 percent confidence level for three groundwater observation wells at 15, 10, and 6 meter depths | | • | 70 | ## LIST OF FIGURES | Figure | | <u>P</u> | age | <u> ≥ N</u> | Ю. | |--------|---|------------|-----|-------------|----| | 1 | Location of the Mesilla Valley within the Upper Rio Grande Drainage Basin | | ٠ | • | 3 | | 2a | Conveyance system of the northern portion of the Mesilla Valley | , • | | | 9 | | 2b | Conveyance system of the southern portion of the Mesilla Valley | | • | | 10 | | 3a | Total dissolved solids contour map in ppm of soluble salts for the May-June 1967 period, northern portion of the Mesilla Valley | | | • | 18 | | 3ъ | Total dissolved solids in ppm of soluble salts for the May-June 1967 period, southern portion of the Mesilla Valley | | | | 19 | | 4 | A diagram of the Demonstration Farm and the associated monitoring locations | , <u>.</u> | | | 22 | | 5 | A schematic of the trickle irrigation system to irrigate pecans, tomatoes, and peppers at the Demonstration Farm | | | • | 29 | | 6 | Potential evæpotranspiration at the Plant Science farm | | • | • | 36 | | 7 | Crop coefficients and root depth for selected crops in the Mesilla Valley, New Mexico | | | • | 37 | | 3 | Natural gas consumption vs. water pumped for wells on the Demonstration Farm | | | | 49 | | 9 . | Plant water potential for a pecan tree irrigated under drip and flood irrigation (1977) | | | | 54 | | 10 | Seepage loss for a main distribution canal per 1000 m of length | | | • | 61 | | 11 | Flow and electrical conductivity at La Mesa
Drain sites B and D for 1975, 1976, and 1977 | • | | | 63 | | 12 | Difference in flow between La Mesa Drain sites B and D | • | | • | 64 | | 13 | Daily drain flows at Site D in the La Mesa Drain . | | | | 66 | | Figure | | Pag | ge No. | <u>.</u> | |--------|--|-----|--------|----------| | 14 | Groundwater height fluctuation for selected dates along a transect from the Upper Chamberino to the La Mesa Drain for 1976 | | . 68 | 3 | | 15 | Groundwater height fluctuation for selected dates along a transect from the Upper Chamberino to the La Mesa Drain for 1977 | | • 69 | 9 | ## DEMONSTRATION OF IRRIGATION RETURN FLOW SALINITY CONTROL IN THE UPPER RIO GRANDE #### SECTION 1 #### INTRODUCTION The quality of irrigation return flow represents a major problem in the western United States. The water of the Upper Rio Grande has been reported as a classic example of water quality degradation. Mineral pollution is the most serious problem in the Upper Rio Grande Basin. The problem is serious because the basin is approaching or has approached conditions of full development and utilization of the available water resources. There is a progressive increase in the concentration of total dissolved solids and percent sodium from the upper to the lower sampling stations in the Upper Rio Grande Basin. The relatively large increase in dissolved solids in the river along the irrigated areas is, to a large extent, due to the concentrating effect of irrigation. Nearly all of the valley land in the Upper Rio Grande Basin has a high water table. Where irrigation exists, drainage canals divert water from the "near-surface aquifers" into the Rio Grande. In the Mesilla Valley, as in many other areas, high equilibrium salinity concentrations are known to exist in the near surface aquifer. The key to achieving a reduction in salt loading is to lower the ground-water levels. The
most effective means for lowering groundwater levels is to reduce the source of groundwater flows, which can be accomplished by reducing seepage losses through lining canals and laterals, or by reducing deep percolation losses resulting from excessive irrigation by improved on-farm water management practices. A U.S. Senate Select Committee (1961) and a U.S. Water Resources Council Study (1968) report estimated that the Upper Rio Grande and Pecos basins were the shortest of water in relation to projected future demands of any basin in the continental United States. The Water Resources Council study identified the major problems as water deficiencies, groundwater storage depletion, and poor water quality because of mineral pollution. The past 15-year average inflow to Elephant Butte Reservoir is only about 65 to 70 percent of the long-term average inflow. Thus, a program for reduction of mineral pollution loading is urgently needed in order to protect existing water uses from mineral quality degradation during low-flow periods, and to prevent the serious restriction of future basin-wide economic development. The general purpose of this portion of the study was to demonstrate the effect of alternate water management practices on the quantity and quality of irrigation drainage return flow and to determine any determinable effects these management practices would have on the soil salinity of the irrigated land. To accomplish this broad objective a 182-hectare farm, located in central Mesilla Valley, was selected for the demonstration site (Figure 1). The specific objectives were: - To demonstrate the effects of salinity-control technologies, including canal lining, irrigation scheduling, and trickle irrigation, on the quantity and quality of return flow. - To measure the water flow and quality in the drain passing through the Demonstration Farm to determine the effect of water-management practice on irrigation return flow. Figure 1. Location of the Mesilla Valley within the Upper Rio Grande Drainage Basin ## SECTION 2 ## PHYSICAL DESCRIPTION OF THE MESILLA VALLEY The Mesilla Valley is located in Dona Ana County in southern New Mexico. It extends from Selden Canyon north of Radium Springs, New Mexico, southeasterly to the New Mexico-Texas border. The Rio Grande enters the Mesilla Valley at the junction of Selden Canyon and flows southeast past Las Cruces and Anthony to El Paso Canyon. The Valley is approximately 96 kilometers long and about 10 kilometers wide at the widest point just south of Las Cruces (Figure 1). The irrigated cropland is located predominantly in the valley floor along the Rio Grande. A small amount of the cropland is located on the mesa on either side of the valley. The major flood plains of the valley converge in the vicinity of Las Cruces and drain into the Rio Grande. ## Topography The Mesilla Valley is bounded from north to south on the east side by the San Andres, Organ, and Franklin Mountain ranges and on the west side by mesa highlands. The valley has a relatively smooth alluvial floor and is bordered by steep bluffs of about 15 to 30 meters high, composed of loosely cemented sand, silt, clay, and gravel. From the bluffs, sloping plains extend away from the river to the mountains. The drainage into the valley is primarily from arroyos in the mesa highlands toward the river. Drainage is from northwest to southeast. The valley floor varies in altitude from about 1,250 meters at Selden Canyon to 1,130 meters in El Paso Canyon. This elevation change represents a gradient of approximately .13 percent. The Mesilla Valley has a recent valley fill less than 45 meters thick, underlain by the Santa Fe Formation, a mixture of sand and gravel interspersed by numerous clay layers. The valley fill is a relatively fast backfill of an earlier river cut. The backfill and valley floor were completed about 10,000 years ago. The upper fill is fine ground sands and silts while the lower part of the fill is mainly gravel. All groundwater developed within the Mesilla Valley is within the valley fill. ## Climate The Mesilla Valley climate is semi-arid. It is characterized by low annual precipitation, low humidity, high temperatures, and persistent wind movements, particularly in the spring. The summer months are, in general, the wettest ones when tropical air masses from the Gulf of Mexico predominate over the area and cause thundershowers. These thundershowers are occasionally accompanied by hail which may cause severe crop damage. The high temperatures and low relative humidity result in rainfall being evaporated or transpired rapidly. The mean annual temperature in the valley is about 15 degrees Centigrade. The winters are usually mild and dry, and temperatures above 38 Centigrade are not uncommon in the summer months. The frost-free season in the valley usually begins in mid-April and lasts about 200 days until late October. #### Soils The soils of the Mesilla Valley fall into two distinct divisions—the alluvial section, or the Rio Grande Valley fill, and the narrow margin of upland area of the piedmont slopes. Most of the soil material in the valley floor is alluvial deposit laid down by the Rio Grande. A large portion of this fill has been transported great distances. With no perennial streams and numerous drainage ways, little material from the valley slopes is transported to the valley floor in any one year. The soils of the Rio Grande flood plain in the Mesilla Valley are of the Glendale-Harkey-Brazito associations (USDA, SCS, 1977). These soils are brownish-gray to pale brown and are underlain by alluvial sediments ranging in texture from coarse sandy to stratified loams. The principal soil classes are Glendale clay loam, Harkey loam, and the Anthony-Vinton loam (Table 1). Harkey brown loam and Anthony-Vinton loam are characterized as slight to moderately stratified, with thin layers of heavy-textured materials in the subsoil. These soils have very slow to rapid moisture penetration rates and some accumulations of alkali. They occupy the nearly level to gently sloping areas throughout the Mesilla Valley. The Glendale clay loam soils are the most extensive of this association in the valley, occurring in large areas along the river channel in the northern part of the valley and in narrow belts in the southern portion of the valley. The soils of the highland areas above the valley floor are of the Bluepoint-Calizo-Yturbide associations. The surface layer is generally sandy loam to gravelly loam underlain by sand and gravelly sand loam. The principal soil type occurring in these areas is the Bluepoint loamy sand (Maker et al. 1971). This soil forms a belt along the slopes adjacent to the valley floor. It is characterized by very rapid permeability, low fertility, and low water-holding capacity. ## Water Conveyance System The irrigation water conveyance system of the Mesilla Valley TABLE 1. SOILS OF THE MESILLA VALLEY, NEW MEXICO | Estimated Acres 1 in Soil Survey | Estimated Percent | |----------------------------------|---| | (hectares) | (percent) | | 3,367 | 6.87 | | 264 | 0.54 | | 251 | 0.51 | | 754 | 1.54 | | 243 | 0.51 | | 2,886 | 5.89 | | 2,342 | 4.78 | | 2,717 | 5.55
1.70 | | | 1.70 | | 81 | 0.16
2.94 | | 1,371 | 2.80 | | 86 | 0.18 | | 963 | 1.96 | | 3,379
150 | 6.90
0.30 | | 2,720 | 5.55 | | 2,702 | 5.52 | | 3,165 | 6.46 | | 8,092 | 16.52 | | 241 | 0.49 | | 237 | 0.48 | | 7,564 | 15.44 | | 120
3,020 | 0.24
6.16 | | | in Soil Survey (hectares) 3,367 264 251 754 243 2,886 2,342 2,717 833 81 1,443 1,371 86 963 3,379 150 2,720 2,702 3,165 8,092 241 237 7,564 120 | Acreages include Rincon Valley (1,738 hectares) portion of Elephant Butte Irrigation District. Source: U.S.D.A., Soil Conservation Service, "Soil Survey of Dona Ana County, New Mexico", Advance copy, April 1977. consists of an intricate network of primary canals branching into numerous primary and secondary laterals (Figures 2a and 2b). The primary canals are the Leasburg canal which originates at the Leasburg dam and the East Side and West Side canals which originate at the Mesilla dam. The Leasburg canal branches into three primary laterals -- the Picacho which crosses the river to serve the west side between Leasburg and Mesilla dams before emptying in the river channel, and the Las Cruces and Mesilla laterals that branch into numerous secondary laterals to serve the east side before either emptying into the river channel or the East Side canal. The East Side canal branches into two primary laterals which empty in the river channel below Anthony, New Mexico-Texas. The primary laterals of the East Side canal are the Anthony and the Three Saints laterals which branch into numerous secondary laterals to serve the lands on the east side of the river channel between the Mesilla dam and LaTuna Detention Farm. The West Side canal branches into two primary laterals, the La Union East and the La Union West. These three, the main canal and two primary laterals, break into numerous secondary canals supplying the area on the west side of the river between Mesilla dam and El Paso dam with surface irrigation water. A portion of the La Union East lateral crosses the river channel at Borderland to serve lands on the east side of the river. A portion of the water released is diverted to the Rincon division at Percha dam with the remainder flowing down the river channel through the Rincon Valley to be diverted later in the Mesilla and El Paso divisions. A portion of the water diverted for the Rincon and Mesilla divisions is returned by drains and wasteways to continue its flow into the El Paso division of the Rio Grande project. Conveyance system of the northern portion of the Mesilla Valley Figure 2a. Conveyance system of the southern portion of the Mesilla Valley Figure 2b. Surface water
for the Mesilla Division is diverted by the Leasburg dam into the Leasburg canal, and by the Mesilla dam into the East and West Side canals. The Leasburg dam is located at the head of the Mesilla Valley, and the Mesilla dam (Figure 2a) is located southwest of Las Cruces. Portions of the surface waters diverted for the Rincon division, that are returned to the river channel by drains and wasteways, are diverted again at the Leasburg dam. Also, portions of surface waters diverted at the Leasburg dam, that are returned to the river, are diverted again at the Mesilla dam. In addition, water diverted at the Leasburg dam may be added to the East Side canal diversions from the Mesilla dam (Figures 2a and 2b). ## Drainage System The drains of the Mesilla Valley are a maze of intricately woven open ditches designed to carry excess groundwater away from the cropland into the river channel. The drains are also presented in Figures 2a and 2b. These drains are the primary subjects of studies to reduce irrigation return flow. ## Surface Water Sources Irrigation water in the Mesilla Valley comes from surface and ground sources. The surface water is supplied by the Elephant Butte Irrigation District (EBID) through the facilities of Elephant Butte and Caballo Reservoirs with supplementary supplies being provided by district-owned wells. Groundwater is supplied by individual wells and is used as a supplemental source in most cases, except for lands located outside of the district boundaries where it is the only source of irrigation water. Pumpage is the primary source of irrigation water for approximately 1,940 hectares. ## Surface Water Quantity The quantity of surface water has not been a major limitation to irrigated agriculture in the Mesilla Valley since the drought in 1954-1956. There have been three other years of shortages, 1964, 1972 and 1978. The quantity of surface water released to project lands varies widely from year to year, depending upon the amount of storage in Elephant Butte and Caballo Reservoirs. Beginning in 1938, water released for irrigation of Rio Grande Project lands originated from Caballo Reservoir. Prior to 1938, surface waters for irrigation were released from Elephant Butte Reservoir. The annual diversions and average diversions at the two dams in the Mesilla Valley are reported in Table 2 for the period 1938-1976 as well as the average total diversions for this period. The average total diversions from both dams for the 38-year period were 46,022 hectare-meters. The minimum diversion was 17,247 hectaremeters in the middle of the drought of 1954-1956. The maximum diversion was in 1945 with 67,586 hectare-meters. The diversions were the gross annual diversions in the Mesilla Unit of the Rio Grande Project, a portion of which was returned to the river by way of drains and wasteways to be diverted again. Therefore, a portion of the diversion at the Mesilla dam includes a portion of the diversion from Leasburg dam. Approximately 45 percent of the gross annual diversions of water by the three diversion dams in the Mesilla Valley were delivered to farms in the valley. The balance was El Paso Valley carriage, canal wastage, seepage, and other unaccounted for losses. Monthly surface water deliveries to lands in the Mesilla TABLE 2. GROSS ANNUAL DIVERSIONS OF IRRIGATION WATER FROM THE RIO GRANDE IN THE MESILLA VALLEY, FOR THE PERIOD 1938 THROUGH 1976 | | | | la Dam | | |---------|----------|-----------|-----------|------------------| | | Leasburg | East Side | West Side | | | Year | Canal* | Canal** | Canal† | Total | | | | (hectare- | meters) | | | 1938 | 18,621 | 9,730 | 24,994 | 53,345 | | 1939 | 20,329 | 11,180 | 27,437 | 58,946 | | 1940 | 19,093 | 10,039 | 24,630 | 53,762 | | 1941 | 17,161 | 9,016 | 22,506 | 48,683 | | 1942 | 23,738 | 11,725 | 29,314 | 64,777 | | 1943 | 27,129 | 11,201 | 27,920 | 66,250 | | 1944 | 25,205 | 10,903 | 26,526 | 62,634 | | 1945 | 26,907 | 12,075 | 28,604 | 67,586 | | 1946 | 25,373 | 10,700 | 26,039 | 62,112 | | 1947 | 23,767 | 9,711 | 24,683 | 58,161 | | 1948 | 22,671 | 10,284 | 24,902 | 57,857 | | 1949 | 23,278 | 10,909 | 25,311 | 59,498 | | 1950 | 23,931 | 10,239 | 24,209 | 58,379 | | 1951 | 12,378 | 6,273 | 15,600 | 34,251 | | 1952 | 12,451 | 6,938 | 16,367 | 35,756 | | 1953 | • | 6,858 | | | | | 12,417 | • | 17,218 | 36,493
21,945 | | 1954 | 6,230 | 4,612 | 11,103 | | | 1955 | 4,378 | 2,905 | 9,964 | 17,247 | | 1956 | 4,359 | 3,454 | 10,395 | 18,208 | | 1957 | 15,030 | 4,374 | 15,300 | 34,704 | | 1958 | 20,100 | 8,608 | 22,148 | 50,856 | | 1959 | 20,038 | 9,403 | 20,418 | 49,859 | | 1960 | 19,214 | 9,577 | 21,400 | 50,191 | | 1961 | 15,415 | 8,217 | 19,869 | 43,501 | | 1962 | 18,251 | 9,550 | 21,154 | 48,955 | | 1963 | 16,845 | 8,358 | 19,789 | 44,992 | | 1964 | 9,645 | 2,373 | 10,010 | 22,028 | | 1965 | 9,854 | 5,268 | 13,479 | 28,601 | | 1966 | 15,313 | 7,002 | 17,386 | 39,701 | | 1967 | 15,160 | 7,288 | 16,363 | 38,811 | | 1968 | 18,467 | 8,439 | 20,497 | 47,403 | | 1969 | 20,871 | 8,838 | 24,936 | 54,645 | | 1970 | 20,309 | 8,888 | 23,450 | 52,647 | | 1971 | 16,258 | 7,225 | 19,071 | 42,554 | | 1972 | 10,690 | 4,359 | 11,516 | 26,565 | | 1973 | 15,004 | 8,223 | 21,755 | 44,982 | | 1974 | 17,603 | 8,841 | 23,365 | 49,809 | | 1975 | 11,172 | 8,600 | 22,733 | 42,505 | | 1976 | 18,033 | 10,219 | 25,640 | 53,892 | | Average | 17,248 | 8,267 | 20,718 | 46,233 | $[\]mbox{\ensuremath{\mbox{\star}}}$ Diversion at Leasburg dam to the east side of Rio Grande. Source: United States Department of the Interior, Bureau of Reclamation, El Paso Office, unpublished data sheets, 1938-1977. ^{**} Diversion at Mesilla dam to the east side of Rio Grande. [†] Diversion at Mesilla dam to the west side of Rio Grande. Division of the Elephant Butte Irrigation District are presented in Table 3. These deliveries were calculated from information from the Bureau of Reclamation (1960-1975) and were the net deliveries to the farm (El Paso carriage, canal wastage, seepage, and other unaccounted for losses have been deducted). The average annual delivery to farms was 19,169 hectare-meters. Based on the 1976 acreage, the Mesilla Division of the Elephant Butte Irrigation District averaged about .59 hectare-meters per cropped hectare. Surface water, however, does not represent the full supply of water necessary for the irrigation requirements of the crops produced in the Mesilla Division. Although the surface water is generally of better quality, it is necessary to pump some groundwater to meet the irrigation requirements. The groundwater pumpage will be discussed later in the section dealing with groundwater quantity and quality. ## Surface Water Quality Records of chemical analyses of the river at El Paso in 1966 and 1967 (USGS, 1974) indicated that the quality of the surface water varied generally with the quantity of water flowing in the river, becoming of poorer quality with small flows and better with larger flows. During the February to October period 1974, the quality of the river averaged about 920 micromhos of specific conductance and the river flow averaged 570 m³/sec. During the April to September period 1975, the quality of the river flow averaged 875 micromhos of specific conductance and the river averaged 670 m³/sec. In 1974, the U.S. Geological Survey reported in <u>Water Resources</u> Data for New Mexico that chemical quality of water in the Rio Grande MONTHLY DELIVERIES* OF SURFACE WATER TO THE LANDS IN THE MESILLA DIVISION, ELEPHANT BUTTE IRRIGATION DISTRICT, NEW MEXICO, 1960-1976 TABLE 3. | | | | | | | E | Month | | | | | | | |---------|---------|----------|-------|-------|-------|--------------|------------------|----------------|-----------|---------|----------|----------|--------| | Year | January | February | March | April | May | June
(hec | June July August | August
ers) | September | October | November | December | Total | | 1960 | īŪ | 2 | 3,201 | 3,316 | 2,017 | 3,452 | 3,617 | 5,343 | 3,864 | 106 | 28 | 10 | 24,960 | | 1961 | • | 6 | 1,213 | 3,177 | 1,469 | 2,485 | 3,926 | 3,970 | 2,621 | 155 | 33 | 1 | 19,956 | | 1962 | ľΛ | 6 | 2,855 | 4,239 | 1,781 | 4,399 | 5,139 | 5,219 | 2,692 | 96 | 14 | 7 | 26,454 | | 1963 | 10 | ī | 3,729 | 3,231 | 1,178 | 2,246 | 3,910 | 3,557 | 1,852 | 25 | 16 | 9 | 19,761 | | 1964 | ۱ń | ı | 280 | 862 | 21 | 284 | 530 | 760 | 926 | .62 | 1 | ī | 3,698 | | 1965 | 1 | 1 | 7 | 1,069 | 10 | 2,031 | 4,105 | 4,456 | 3,089 | 118 | 1 | т | 14,485 | | 1966 | 1 | ī | 1,324 | 3,848 | 1,719 | 2,312 | 3,238 | 4,261 | 2,778 | 152 | 24 | • | 19,655 | | 1967 | 7. | ţ | 4,110 | 1,040 | 719 | 958 | 2,062 | 2,519 | 2,475 | 100 | 37 | ı | 14,024 | | 1968 | 11 | 12 | 2,671 | 1,642 | 918 | 2,342 | 2,723 | 3,884 | 2,121 | 106 | 29 | 1 | 16,464 | | 1969 | ŧ | , | 4,161 | 1,912 | 1,390 | 3,485 | 4,548 | 6,104 | 1,739 | 134 | 32 | t | 23,506 | | 1970 | 1 | 1 | 4,014 | 2,745 | 2,464 | 3,230 | 5,287 | 4,916 | 2,981 | 130 | 25 | ŧ | 25,792 | | 1971 | ţ | 1 | 3,365 | 1,397 | 606 | 1,701 | 2,936 | 3,147 | 1,383 | 24 | 1 | 1 | 14,861 | | 1972 | 1 | t | 2,488 | 852 | 228 | 218 | 1,608 | 1,437 | 392 | S | ı | • | 7,228 | | 1973 | ı | ŧ | 2,305 | 2,601 | 1,896 | 3,099 | 3,730 | 5,138 | 3,947 | 189 | • | 1 | 22,904 | | 1974 | ı | 1 | 4,028 | 2,986 | 2,570 | 4,070 | 3,459 | 3,966 | 2,482 | 12 | 1 | ı | 23,572 | | 1975 | ı | 798 | 2,669 | 2,701 | 2,610 | 3,265 | 4,443 | 4,353 | 2,488 | 461 | ı | • | 23,074 | | 1976 | 865 | 983 | 3,297 | 3,338 | 3,366 | 3,172 | 3,562 | 4,384 | 2,374 | 108 | ı | t | 25,048 | | Average | ı | ş | 2,714 | 2,358 | 1,362 | 2,483 | 3,455 | 3,935 | 2,370 | 109 | 1 | • | 19,169 | | | | | | | | | | | | | | | | * Amount of water delivered to the farm headgates excludes: canal wastage, seepage, and other unaccounted for losses (calculated from monthly per acre deliveries and annual irrigated acreage). Source: United States Department of the Interior, Bureau of Reclamation, El Paso Office, unpublished data sheets, 1960-77, 10 pp. increased in
dissolved solids content by nearly 41 percent between Leasburg, New Mexico and El Paso, Texas. The surface water of the Rio Grande increased in concentration of dissolved solids downstream from Caballo dam to El Paso, with the major increases being in silica, calcium, sodium, sulfate, chloride, and boron. Records of the chemical quality of the surface water diverted at the Mesilla dam were not available, but the surface water is assumed to be lower in quality than when it passed the Leasburg dam and higher in quality than at El Paso. The quality of surface water in the Mesilla Valley is not considered a limitation for crop production except in the southern portion below Anthony, New Mexico. In this area, the problem of lower quality surface water is compounded by the existence of poor quality groundwater. ## Groundwater Groundwater in the Mesilla Valley is used 1) to supplement surface water for agricultural use, 2) for municipal use in Las Cruces, Anthony, and numerous small villages, 3) for industry, and 4) for rural domestic use. There are about 1,940 cultivated hectares in the Mesilla Valley dependent entirely on groundwater for irrigation, and about 87 percent of the approximately 32,382 cultivated hectares within the Elephant Butte Irrigation District in 1976 used groundwater as a supplemental source. The irrigation wells in the valley vary in depth, but most are from 12 to 22 meters in depth and in which the water quality is poor in comparison to the surface water. Recently some large wells have been completed down to 100 meters or more. The depth of irrigation wells is greatly affected by the depth of the water table in the valley. The amount of water in storage in the valley fill and the amount of pumpage is not well known. The pumpage varies from year to year inversely with usable precipitation and the supply of surface water. ## Groundwater Quantity The primary groundwater sources are water seepage from the river, canals, laterals, and irrigation water applied to the lands, precipitation, runoff from arroyos from the mesas to the valley, and groundwater flow from the mesa lands bordering the valley. ## Groundwater Quality The groundwater quality in the Mesilla Valley varies with both depth and location (Figures 3a and 3b). The quality generally decreases with distance down the valley (Figures 3a and 3b). The greatest concentrations in TDS are in the southern portion of the valley. The quality of water is usually better with increased depth. Fresh water exists within the Santa Fe group sub-stratum below ground level to a depth of about 365 meters extending from near the northern end of the Mesilla Valley generally south to Canutillo (King, 1971). The Santa Fe group generally has water quality with electrical conductivity of about .57 x 10 mmhos/cm. South of Canutillo, the water from the Santa Fe group increases in mineral content until it becomes unfit for most uses. This increase in mineral content of the water in the Santa Fe group from north to south in the valley is thought to be due to incomplete flushing of ancient playa lake sediments and to the increased mineral concentrations of the groundwater in the upper horizons by evapotranspiration (Leggat et al., 1972). Most of the groundwater used for irrigation in the Mesilla Figure 3a. Total dissolved solids contour map in ppm of soluble salts for the May-June 1967 period, northern portion of the Mesilla Valley Figure 3b. Total dissolved solids in ppm of soluble salts for the May-June period, southern portion of the Mesilla Valley Valley is shallow groundwater. This water is relatively good quality (less than 3000 ppm TDS) throughout most of the valley but contains more dissolved solids than the water in the underlying Santa Fe group. South of Canutillo, the shallow wells, while having a high concentration of dissolved solids, are of better quality than the water of the Santa Fe Group. Leggat et al. (1972) reported that increases in groundwater withdrawals in the Mesilla Valley were likely to result in increases in the dissolved solids content of the groundwater. Thus, if the shallow aquifer is to remain a source of supplemental supply for irrigation, withdrawals of water must not be so great that an unfavorable salt balance results. Groundwater quality is considered a moderate limitation to about one-third of the irrigated cropland in the valley, and a severe limitation to about one-sixth, primarily in the southern portion of the valley. The deterioration in the quality of shallow groundwater and groundwater in the Santa Fe group is regarded as a major limitation to the further development of shallow groundwater sources for irrigated cropland in the lower portion of the Mesilla Valley. #### SECTION 3 ## MATERIALS AND METHODS The research on the Demonstration Farm consisted of three main areas: - Monitoring of applied water on the fields, and irrigation scheduling to determine irrigation efficiencies for these fields. - Installation and demonstration of a trickle-irrigation system, and monitoring of applied water on the trickleirrigated land to show the increased irrigation efficiency and decreased return flow. - 3. Monitoring of the drain water flowing through the farm to determine if changes in irrigation practices could be detected by decreased flow rates and salinity levels in the drain. The physical layout of the Demonstration Farm is presented in Figure 4. The farm contains an elaborate surface distribution system consisting of lined and unlined ditches and five wells to supplement surface irrigation water. The drain runs through the center of the farm. The crops grown on the farm were wheat, to-matoes, cotton, lettuce, peppers, chile, grain sorghum, and alfalfa. There was also a producing pecan orchard. The cropping pattern, which changed from year to year, is presented in Table 4 for the three years of the demonstration project. #### Water-Measuring Equipment To measure pumped water, 0.3 meter diameter McCrometer A diagram of the Demonstration Farm and the associated monitoring locations $% \left(1\right) =\left(1\right) +\left(1\right)$ Figure 4 TABLE 4. HECTARES AND YIELDS PER HECTARE BY CROP FOR THE DEMONSTRATION FARM, 1975, 1976, AND 1977 | | • | Hectares | | | Yi | Yield | | |-----------------------------------|------|--------------|---------|----------------|------------|------------|--------------| | | 1975 | 1976 | 1977 | Units | 1975 | 1976 | 1977 | | Alfalfa | 28.1 | 28.1 | 44.6 | mt/ha | 13.4 | 15.7 | 12.3 | | Chile
Green
Red | 50.3 | 3.7 | 2.4 | mt/ha
kg/ha | 17.5 | 17.5 | | | Cotton
Lint
Seed | 41.5 | 33.7 | 6.09 | kg/ha
kg/ha | 443
740 | 538
900 | 841
1,400 | | Grain Sorghum | 0 | 5.7 | 0 | kg/ha | | NA | | | Lettuce | 0 | (20.2)* | (13.8)* | ctn/ha | | 1,236 | 0 | | Wheat | 5.6 | 45.6 | 0 | kg/ha | 3,925 | 4,708 | | | Tomatoes | 29.9 | 38.6 | 65.6 | mt/ha | 29.1 | 38.6 | 17.9 | | Pecans | 1.3 | 1.3 | 1.3 | kg/ha | 388 | 448 | 1,214 | | Floral Gem Chile | 8.0 | 8.1 | 3.2 | kg/ha | NA | NA | NA | | Cayenne Pepper | 16.5 | 16.3 | 0.0 | kg/ha | 4,483 | 2,690 | | | Miscellaneous Vegetables
Total | 0.0 | 0.1
181.2 | 3.2 | | | | | *Double cropped NA - Not available impeller-type flow meters were installed on all of the wells. Parshall flumes (throat width 4.3 cm and 22 cm) with Belfort and Stevens water-stage recorders were installed in all of the surface distribution canals so that a complete record of the applied water by field could be kept. Along with measuring the discharge from the wells, the natural gas consumption for each well on the Demon stration Farm was monitored. The irrigation pumps were tested for pump efficiency and overall efficiency. Two non-recording Taylor 28 cm rain gages were installed at the Demonstration Farm to measure precipitation in the area. ## Trickle Irrigation Well An irrigation well was developed to a depth of 75 m to provide water for the trickle irrigation system. An analysis of a water sample taken from the well is presented in Table 5, and a description of the material encountered from the well drilling is presented in Table 6. ## Groundwater Monitoring Nineteen piezometers were installed on a transect perpendicular to the drain as shown in Figure 4. They consisted of 1.2 cm diameter pipes driven into the ground below the water table. The pipes were slotted at the base to allow water entry. The depth to the water table was measured using a depth gage and the depth corrected back to a datum elevation to account for the irregularities in the land surface. Three wells, with 5 cm casings, were installed at 6, 10, and 15 meters to monitor the salinity of the groundwater at those depths (Figure 4). The wells were installed with a rotary drill rig and the TABLE 5. GROUNDWATER QUALITY AT THE DEMONSTRATION FARM | 1977
Pump No. | Depth of Well $\frac{1}{2}$ | EC × 10 ³ | Нq | Ca | Mg | Na | × | C1 | co ₃ | нсоз | so ₄ | |--|-----------------------------|----------------------|------
--|------|------|------|------|-----------------|------|--| | ereder. Beleichemmerred ber der Beleiche finnennen | æ | mmhos/cm | | Marketine and Article Arti | | | | | | | the state of s | | 0 e < | 60
33 | 0.79 | | | | | | | | | | | , rv | 33 | 0.88 | 7.61 | 3.82 | 1.10 | 3.72 | 0.14 | 1.92 | 0 | 3.36 | 3.84 | | Mean
Standard Deviation | eviation | 1.27 ± 0 | 0.50 | | | | | | | | | | Trickle Well ² /
1977
1976 | $\frac{2}{112}$ 75 | 0.56 | 8.09 | 1.08 | 0.54 | 3.77 | 0.09 | 1.28 | 0 0 | 3.16 | 1.32 | | | | | | | | | | | | | | Static water level is 3 meters, upper portion of well No. 2 is cased off. $\frac{2}{}$ Trickle well has last 3 meters of casing slotted. TABLE 6. SOIL COMPOSITION WITH DEPTH OF THE TRICKLE IRRIGATION WELL AT THE DEMONSTRATION FARM | 0 1.52 Soil 1.52-12.20 Sand 12.20-19.82 Sand and gravel 19.82-20.74 Clay and some sand 20.74-22.88 Sand and gravel 22.88-31.42 Sand 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) 48.19-55.82 Sand and gravel | n (meters) | Soil Type | |--|------------|-------------------------------------| | 12.20-19.82 Sand and gravel 19.82-20.74 Clay and some sand 20.74-22.88 Sand and gravel 22.88-31.42 Sand 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) |) 1.52 | Soil | | 19.82-20.74 Clay and some sand 20.74-22.88 Sand and gravel 22.88-31.42 Sand 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) | -12.20 | Sand | | 20.74-22.88 Sand and gravel 22.88-31.42 Sand 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) |)-19.82 | Sand and gravel | | 22.88-31.42 Sand 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) | 2-20.74 | Clay and some sand | | 31.42-35.38 Some sand and light brown clay 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) | 4-22.88 | Sand and gravel | | 35.38-46.06 Sand and gravel 46.06-48.19 Clay (light brown) | 3-31.42 | Sand | | 46.06-48.19 Clay (light brown) | 2-35.38 | Some sand and light brown clay | | | 3-46.06 | Sand and gravel | | 48.19-55.82 Sand and gravel | 5-48.19 | Clay (light brown) | | | 9-55.82 | Sand and gravel | | 55.82-58.56 Sand and large gravel | 2–58.56 | Sand and large gravel | | 58.56-61.92 Grey to light brown clay and grav | 5-61.92 | Grey to light brown clay and gravel | | 61.92-62.52 Sand | 2-62.52 | Sand | | 62.52-64.05 Clay and gravel | 2-64.05 | Clay and gravel | | 64.05-64.66 Sand and gravel | 5-64.66 | Sand and gravel | | 64.66-67.40 Sand and clay | 5-67.40 | Sand and clay | | 67.40-75.64 Sand and gravel |)-75.64 | Sand and gravel | information obtained from them at the beginning of the measurements should be carefully interpreted due to the contamination process of the drilling operation. ## Drain Flow Monitoring Bridges were built across to allow easy and frequent measurements of the flow rate. Velocity measurements were made at 20 locations across the canal along with water-depth measurements. The area and subsequent flow rates for Sites B and D (Figure 4) were determined by the trapezoidal method. Stilling wells were also installed in the La Mesa drain. Measurements, using Stevens water stage recorders, were determined at Sites B and D (Figure 4). Water samples were collected at Sites A through D and analyzed in the laboratory for salinity. ## Irrigation Scheduling Irrigation scheduling was furnished to the Demonstration Farm through a contract with Agricultural Technology Incorporated, a commercial company providing irrigation scheduling for local farmers. The irrigation scheduling service was based on a climatological computer model to determine projected transpiration rates. Knowledge about the water-holding capacity and rooting depths of the crops, along with transpiration rates (Jensen, 1975) was used to determine the next irrigation date. The climate information used in the model came from a climatological station maintained at the New Mexico State University's Plant Science Farm. The climate model was based on Jensen-Haise's potential evapotranspiration and crop production coefficients (Jensen, 1973). The information supplied to Agricultural Technology Incorporated for the operation of the model included: solar radiation, temperature, humidity, and wind speed. A field man checked each field once a week to determine the available moisture within the root zone and compared the estimate of moisture depletion to the computer model's recommendation for the next irrigation. Information was supplied to the farmer on the water status at each of his fields and a recommended irrigation date. # Trickle Irrigation System Figure 5 shows the orchard and row crop demonstration area with respect to the well and main line. Field 1, which consisted of 1.32 hectares of pecans, was converted from flood to trickle irrigation at the beginning of the demonstration project. A gravel-packed well was drilled in order to supply good quality water for the irrigation system. A 3.7 kw Rusberry submergible turbine pump was installed. The trickle system was used also to irrigate four rows each of tomatoes and peppers. The system initially had a 200-mesh screen filter which was later supplemented by a sand filter automated to permit backwashing The sand filter was manufactured by Agricultural Products, Burbank, California. Soil samples were taken and saturation extracts were prepared in the field. The saturation extracts, and all other water quality samples, were analyzed for salt
content at the University's water laboratory using the procedures listed in Table 7. #### Infiltration Measurements Two approaches were investigated to estimate the seepage rate of water from the Demonstration Farm and main supply ditch. The first approach was to measure the infiltration rate in a section of Figure 5 TABLE 7. TABLE OF METHODS USED TO ANALYZE WATER SAMPLES | Ions Tested | Method | Reference | |-------------------------|---|--------------------------------| | Calcium | Atomic Absorption Spect. | EPA Report (1971) | | Magnesium | Atomic Absorption Spect. | 11 | | Sodium | Flame emission | 11 | | Potassium | Flame emission | n | | Carbonate | Titration with $^{\mathrm{H}_2\mathrm{SO}}_4$ | Ħ | | Bicarbonate | Titration with H_2SO_4 | tt | | Nitrate | Cd reduction | 11 | | Phosphorus | Molybdo-blue | 11 | | Electrical conductivity | | 11 | | Sulfate | Nitrochrome-Azo Titration | Rasnich and
Nakayama (1973) | the Upper Chamberino irrigation lateral and several sections of the farm supply ditches by ponding the water. Bulkheads were fabricated and installed in the irrigation ditches. Test sites, as shown in Figure 4, are locations 4, 6, 7, and 8. Water stage recorders were installed to measure the rate of lowering of the water surface. Testing was conducted until a steady-state condition had occurred. During the infiltration tests the turnouts were sealed by lining with plastic. The second approach used to determine the infiltration rate for a section of canal was to measure the change in the temperature profile beneath the canal over a 24-hour period. If the infiltration rate normal to the surface reached a steady-state condition and a sinusoidal temperature fluctuation of constant amplitude was assumed at the land surface, the flow of heat and water can be described by: $$k \frac{\partial^2 T}{\partial z^2} - vc_0 \rho_0 \frac{\partial T}{\partial z} = cp \frac{\partial T}{\partial t}$$ where k = Heat conductivity of the fluid and medium in combination T = temperature z = distance of flow v = gross velocity of fluid movement c_0 and ρ_0 = specific heat and density of fluid c and p = specific heat and density of fluid and soil in combination t = time Using the above equation, Stallman (1965) describes the downward flow of water determined from temperature measurements. The boundary conditions are not met exclusively in an unlined canal. However, the temperature measurement technique has its advantages over ponding or inflow-outflow techniques in that a pipe can be installed to measure the change in temperature in and beneath a canal without disturbance to the canal or interruption of the irrigation process. The only requirements of this technique are that the water has travelled a sufficient distance so that a steady-state equilibrium has been reached between the water and air temperature and that a radiation load has impinged upon it so that there is a sinusoidal input curve from the irrigation water to the soil beneath. To use this technique, a 1.27 cm diameter pipe was installed to a depth of 2 meters beneath the canal and filled with water. Temperature measurements to a hundredth degree Centigrade were taken at selected depths from the water surface to 1.2 meters beneath the soil surface. The readings were taken at 2-hour intervals for 24 hours. #### SECTION 4 #### RESULTS AND DISCUSSION # Irrigation Scheduling Jensen (1975) published a review of irrigation water management principles and the probable effects of scientific scheduling on salinity of return flow. Jensen attributes the lack of any significant changes in irrigation efficiencies during the past decade to the problems associated with the water management of a complex soil-crop environment system, the lack of economic incentive to make improvements, and ineffective traditional approaches to improve irrigation—water management. Recommendations by Jensen were incorporated into the demonstration project. The irrigation-scheduling method made available to the farmer was based upon a climatological program backed up by trained field personnel who readily supplied up-to-date information to the farmer for irrigation scheduling. The climatological data used in the program are presented in Appendix A. An example of information received by the farmer is presented in Table 8. This information includes the last date of irrigation, the rooting depth of the crop, the water-holding capacity of the particular soil, the optimum depletion level in the soil, present depletion level, and a recommended irrigation date. The farmer also received a recommendation of the amount of water to apply, but this was determined by the irrigation scheme such as the length of surface run and the time duration water was turned into each furrow or border currently being used by the farmer. On the Demonstration Farm, the water application amounts were not varied from traditional practices. Table 8. Example of the Irrigation Schedule Information Received by the Farmer. Location - Demonstration Farm Date: May 5, 1977 Farm No: 8526 Weather: Partly Cloudy Air Temp: 80° - 1:00 | Field
No. | Crop | Last
Irrig | Root
Depth | Hold
Cap | Acres_ | Deple
Bpt | etions
Pres | Irrig
Date | Amt to
Apply | |--------------|----------|----------------------------|---------------|-------------|--------|--------------|----------------|---------------|-----------------| | | | | 2" | 2.0 | | 1.0" | .05 | 2 weeks | | | HZN | Peppers | 4-28 | | | | | - | | | | HZS | Tomatoes | 4-21 | 4** | 2.0 | | 1.0" | .20 | 2 weeks | | | Н3 | Tomatoes | 4-07 | 12" | 2.0 | | 1.6" | .80 | 5-12 | | | H4 | Cotton | 5-05 | 6" | 2.0 | | | .00 | Watering no | οw | | Н5 | Cotton | | 6" | 2.0 | | 2.4 | .30 | 3 weeks | | | Н6 | Tomatoes | 4-21+ | 4" | 2.0 | | 1.0 | .10 | 2 weeks | | | Н7 | Alfalfa | 5-04 | 18" | 2.0 | | 1.6 | .00 | Just water | ed | | Н8 | Cotton | | 6" | 2.0 | | 2.4 | .20 | 3 weeks | | | Н9 | Cotton | | 6" | 1.8 | | 2.4 | .25 | 3 weeks | | | H10 | Alfalfa | 5 - 02 ⁺ | 48" | 1.6 | | 2.0 | .00 | Just water | ed | | H11 | Tomatoes | 4-28 ⁿ | 2" | 2.0 | | | | | | | | | * | * FIELD | NOTATIO | NS * * | | | | | | H12n | Peppers | 5-05 | | 2.0 | | 1.0 | .00 | Watering n | ow | | Hl2s | Cotton | | | 1.8 | | 2.4 | .20 | 3 weeks | | The only thing close to needing an irrigation is Field H3. The lighter spots will be ready for an irrigation by next Thursday. The cotton needs only warm weather and sunshine for the next several weeks. Irrigation is the worst thing you can do to a good stand of cotton at this time. The field man also made notes about the conditions within the field, as shown at the bottom of Table 8. This information led to good communication between the field man and farmer. Agricultural Technology also offers other services to the farmer besides irrigation scheduling such as tissue analysis, salinity analysis, and agronomic information. The program offers a complete package which integrates water management into the overall farm-management scheme. Irrigation scheduling, based upon climatological information coupled with observations by field men, allows scheduling to be done on a scientific basis as much as possible. An example of the information used in the computer program is represented in Figures 6 and 7. Figure 6 is the plot of the potential evapotranspiration for 1976 and 1977 using the Jensen-Haise method. The potential evapotranspiration is adjusted by using a crop coefficient (k_c) which is presented for wheat, alfalfa, cotton, and barley in Figure 7. The equation to compute actual evapotranspiration is $$ET = k_{c} \times PET.$$ Along with the calculated daily ET, it is necessary to know the water-holding capacity of the soil between field capacity and permanent wilting point and the effective rooting depth of the crop (see Figure 7). This information is used to determine how many days' water supply is left in the root zone before moisture depletion occurs. Irrigation should begin at approximately the 50 percent depletion level. The computer program automatically calculated and printed out the number of days before the next irrigation. The Figure 6. Potential evapotranspiration at the Plant Science Farm. Crop coefficients and root depths for selected crops in the Mesilla Valley, New Mexico. Figure resultant data were then checked and updated by field personnel. Farm Irrigation Efficiency Because the mean annual precipitation averages less than 25 cm in the Mesilla Valley, the consumptive-use requirements of the crops were satisfied mainly by irrigation. Irrigation efficiency is the ratio of consumptive use to irrigation applied plus rainfall. Consumptive use is dependent upon the yield of the crop. It is normally measured under non-limiting moisture conditions that maximize yield. Tables 9 through 14 present computed consumptive-use data used and computed field irrigation efficiencies. The consumptive-use data selected was based upon the best available data. Different irrigation efficiencies would be determined if other methods were used to compute the consumptive use of the crop. Irrigation scheduling on the Demonstration Farm resulted in an overall computed farm irrigation efficiency of 65 percent for 1976, and 63 percent for 1977. Farm irrigation efficiencies measured in other states by several investigators ranged from 35 to 65 percent with an average of between 40 and 50 percent (Willardson, 1972; Tyler et al., 1964; U. S. Dept. of Interior, Bureau of Reclamation, 1971 and 1973; Advisory Committee, 1974). It was observed that although the overall farm irrigation efficiency was above average, the field-by-field irrigation efficiencies varied considerably, ranging from 35 to 100 percent. The efficiencies also varied considerably for each particular crop, preventing any correlation between field irrigation efficiencies and particular crops. The efficiency of alfalfa varied from 93 percent in 1976
for Field No. 10 to 76 percent in 1977 for Fields 7 and 10. IRRIGATION WATER APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR ALFALFA ON THE DEMONSTRATION FARM. | rrigation | Recommended
Irrigation | Total
Water | Application | Source of | | Evapotranspiration (ET) | |---------------------|---|----------------------|-----------------|-------------|------------|---| | Date | Date | Applied | per hectare | Water | Rainfall | for time period | | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | lfalfa-Fd. 10 | (28.1 hectares) | | | | | | | 1-01-76 | | | | | | | | 3-15-76 | 3-17-76 | 46.34 | 16.4 | s * | | 10.4 | | 5-18-76 | 5-13-76 | 25.02 | 8.8 | G ** | 1.7 | 19.9 | | 6-03-76 | 6-08-76 | 72.34 | 25.6 | G | 0.3 | 9.8 | | 6-22-76 | 6-24-76 | 65.86 | 23.3 | | 2.0 | 12.6 | | 7-12-76 | 7-10-76 | 57.31 | 20.2 | S | 1.0 | 14.2 | | 8-07-76 | 8-05-76 | 32.50 | 11.6 | S | 4.5 | 22.5 | | 8-20-76 | 8-21-76 | 37.63 | 13.4 | S | 0.3 | 22.8 | | 9-19-76 | 9-18-76 | 37.63 | 13.4 | S | 6.7 | 33.9 | | 10-08-76 | 10-07-76 | 41.91 | 14.9 | S | 1.4 | 7.8 | | Season | Total | 416.54 | 147.8 | | 18.0 | 154.1 + | | Percent | age Surface Water | 60.7
iciency 92.9 | | | | | | | (16,48 hectares) Plan | | | s during se | ason | | | | (10,40 Meccares) Flam | | | • | _ | | | 3-26-77 | | | |
G | 1.2 | | | 3-27-77 | pre-irrigate | 13.19 | 8.0 | | 1.2 | 0.7 | | 4-05-77 | are are | 16.35 | 10.0 | G | | 6.9 | | 5-03-77 | | 13.17 | 8.0 | G
G | 0.2 | 4.5 | | 5-22-77 | 5-23-77 | 25.15 | 15.3 | G | 0.1 | 12.5 | | 6-06 77 | 6-06-77 | 24.59 | 14.9 | | 0.1 | 18.6 | | 6-27-77 | 6-24-77 | 22.34 | 13.6 | G
G & S | 4.8 | 17.4 | | 7-13-77 | 7-15-77 | 19.56 | 11.9 | | 2.2 | 27.2 | | 8-14-77 | 8-12-77 | 31.31 | 19.0 | G
G | 3.3 | 12.6 | | 9-02-77 | | 32.20 | 19.5 | G | 0.7 | 5.2 | | 9-30-77 | | 22.08 | 13.4 | <u> </u> | | 5.9 | | 10-28-77 | | | | | | *************************************** | | Season | | 219.94 | 133.6 | | 12.5 | 111.5 | | Percen
Season | tage Surface Water
al Field Irrigation Eff | 8%
iciency 76% | | | | | | | 0 (28.11 hectares) Pla | | rvested 4 times | during seas | son | | | 1-01-77 | -
 | | | | | | | 3-11-77 | | 63.84 | 22.7 | G | 1.8 | 8.8 | | 4-11-77 | 4-13-77 | 40.29 | 14.3 | G | 1.2 | 12.9 | | 5-02-77 | 4-28-77 | 39.54 | 14.1 | G | | 21.7 | | 5-23-77 | 5-23-77 | 65.72 | 23.4 | G | 0.2 | 10.2 | | 6-07-77 | 6-08-77 | 65.98 | 23.5 | G | 0.1 | 20.0 | | 6-30-77 | 6-29-77 | 66.77 | 23.8 | G | 1.0 | 18.6 | | 7-14-77 | 7-14-77 | 56.79 | 20.2 | S | 3.8 | 20.7 | | 8-09-77 | 8-04-77 | 64.45 | 22.9 | G | 1.5 | 17.3 | | 8-23-77 | | 56.53 | 20.1 | G | 1.0 | 18.7 | | 9-15-77 | wall one | 54.51 | 19.4 | G | 3.7 | 8.7 | | 10-28-77 | | | | | 2.1 | 10.9 | | Season | Total | 574.42 | 204.4 | | 16.4 | 168.5 | | | | | | | | | ^{*} S - Surface Water # Table 9 ^{**} G - Groundwater from well [†] Based on measurement by the Agricultural Engineering Department at the Plant Science Farm New Mexico State University IRRIGATION WATER APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR COTTON ON THE DEMONSTRATION FARM | Irrigation
Date | Recommended
Irrigation
Date | Total
Water
Applied | Application per hectare | Source of
Water | | vapotranspiration
(ET)
for time period | |---|---|---|---|---------------------------|--|--| | | | (ha-cm/ha) | | | (ha-cm/ha) | (ha-cm/ha) | | otton-Fd 4 We | st (16.2 hectares) | | | | | | | 3-27-76 | pre-irrigate | 39.93 | 24.5 | S * | | 1.5 | | 5-12-76 | NI †† | 15.40 | 9.4 | G ** | 1.7 | 7.6 | | 6-28-76 | 6-30-76 | 17.99 | 11.1 | S | 2.3 | 20.5 | | 8-05-76 | 7-31-76 | 16.27 | 10.1 | S | 5.5 | 6.6 | | 8-17-76 | 8-22-76 | 13.19 | 8.1 | S | 0.1 | 6.1 | | 8-28-76 | 9-02-76 | 12.94 | 7.8 | S | 0.2 | 17.7 | | 10-27-76 | | | | | 8.1 | | | Season Tota | al | 115.73 | 71.1 | | 18.0 | 60.0† | | | Surface Water
ield Irrigation Efficie | 87.03
ency 67.33 | | | | | | otton-Fd. 9 (| 10.7 hectares) | | | | | | | 3-29-76 | pre-irrigate | 24.65 | 23.0 | S | | | | 5-18-76 | NI | 9.86 | 9.1 | S | 1.7 | 1.8 | | 6-22-76 | 7-01-76 | 15.61 | 14.7 | Š | 2.3 | 5.3 | | 8-07-76 | 8-05-76 | 12.36 | 11.4 | s | 5.5 | 23.0 | | 8-27-76 | finished | 21.07 | 19.7 | G | 0.4 | 11.4 | | 10-05-76 | 414.60 | | | | 8.1 | 13.9 | | 0-27-76 | | | | | | 4.3 | | | | | | | | | | Season Tot | al | 83.57 | 77.9 | | 18.0 | 59.7 | | Percentage | al
Surface Water
ield Irrigation Efficie | 75.0 | 3 | | 18.0 | 59.7 | | Percentage
Seasonal F | Surface Water | 75.0 | 3 | | 18.0 | 34.7 | | Percentage
Seasonal F | Surface Water
ield Irrigation Efficie | 75.0 | 3 | s | 18.0 | 59.7 | | Percentage
Seasonal F | Surface Water ield Irrigation Efficie | 75.03
ency 62.23 | %
% | S
S | |
1.8 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 | 75.00
62.23
5.02
5.18
6.83 | 7.3
7.6
10.1 | S
G |
1.8
5.3 | | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 | 75.02
62.23
5.02
5.18
6.83
6.83 | 7.3
7.6
10.1
10.1 | S
G
S | 1.8
5.3
2,7 |
1.8 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 75.03
62.23
5.02
5.18
6.83
6.83
6.20 | 7.3
7.6
10.1
10.1
9.1 | S
G
S
S | 1.8
5.3
2.7
3.2 | 1.8
7.6
13.4
15.4 | | Percentage
Seasonal F
Otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 75.00
62.23
5.02
5.18
6.83
6.83
6.20
6.42 | 7.3
7.6
10.1
10.1
9.1
9.4 | S
G
S
S | 1.8
5.3
2.7
3.2
7.6 | 1.8
7.6
13.4
15.4
3.0 | | Percentage
Seasonal F
Detton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 75.00
62.23
5.02
5.18
6.83
6.83
6.20
6.42 | 7.3
7.6
10.1
10.1
9.1
9.4 | S
G
S
S
G | 1.8
5.3
2.7
3.2
7.6
0.5 | 1.8
7.6
13.4
15.4
3.0
12.9 | | Percentage
Seasonal F
Detton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 75.00
62.23
5.02
5.18
6.83
6.83
6.20
6.42 | 7.3
7.6
10.1
10.1
9.1
9.4 | S
G
S
S | 1.8
5.3
2.7
3.2
7.6 | 1.8
7.6
13.4
15.4
3.0 | | Percentage
Seasonal F
Otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76 | Surface Water ield Irrigation Efficie (6.8 hectares)
pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 75.00
62.23
5.02
5.18
6.83
6.83
6.20
6.42 | 7.3
7.6
10.1
10.1
9.1
9.4 | S
G
S
S
G | 1.8
5.3
2.7
3.2
7.6
0.5 | 1.8
7.6
13.4
15.4
3.0
12.9 | | Percentage
Seasonal F
Otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tota | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 | 5.02
5.18
6.83
6.83
6.20
6.42

36.48 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6 | S
G
S
S
G | 1.8
5.3
2.7
3.2
7.6
0.5 | 1.8
7.6
13.4
15.4
3.0
12.9 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tot:
Percentage
Seasonal F: | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.09 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6 | S
G
S
S
G | 1.8
5.3
2.7
3.2
7.6
0.5 | 1.8
7.6
13.4
15.4
3.0
12.9 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tot:
Percentage
Seasonal F: | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.09 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6 | S
G
S
S
G | 1.8
5.3
2.7
3.2
7.6
0.5 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tot:
Percentage
Seasonal F: | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.03
83.83 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6 | S G S S G | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tota
Percentage
Seasonal F: | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.07
83.87
ency 83.87
15.08
26.84 | 7.3 7.6 10.1 10.1 9.1 9.4 53.6 2 rvested 11-3-77 18.4 5.4 9.6 | S G S S G | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | | Percentage
Seasonal F
Otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tot:
Percentage
Seasonal F:
Otton-Fd. 4 ()
3-19-77
5-03-77
6-27-77
6-29-77 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 6-27-77 | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.05
83.85
81.35
15.08
26.84
28.38 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6
3
5vested 11-3-77
18.4
5.4
9.6
10.2 | S G S S G G F F F S G G S | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | | Percentage
Seasonal F
btton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tota
Percentage
Seasonal F:
btton-Fd. 4 (3
3-19-77
5-03-77
6-27-77 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 7-30-77 | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.07
83.87
ency 83.87
15.08
26.84 | 7.3 7.6 10.1 10.1 9.1 9.4 53.6 2 rvested 11-3-77 18.4 5.4 9.6 | S G S S G G S S S | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | | Percentage
Seasonal F
Setton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Total
Percentage
Seasonal Final Seasonal Seas | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 7-30-77 8-22-77 | 5.02
5.18
6.83
6.83
6.20
6.42

36.48
63.05
83.85
81.35
15.08
26.84
28.38 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6
3
5vested 11-3-77
18.4
5.4
9.6
10.2 | S G S S G G F F F S G G S | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | | Percentage
Seasonal F
Setton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Total
Percentage
Seasonal Final Percentage
Seasonal Percent | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 7-30-77 | 5.02 5.18 6.83 6.83 6.20 6.42 36.48 63.0; ency 83.8; ed 4-19-77 - Han 51.35 15.08 26.84 28.38 27.73 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6
2
2
2
3
4
54
9.6
10.2
9.9 | S G S S G G S S S | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | | Percentage
Seasonal F
otton-Fd. 12
3-19-76
5-13-76
6-29-76
7-25-76
8-21-76
8-26-76
9-26-76
10-27-76
Season Tot:
Percentage
Seasonal F:
otton-Fd. 4 (:
3-19-77
5-03-77
6-27-77
6-29-77
8-02-77 | Surface Water ield Irrigation Efficie (6.8 hectares) pre-irrigate NI 7-01-76 7-22-76 8-26-76 al Surface Water ield Irrigation Efficie 27.94 hectares) Plante pre-irrigate 5-05-77 6-27-77 6-27-77 7-30-77 8-22-77 First freeze | 5.02 5.18 6.83 6.83 6.20 6.42 36.48 63.07 83.85 ed 4-19-77 - Han 51.35 15.08 26.84 28.38 27.73 48.03 | 7.3
7.6
10.1
10.1
9.1
9.4

53.6
7
8
8
8
9.6
10.2
9.9
17.2 | S G S S G G S S S | 1.8
5.3
2.7
3.2
7.6
0.5
 | 1.8
7.6
13.4
15.4
3.0
12.9
5.8
60.0 | (continued) <u>Table 10</u> Table 10 (Continued) | Irrigation | Recommended
Irrigation | Total
Water | Application | Source of
Water | Rainfali | Evapotranspiration
(ET)
for time period | |--------------------------|---|--------------------|-----------------|--------------------|---------------|---| | Date | Date | Applied 3. | per hectare | water | | | | | | (km ³) | (ha~cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | otton-Fd. 5 (| 5.55 hectares) Planted | 4-18-77 - Harv | ested 10-23-77 | | | | | 3-27-77 | pre-irrigate | 5.14 | 9.3 | G | _ | | | 5-25-77 | 5-30-77 | 7.18 | 12.9 | S | 0.2 | 3.1 | | 6-15-77 | 6-25-77 | 4.05 | 7.3 | G | 0.1 | 4.7 | | 7-21-77 | 7-18-77 | 8.38 | 15.1 | G | 4.8 | 19.2 | | 8-22-77 | 8-14-77 | 8.59 | 15.5 | G | 2.5 | 20.8 | | 10-28-77 | | | | | <u>5.8</u> | <u>19.3</u> | | Season Tota | 1 | 33.34 | 60.1 | | 13.4 | 67.1 | | Percentage | Surface Water | 14% | | | | | | | ield Irrigation Effici | | | | | | | Cotton-Fd. 8 (| 13.52 hectares) - Plan | ted 4-16-77 - H | larvested 10-15 | -77 | | | | 3-28-77 | pre-irrigate | 15.81 | 11.7 | | | | | 5-25-77 | 5-26-77 | 20.12 | 14.9 | S | 0.2 | 3.1 | | 7-04-77 | 6-24-77 | 16.34 | 12.1 | G | 1.3 | 13.2 | | 7-31-77 | 7-30-77 | 13.20 | 9.8 | G | 5.3 | 18.0 | | 8-19-77 | 8-17-77 | 21.81 | 16.1 | G | 0.8 | 11.2 | | 9-05-77 | | 15.81 | 11.7 | S | 3.2 | 8.8 | | 9-23-77 | | 22.19 | 16.4 | G | 0.7 | 6.3 | | 10-05-77 | | 19.58 | 14.5 | G | 1.0 | 2.8 | | 10-28-77 | | | | | 1.0 | 2.7 | | Season Total | a1 | 144.86 | 107.2 | | 13.5 | 66.1 | | Dorgentage | Surface Water | 28% | | | | | | | ield Irrigation Effici | | | | | | | Cotton-Fd. 9 (| 10.69 hectares) - Plan | ted 4-17-77 - 1 | larvested 10–29 | ı – 77 | | | | 3-28-77 | pre-irrigate | 15.77 | 14.8 | G | | | | 5-25-77 | 5-26-77 | 17.25 | 16.1 | s | 0.2 | 3.2 | | | 6-17-77 | 18.95 | 17.7 | Ğ | 0.1 | 3.6 | | 6-12-77 | 7-19-77 | 15.96 | 14.9 | Ğ | 4.8 | 19.8 | | 7-20-77 | | 16.33 | 15.3 | Ğ | 1.5 | 12.9 | | 8-08-77 | 8-12-77 | 15.81 | 14.8 | s | 0.7 | 5.2 | | 8-17-77 | 8-26-77 | | 15.5 | G | 0.3 | 6.9 | | 8-29-77 | | 16.54
16.34 | 15.3 | G | 3.7 | 7.0 | | 9-15-77 | | 10.34 | 13,3 | | 2.1 | 8.1 | | 10-28-77 | | | | - - | | | | Season Tot | | 132.95 | 124.4 | | 13.4 | 66.7 | | Percentage
Seasonal F | Surface Water
ield Irrigation Effici | 25%
ency 48%. | | | | | | Cotton-Fd. 12 | South (3.24 hectares) | - Planted 4-22 | -77 - Harvested | 10-28-77 | | | | 3-28-77 | pre-irrigate | 2.97 | 9.2 | | | | | 5-11-77 | | 3.76 | 11.6 | G | 0.2 | 1.4 | | 6-30-77 | - | 3.54 | 10.9 | G | 1.1 | 12.4 | | 8-09-77 | | 4.65 | 14.4 | G | 5.3 | 26.3 | | 9-23-77 | | 5.17 | 16.0 | Ğ | 4.7 | 20.9 | | 10-03-77 | | 5.21 | 15.7 | Ğ | 0.3 | 2.6 | | 10-03-77 | | | | | 2.0 | 3.0 | | | | 25.30 | 77.8 | | 13.6 | 66.6 | | Season Tot | | 23.30 | | | 13.0 | 00.0 | | Percentage | Surface Water | | | | | | | | ield Irrrigation Effic | ilency 72% | | | | | ^{*} S - Surface Water ** G - Groundwater from well + Based on
climatic program used by agricultural technology +* No irrigation recommended IRRIGATION WATER APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR LETTUCE ON THE DEMONSTRATION FARM. | Irrigation Date Applied Applied Per Hectare Water Rainfall for time per Hectare Rainfall Family Rainfall Family Rainfall Rainf | | Recommended | Total | | | | Evapotranspiration | |--|----------------|-------------------|--------------------|-----------------|-----------------|------------|--------------------| | Characteristics | Irrigation | | | | | | | | | Date | Date | | per Hectare | Water | Rainfall | for time period | | 7-23-76 None 16.64 8.2 S* | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | 8-04-76 " 12.22 6.0 S 2.8 | ettuce-Fd. 3 | (20.2 hectares) | | | | | | | 8-08-76 | 7-23-76 | None | 16.64 | 8.2 | S* | | | | 8-08-76 | | 11 | 12.22 | 6.0 | S | 2.8 | | | 8-21-76 | 8-08-76 | u u | 41.04 | 20.3 | S(52%) | | | | 8-29-76 | 8-18-76 | | 11.50 | 5.7 | S | 0.3 | | | 10.93 | 8-21-76 | | 32.66 | | S(37%) | | | | 9-27-76 | 8-29-76 | ** | 16.93 | 8.4 | S | | m m | | 14.66 | 9-16-76 | | 12.31 | 6.1 | S | 6.7 | | | 14.04 7.0 G 0.7 Season Total 203.81 100.9 12.0 45.0† Percentage Surface Water 41.0% Seasonal Field Irrigation Efficiency 39.8% Seasonal Field Irrigation Efficiency 39.8% Seasonal Field Irrigation Efficiency 41.0% 39.8% Seasonal Field Irrigation Efficiency | 9-27-76 | *1 | 31.80 | 15.7 | s(68%) | 0.6 | | | Season Total 203.81 100.9 12.0 45.0† Percentage Surface Water Seasonal Field Irrigation Efficiency 39.8% **Ettuce-Fd. 2 North (2.43 hectares) Planted 8-1-77 - Plowed under 9-1-77 **8-02-77 3.68 15.1 G 8-04-77 2.12 8.7 G 8-07-77 2.12 8.86 36.4 0.0 22.3 Percentage of Surface Water 0 % **Ettuce-Fd. 11 (8.10 hectares) Planted 8-1-77 - Plowed under 9-1-77 **8-02-77 12.79 15.8 G 8-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 | 0-13-76 | 11 | 14.66 | 7.3 | G** | 0.8 | | | Percentage Surface Water | 1-04-76 | rt . | 14.04 | 7.0 | G | 0.7 | | | Seasonal Field Irrigation Efficiency 39.8% ettuce-Fd. 2 North (2.43 hectares) Planted 8-1-77 - Plowed under 9-1-77 8-02-77 3.68 15.1 G 8-04-77 2.12 8.7 G | Season Tota | 1 | 203.81 | 100.9 | | 12.0 | 45.0† | | 8-04-77 3.68 15.1 G | Seasonal | Field Irrigation | Efficiency 3 | 9.8% | ved under 9-1-7 | 7 | | | 8-07-77 2.12 8.7 G Season Total 8.86 36.4 0.0 22.3 Percentage of Surface Water 0 % Settuce-Fd. 11 (8.10 hectares) Planted 8-1-77 - Plowed under 9-1-77 8-02-77 12.79 15.8 G 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Settuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 | 8-02-77 | ~- | 3.06 | 12.6 | | | | | Season Total 8.86 36.4 0.0 22.3 Percentage of Surface Water 0 % Settuce-Fd. 11 (8.10 hectares) Planted 8-1-77 - Plowed under 9-1-77 8-02-77 12.79 15.8 C 11.52 14.2 G 0.6 11.52 14.2 G 0.6 0.6 0.6 0.6 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Lettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 C C C C C C C C C C C | 8-04-77 | | 3.68 | 15.1 | G | | | | Percentage of Surface Water 0 % **Ettuce-Fd. 11 (8.10 hectares) Planted 8-1-77 - Plowed under 9-1-77 8-02-77 12.79 15.8 G 8-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % **Ettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 8-19-77 1.91 5.9 G 0.6 | 8-07-77 | | 2.12 | 8.7 | G | | | | Rettuce-Fd. 11 (8.10 hectares) Planted 8-1-77 - Plowed under 9-1-77 8-02-77 12.79 15.8 G 8-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Rettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 8-19-77 1.91 5.9 G 0.6 | Season Tota | 1 | 8.86 | 36.4 | | 0.0 | 22.3 | | 8-02-77 12.79 15.8 C 18-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Settuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G S-02-77 8-01-77 2.75 8.5 G S-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 S-10-77 S-10- | Percenta | ge of Surface Wat | er | 0 % | | | | | 8-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Lettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G S-02-77 8-01-77 2.75 8.5 G S-11-77 8-11-77 2.22 6.8 G 0.2 S-11-77 8-11-77 1.91 5.9 G 0.6 S-11-77 1.91 5.9 G 0.6 | ettuce-Fd. ll | (8.10 hectares) | Planted 8-1- | 77 - Plowed ur | nder 9-1-77 | | | | 8-12-77 11.52 14.2 G 0.6 Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % | 8_02_77 | | 12.79 | 15.8 | G | | | | Season Total 24.31 30.0 0.6 22.3 Percentage of Surface Water 0 % Lettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 8-19-77 1.91 5.9 G 0.6 | | · | | | | 0.6 | | | Percentage of Surface Water 0 % **Ettuce-Fd. 12 North** (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 8-19-77 1.91 5.9 G 0.6 | | 1 | | | - | _ | 22.3 | | Lettuce-Fd. 12 North (3.24 hectares) Planted 7-31-77 - Plowed under 9-1-77 7-31-77 G 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | *** | | | 7-31-77 | Percenta | ge of Surface wat | er | 0 % | | | | | 8-02-77 8-01-77 2.75 8.5 G 8-11-77 8-11-77 2.22 6.8 G 0.2 8-19-77 1.91 5.9 G 0.6 0.2 0.6 0.6 | Lettuce-Fd. 12 | North (3.24 hec | tares) Plante | ed 7-31-77 - PI | lowed under 9-1 | 77 | | | 8-11-77 8-11-77 2.22 6.8 G 0.2
8-19-77 1.91 5.9 G 0.6 | 7-31-77 | | | | | | | | 8-19-77 1.91 5.9 G 0.6 | 8-02-77 | 8-01-77 | | | | | | | | 8-11-77 | 8-11-77 | 2.22 | | | • | | | Season Total 6.88 21.2 0.8 22.3 | | | 1.91 | _5.9 | G | 0.6 | | | | Season Tota | 1 | 6.88 | 21.2 | | 0.8 | 22.3 | | | | | | | | | | Table 11 ^{*} S - Surface Water ** G - Cround Water † Gregory, E. J. and Eldon G. Hanson, <u>Predicting Consumptive Use with Climatological Data</u>, New Mexico Water Resource Research Institute, Report No. 066, April 1976 IRRIGATION WATER
APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR PEPPERS ON THE DEMONSTRATION FARM. | Irrigation | Recommended
Irrigation | Total
Water | Application | | | Evapotranspiratio
(ET) | |-------------------------|--|---------------------------------------|-----------------------|---------------|--------------|---------------------------| | Date | Date | Applied | per Hectare | Water | Rainfall | for time period | | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | eppers-Fd. | 2 (5.5 hectares) |) | | | | | | 4-12-76 | pre-irrigate | 6.16 | 11.1 | s* | | | | 4-22-76 | | 3.20 | 5.8 | S | 1.2 | | | 5-12-76 | | 3.82 | 6.8 | G** | 0.5 | | | 5-15-76 | 5-15-76 | 4.81 | 8.6 | S | 0.3 | W-40 | | 6-02-76 | 6-02-76 | 8.24 | 14.9 | G | 2.0 | | | 6-20-76
7-08-76 | 6-30-76
7-16-76 | 8.26
5.54 | 14.0
10.1 | G
G | 1.0 | | | 8~08-76 | 8-05-76 | 5.61 | 10.1 | G | 3.7 | ~~ | | 8-18-76 | 8-17-76 | 8.21 | 14.9 | Š | 0.3 | | | 9-02-76 | 9-01-76 | 7.15 | 12.9 | S | | | | 9-27-76 | 9-21-76 | 7.21 | 13.2 | S(55%) | 7.3 | | | 0-05-76 | | | | | 0.8 | | | Season Tot | tal | 68.21 | 123.4 | | 17.2 | 77.9† | | | tage Surface Wate
al Field Irrigat | | 54.0%
cy 55.4% | | | | | eppers-Fd. | 7 (10.3 hectare | s) Plus - <u>G</u> | rain Sorghum | (5.7 hectare | s) | | | 5-14-76 | 5-14-76 | 9.21 | 5.6 | s | | | | 5-18-76 | | 11.21 | 6.8 | S | | | | 5-20-76 | 6-03-76 | 11.03 | 6.6 | G | 0.3 | | | 6-12-76 | 6-20-76 | 16.54 | 10.1 | S | 2.0 | | | 6-26-76 | 7-02-76 | 18.98 | 11.4 | G | | | | 71576 | 7-13-76 | 19.72 | 11.9 | S | 1.8 | | | 8-02-76
8-20-76 | 8-03-76
8-18-76 | 12.54
35.37 | 7.6
21.5 | S | 3.7 | | | 9-03-76 | 9-02-76 | 18.49 | 11.1 | G
S | 0.4 | | | 9-21-76 | 9-21-76 | 6.14 | 3.8 | S | 6.7 | | | 0-01-76 | | 13.19 | 8.1 | S | 0.8 | | | Season Tot | tal | 172.42 | 104.5 | | 15.7 | 71.2† †† | | | tage Surface Wate
al Field Irrigat: | | 62.0%
cy 64.8% | | | | | eppers-Fd. 4 | 4 East (11.7 hed | ctares) | | | | | | 31376 | pre-irrigate | 27.85 | 23.8 | S | | | | 6-04-76 | 6-13-76 | 10.60 | 9.1 | S | 2.1 | | | 6-22-76 | 6-31-76 | 17.25 | 14.7 | S | 2.0 | | | 7-12-76 | 7~10~76 | 14.29 | 12.1 | S | 1.0 | | | 8-05-76
8-18-76 | 7-31-76 | 14.87 | 9.9 | S | 4.5 | ~~ | | 3-18-76
3-28-76 | 8-17-76
8-27-76 | 13.06
20.33 | 11.1
17.2 | S
G | 0.3 | | | 0-26-76
0-05-76 | 9-20-76 | 11.71 | 9.9 | G | 8.1 | | | Season Tot | | 126.89 | 107.8 | • | 18.1 | 77.9 | | Percent | tage Surface Wate | er | 75.0% | | 2011 | , | | | al Field Irrigati | | • | | | | | eppers-Fd. 1
3-28-77 | 12 North (3.24)
pre-irrigate | nectares) P
2.97 | lanted 4-22-77
9.2 | ~ Plowed
G | under 7-7-77 | | | 505-77 | pre-irrigate | 4.39 | 13.5 | G | 0.2 | | | 5-03-77
5-11-77 | | 3.25 | 10.0 | G | 0.2 | | | | 7-04-77 | 3.60 | 11.1 | Ğ | 1.1 | | | 5-30-77 | | · · · · · · · · · · · · · · · · · · · | | | | | | Season Tot | :a1 | 14.21 | 43.8 | | 1.3 | 24.2 | (continued) Table 12 Table 12 (Continued) | | Recommended | Total | | | | Evapotranspiration | |--------------|--|--------------------|-----------------------|-----------|---------------------|--------------------| | Irrigation | Irrigation | Water | Application Source of | Source of | | (ET) | | Date | Date | Applied | per Hectare | Water | Rainfal1 | for time period | | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | pers-Fd. | Peppers-Fd. 2 North (2.43 hectares) Planted 4-8-77 | ectares) Pla | | - Plowed | Plowed under 7-1-77 | | | 4-12-77 | | 1.82 | 7.5 | တ | ş | ļ | | 4-20-77 | ! | 2.16 | 8.9 | ტ | 1 | | | 5-16-77 | - | 3.20 | 13.2 | రు | 0.2 | 1 | | 5-77 | 5-26-77 | 3.72 | 15.3 | ტ | ! | 1 | | [4-77 | 6-17-77 | 2.13 | 8.8 | ტ | 0.1 | t t | | | Plowed under; poor | stand | | | | | | Season Total | otal | 13.03 | 53.7 | | 0.3 | 28.1 | | Percei | Percentage of Surface Water | Water | 8.0% | | | | | | | | | | | | * S - Surface Water ** G - Groundwater from well 14 Weighted average of grain sorghum and peppers according to hectares planted [†] Consumptive Irrigation Requirements of Selected Irrigated Areas in New Mexico, New Mexico State University Agricultural Experiment Station Bulletin 531, Henderson and Sorensen, August 1968 IRRIGATION WATER APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR TOMATOES ON THE DEMONSTRATION FARM | Irrigation | Irrigation | Total
Water | Application | Source of | | Evapotranspiratio
(ET) | |---|---|---|--|---|---|---------------------------| | Date | Date | Applied | per Hectare | Water | Rainfall | for time period | | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | omatoes-Fd. | 8 (13.5 hectar | es) | | | | | | 3-20-76 | | 23.42 | 17.3 | S* | ··· | a | | 3-23-76 | | 27.73 | 20.5 | S | | | | 5-01-76 | 5-01-76 | 19.72 | 14.6 | S | 1.3 | | | 5-07-76 | 507-76 | 6.53 | 4.8 | S | 0.5 | | | 6-17-76 | 6-13-76 | 10.23 | 7.6 | S | 2.3 | ₩- | | 7-13-76 | 7-10-76 | 11.95 | 8.8 | S | 1.0 | | | 8-04-76 | 8-02-76 | 14.82 | 11.0 | G** | 4.5 | | | 8-20-76 | finished | 1.64 | 1.2 | Ğ | 0.3 | | | Season Tot | | 116.04 | 85.8 | | 10.0 |
57.7† | | Percent | tage Surface Wate | er | 85.8% | | 10.0 | 37.71 | | Seasona | al Field Irrigat: | ion Efficien | icy 60.2% | | | | | fomatoes-Fd. | 11 (25.1 hecta | res) | | | | | | 5-18-76 | 5-18-76 | 42.00 | 16.7 | s | | | | 6-22-76 | 6-20-76 | 83.19 | 33.1 | S&G | 2.0 | | | 7-22-76 | 7-15-76 | 32.04 | 12.6 | G | 1.8 | ~- | | 8-03-76 | NI | 6.16 | 2.5 | Ğ | 3.7 | | | 8-07-76 | 8-05-76 | 28.96 | 11.4 | S | | | | 8-27-76 | 8-22-76 | 22.08 | 8.9 | G | 0.3 | | | 8-31-76 | NI | 15.30 | 6.1 | Ğ | · | | | 9-29-76 | finished | | | - | 7.4 | | | | | | | | | | | Season Tot | raı | 229.74 | 91.3 | | 15.3 | 57.7 | | - | | | | | | | | Seasona | tage Surface Wate
al Field Irrigat | ion Efficien | · · | | | | | | al Field Irrigat: | ion Efficien | | - Harveste | d 8-29-77 | | | Seasona | al Field Irrigat: | ion Efficien | icy 54.1% | - Harveste
S | d 8-29-77
 | | | Seasona
Tomatoes-Fd. | 2 South (2.84) | ion Efficien
hectares) P | ley 54.1% | | d 8–29–77
––
–~ |
 | | Seasona
<u>Pomatoes-Fd.</u>
4-12-77 | 2 South (2.84) | ion Efficien
hectares) P
2.23 | lented 4-8-77
7.8 | S | |

 | | Seasona
<u>Fomatoes-Fd.</u>
4-12-77
4-20-77 | al Field Irrigat
2 South (2.84)
 | ion Efficien
hectares) P
2.23
2.50 | 21anted 4-8-77
7.8
8.8 | S
G | |

 | | Seasona
Fomatoes-Fd.
4-12-77
4-20-77
5-16-77 | al Field Irrigat: 2 South (2.84 ! | ion Efficien hectares) P 2.23 2.50 3.92 | 12 24.1% 14 4-8-77 15 8.8 13.8 | S
G
G | 0,2 |

 | | Seasona
<u>Fomatoes-Fd.</u>
4-12-77
4-20-77
5-16-77
5-25-77 | 2 South (2.84 !

5-26-77 | ion Efficien
hectares) P
2.23
2.50
3.92
4.56 | Planted 4-8-77 7.8 8.8 13.8 16.0 | s
G
G | 0.2 |

 | | Seasona
4-12-77
4-20-77
5-16-77
5-25-77
6-14-77
7-01-77 | 2 South (2.84 1 5-26-77 6-17-77 | ion Efficien
hectares) F
2.23
2.50
3.92
4.56
2.60 | 7.8
8.8
13.8
16.0
9.2 | S
G
G
G | 0.2

0.1 |

 | | Seasona
<u>Fomatoes-Fd.</u>
4-12-77
4-20-77
5-16-77
5-25-77
6-14-77 | 2 South (2.84) 5-26-77 6-17-77 7-02-77 | ion Efficien
hectares) P
2.23
2.50
3.92
4.56
2.60
3.15 | 7.8
8.8
13.8
16.0
9.2 | S G G G G | 0.2

0.1
1.0 |

 | | Seasona
4-12-77
4-20-77
5-16-77
5-25-77
6-14-77
7-01-77
7-12-77
7-20-77 | 2 South (2.84 1

5-26-77
6-17-77
7-02-77
7-12-77
7-21-77 | ion Efficien
hectares) P
2.23
2.50
3.92
4.56
2.60
3.15
3.57 | 7.8
8.8
13.8
16.0
9.2
11.1
12.6
9.1 | s
G
G
G
G
G | 0.2

0.1
1.0
3.8 |
 | | Seasona
4-12-77
4-20-77
5-25-77
6-14-77
7-01-77
7-12-77
7-20-77
8-02-77 | 2 South (2.84 1

5-26-77
6-17-77
7-02-77
7-12-77
7-21-77
8-01-77 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 | 7.8
8.8
13.8
16.0
9.2
11.1
12.6
9.1
11.8 | S
G
G
G
G
G
G | 0.2

0.1
1.0
3.8 |
 | | Seasona
4-12-77
4-20-77
5-16-77
5-25-77
6-14-77
7-01-77
7-12-77
7-20-77
8-02-77
8-04-77 | 2 South (2.84 1

5-26-77
6-17-77
7-02-77
7-12-77
7-21-77 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 | 7.8
8.8
13.8
16.0
9.2
11.1
12.6
9.1
11.8
9.5 | S G G G G G G G G G G G G G G G G G G G | 0.2
0.1
1.0
3.8
 |

 | | Seasona **Tomatoes-Fd.** 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-12-77 7-20-77 8-02-77 8-04-77 8-07-77 | 2 South (2.84 1) | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 | 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 |
S
G
G
G
G
G
G | 0.2
0.1
1.0
3.8

1.5 |

 | | Seasona
4-12-77
4-20-77
5-25-77
6-14-77
7-01-77
7-12-77
7-20-77
8-02-77
8-04-77 | 2 South (2.84 1) | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 | 7.8
8.8
13.8
16.0
9.2
11.1
12.6
9.1
11.8
9.5 | S G G G G G G G G G G G G G G G G G G G | 0.2
0.1
1.0
3.8
 |

 | | Seasona 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-20-77 8-02-77 8-04-77 8-07-77 Season Tot | 2 South (2.84 1) | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 | 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 | S G G G G G G G G G G G G G G G G G G G | 0.2
0.1
1.0
3.8

1.5 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-12-77 8-02-77 8-04-77 8-04-77 Season Tot Percent Seasona | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien | 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % acy 46.0% | S G G G G G G G G G G G G G G G G G G G | 0.2

0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Tomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-12-77 8-02-77 8-04-77 8-04-77 Season Tot Percent Seasona Tomatoes-Fd. 3-21-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % dey 46.0% | S G G G G G G G G G G G G G G G G G G G | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona 10matoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-12-77 8-02-77 8-04-77 8-04-77 8-07-77 Season Tot Percent Seasona 10matoes-Fd. 3-21-77 3-26-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8.2 117.9 acy 46.0% | S
G
G
G
G
G
G
G
G | 0.2

0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-02-77 8-04-77 8-07-77 Season Tot Percent Seasona Fomatoes-Fd. 3-21-77 3-26-77 3-30-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 | 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % acy 46.0% ad 3-21-77 - 6.6 12.1 | S
G
G
G
G
G
G
G
G
G
G
S
S | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-12-77 8-02-77 8-04-77 8-07-77 Season Tot Percent Seasona Comatoes-Fd. 3-21-77 3-26-77 3-30-77 4-07-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % tey 46.0% dd 3-21-77 - 6.6 12.1 3.3 | S
G
G
G
G
G
G
G
G
G
G
S
S
S | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-04-77 8-04-77 Season Tot Percent Seasona Fomatoes-Fd. 3-21-77 3-26-77 3-30-77 4-07-77 4-12-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % d 3-21-77 - 6.6 12.1 3.3 4.4 | S
G
G
G
G
G
G
G
G
G
G
G
S
S
S | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-20-77 8-02-77 8-04-77 8-07-77 Season Total Seasona Comatoes-Fd. 3-21-77 3-26-77 3-30-77 4-07-77 4-19-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8.2 117.9 46.0% ad 3-21-77 - 6.6 12.1 3.3 4.4 1.2 | S
G
G
G
G
G
G
G
G
G
G
S
S
S | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-02-77 8-04-77 8-07-77 Season Total Percent Seasona Fomatoes-Fd. 3-21-77 3-26-77 3-30-77 4-12-77 4-12-77 4-19-77 5-16-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 | 10 1 2 1 2 1 2 1 2 1 2 8 1 1 2 1 2 1 2 8 1 1 2 1 2 | S
G
G
G
G
G
G
G
G
S
S
S
S | |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-20-77 8-02-77 8-07-77 Season Tot Percent Seasona Fomatoes-Fd. 3-21-77 3-30-77 4-07-77 4-12-77 4-19-77 5-16-77 6-06-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 | 12.6 9.1 11.8 9.5 8.2 117.9 8 % 46.0% 46.0% 46.1 3.3 4.4 1.2 12.8 10.8 | S G G G G G G G G S S S S S G G G | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-02-77 8-04-77 8-07-77 Season Total Percent Seasona Fomatoes-Fd. 3-21-77 3-26-77 3-30-77 4-12-77 4-12-77 4-19-77 5-16-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8 % 14.0% 15.1 16.0% 16.1 17.9 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18 | S
G
G
G
G
G
G
G
G
S
S
S
S
S
S
S
G | 0.2
0.1
1.0
3.8

1.5

6.6
18-77 |

 | | Seasona 1-2-77 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-20-77 8-02-77 8-04-77 8-07-77 Season Tot Percent Seasona 1-21-77 3-26-77 3-30-77 4-12-77 4-19-77 5-16-77 6-06-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 38.72 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8.2 117.9 46.0% d 3-21-77 - 6.6 12.1 3.3 4.4 1.2 12.8 10.8 6.3 12.9 | S G G G G G G G G S S S S S G G G | 0.2
0.1
1.0
3.8

1.5

6.6 |

 | | Seasona Fomatoes-Fd. 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-04-77 8-04-77 Season Tot Percent Seasona Fomatoes-Fd. 3-21-77 3-30-77 4-12-77 4-19-77 5-16-77 6-06-77 6-22-77 | 2 South (2.84 1) | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 38.72 17.14 | 10.8 % % % % % % % % % % % % % % % % % % % | S
G
G
G
G
G
G
G
G
S
S
S
S
S
G
G
S
S
S
S | | | | Seasona **Tomatoes-Fd.** 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-02-77 8-04-77 8-04-77 Season Tota **Percent Seasona **Comatoes-Fd.** 3-21-77 3-30-77 4-07-77 4-12-77 4-19-77 5-16-77 6-06-77 6-02-77 7-01-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 38.72 | Planted 4-8-77 7.8 8.8 13.8 16.0 9.2 11.1 12.6 9.1 11.8 9.5 8.2 117.9 8.2 117.9 46.0% d 3-21-77 - 6.6 12.1 3.3 4.4 1.2 12.8 10.8 6.3 12.9 | S
G
G
G
G
G
G
G
G
G
S
S
S
S
S
S
S
S | 0.2
0.1
1.0
3.8

1.5

6.6
18-77
0.2
0.1

1.0
3.8 | | | Seasona **Comatoes-Fd.** 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-02-77 8-02-77 8-04-77 8-07-77 Season Tota **Percent Seasona **Comatoes-Fd.** 3-21-77 3-26-77 3-30-77 4-12-77 4-19-77 5-16-77 6-06-77 6-22-77 7-01-77 7-14-77 | 2 South (2.84 1 | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 38.72 17.14 | 10.8 % % % % % % % % % % % % % % % % % % % | S
G
G
G
G
G
G
G
G
S
S
S
S
S
G
G
S
S
S
S | | 57.7 | | Seasona **Tomatoes-Fd.** 4-12-77 4-20-77 5-16-77 5-25-77 6-14-77 7-01-77 7-20-77 8-02-77 8-04-77 8-07-77 Season Tott **Percent Seasona **Tomatoes-Fd.** 3-21-77 3-30-77 4-07-77 4-12-77 4-19-77 5-16-77 6-06-77 6-22-77 7-01-77 7-21-77 | 2 South (2.84 ! | ion Efficien 2.23 2.50 3.92 4.56 2.60 3.15 3.57 2.59 3.35 2.70 2.33 33.50 er ion Efficien res) Plante 19.94 36.15 9.86 13.15 3.70 38.50 32.53 18.89 38.72 17.14 31.68 | 12.1 3.3 4.4 1.2 12.8 10.8 6.3 12.9 5.7 10.6 | S
G
G
G
G
G
G
G
G
S
S
S
S
S
S
G
G
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | 0.2
0.1
1.0
3.8

1.5

6.6
18-77
0.2
0.1

1.0
3.8 | 57.7 | (continued) Table 13 Table 13 (Continued) | Irrigation | Recommended
Irrigation | Total
Water | Application | Source of | •• | Evapotranspiratio
(ET) | |---|--|---|--|--|--------------------------------------|------------------------------| | Date | Date | Applied | per Hectare |
Water | Rainfall | for time period | | Jace | Date | | | 18161 | | | | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | Comatoes-Fd. | 6 (7.70 hectar | es) Planted | 1 4-12-77 - F | larvested 8-2 | 9-77 | | | 3-26-77 | pre-irrigate | 7.85 | 10.2 | G | M 44 | | | 4-15-77 | 4-21-77 | 13.45 | 17.5 | S | | | | 5-29-77 | 6-02-77 | 5.67 | 7.4 | G | 0.2 | | | 6-15-77 | 6-25-77 | 5.50 | 7.1 | G | 0.1 | | | 6-29-77 | 7-09-77 | 7.22 | 9.4 | G | 0.2 | - • | | 7-13-77 | 7-13-77 | 7.59 | 9.8 | G & S | 4.6 | | | 7-21-77 | 7-22-77 | 11.58 | 15.0 | G | · · · | | | 8-02-77 | 8-04-77 | 9.29 | 12.1 | G | 1.5 | | | Season To | tal | 68.15 | 88.5 | | 6.6 | 57.7 | | Comatoes-Fd. | (23.11 11000 | / | ed 4-17-77 - | | , | | | L 96 77 | 1. 20 77 | 52 72 | 21 4 | C | | | | 4-26-77 | 4-28-77 | 53.73 | 21.4 | G | | | | 5-02-77 | | 42.79 | 17.0 | S |

0 2 |

 | | 5-02-77
5-11-77 | | 42.79
51.33 | 17.0
20.4 | S
G | 0.2 |

 | | 5-02-77
5-11-77
5-25-77 |

6-02-77 | 42.79
51.33
46.49 | 17.0
20.4
18.5 | S
G
G & S | |

 | | 5-02-77
5-11-77
5-25-77
5-30-77 | 6-02-77 | 42.79
51.33
46.49
17.75 | 17.0
20.4
18.5
7.1 | S
G
G & S
G | |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77 |

6-02-77 | 42.79
51.33
46.49
17.75
30.53 | 17.0
20.4
18.5
7.1
12.2 | S
G
G & S
G
G | |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77 | 6-02-77

6-09-77 | 42.79
51.33
46.49
17.75
30.53
34.27 | 17.0
20.4
18.5
7.1
12.2
13.6 | S
G & S
G
G
G | 0.1 |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77 | 6-02-77
 | 42.79
51.33
46.49
17.75
30.53 | 17.0
20.4
18.5
7.1
12.2 | S
G
G & S
G
G | 0.1 |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77
7-01-77 | 6-02-77

6-09-77 | 42.79
51.33
46.49
17.75
30.53
34.27
25.61 | 17.0
20.4
18.5
7.1
12.2
13.6
10.2 | S
G & S
G
G
G
G | 0.1 |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77
7-01-77
7-14-77 |
6-02-77

6-09-77

6-27-77
6-30-77
7-15-77 | 42.79
51.33
46.49
17.75
30.53
34.27
25.61
26.88 | 17.0
20.4
18.5
7.1
12.2
13.6
10.2 | S
G & S
G
G
G
G | 0.1 |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77
7-01-77 |
6-02-77

6-09-77

6-27-77
6-30-77 | 42.79
51.33
46.49
17.75
30.53
34.27
25.61
26.88
14.90 | 17.0
20.4
18.5
7.1
12.2
13.6
10.2
10.7
5.9 | S
G & S
G
G
G
G
G | 0.1

1.0
3.8 |

 | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77
7-01-77
7-14-77
7-20-77 |
6-02-77

6-09-77

6-27-77
6-30-77
7-15-77
7-19-77 | 42.79
51.33
46.49
17.75
30.53
34.27
25.61
26.88
14.90
17.05 | 17.0
20.4
18.5
7.1
12.2
13.6
10.2
10.7
5.9
6.8 | S
G & S
G
G
G
G
G | 0.1 | | | 5-02-77
5-11-77
5-25-77
5-30-77
6-13-77
6-18-77
6-28-77
7-01-77
7-14-77
7-20-77
7-30-77 |
6-02-77

6-09-77

6-27-77
6-30-77
7-15-77
7-19-77
7-27-77
8-05-77 | 42.79
51.33
46.49
17.75
30.53
34.27
25.61
26.88
14.90
17.05
14.43 | 17.0
20.4
18.5
7.1
12.2
13.6
10.2
10.7
5.9
6.8
5.7 | S
G & S
G
G
G
G
G
G | 0.1

1.0
3.8

1.5 | 57.7 | ^{*} S - Surface Water ** G - Groundwater from well † Seasonal estimate based on minimum value measured in San Joaquin Valley, California, Vegetative Water Use, Bulletin 113-3, Department of Water Resources, California, MacGilvray, N. A. 1975. IRRIGATION WATER APPLICATION, IRRIGATION EFFICIENCY, AND COMPUTED EVAPOTRANSPIRATION FOR WHEAT ON THE DEMONSTRATION FARM | Irrigation
Date | Recommended
Irrigation
Date | Total
Water
Applied | Application S
per Hectare | Source of
Water | Rainfall | Evapotranspiration
(ET)
for time period | |---|--|---|------------------------------|--------------------|-------------------|---| | | | (km ³) | (ha-cm/ha) | | (ha-cm/ha) | (ha-cm/ha) | | Wheat-Fd. 3 | (30.0 hectares) | | | | | | | 1-13-76 | | 40.87 | 13.7 | G** | | F2 47 | | 3-14-76 | 3-17-76 | 41.90 | 13.9 | s* | 1.0 | 4.8 | | 4-07-76 | 4-08-76 | 42.52 | 14.2 | S | 0.1 | 8.6 | | 4-29-76 | 4-27-76 | 42.89 | 14.2 | S | 1.2 | 7.6 | | 5-13-76 | 5-12-76 | 26.25 | 8.9 | S | 0.5 | 5.8 | | 7-12-76 | harvested | | | ~ | 3.0 | 11.6 | | Season To | tal | 194.43 | 64.8 | | 6.0 | 38.5† | | Percen | tage Surface Wat | er | 79.0% | | | | | Season | tage Surface Wat
al Field Irrigat
& 6 (13.2 hecta | ion Efficier | 79.0%
ncy 54.5% | | | | | Season
Wheat-Fd. 5 | al Field Irrigat
& 6 (13.2 hecta | ion Efficier
res) | ncy 54.5% | s | | | | Season
Wheat-Fd. 5
1-28-76 | al Field Irrigat | ion Efficier
res)
19.22 | | s
s | 1.0 |
8.6 | | Season
Wheat-Fd. 5
1-28-76
3-26-76 | al Field Irrigat
& 6 (13.2 hecta
NI
3-26-76 | ion Efficier
res) | 14.6 | s | |
8.6
9.4 | | Season
Wheat-Fd. 5
1-28-76 | al Field Irrigat
& 6 (13.2 hecta
NI | ion Efficier
res)
19.22
15.40 | 14.6
11.7 | | 1.0
1.3
0.5 | | | Season
Wheat-Fd. 5
1-28-76
3-26-76
4-22-76 | al Field Irrigat
& 6 (13.2 hecta
NI
3-26-76
4-23-76 | ion Efficier
res)
19.22
15.40
35.00 | 14.6
11.7
26.5 | S
S | 1.3 | 9.4 | | Season
Wheat-Fd. 5
1-28-76
3-26-76
4-22-76
5-18-76 | al Field Irrigat
& 6 (13.2 hecta
NI
3-26-76
4-23-76
5-16-76 | ion Efficientes) 19.22 15.40 35.00 22.17 | 14.6
11.7
26.5 | S
S | 1.3
0.5 | | Table 14 ^{*} S - Surface Water ** G - Groundwater from well - Based on climatic program used by agricultural technology In 1976, the cotton efficiencies ranged from 63 to 84 percent. In 1977, the cotton efficiencies varied from 48 percent for Field No. 9 to 91 percent for Field No. 5. The farm irrigation efficiency did not increase when the more expensive well water was used predominantly in 1977, as compared to river water in 1976. # Gas Consumption and Pump Efficiencies The five wells used on the Demonstration Farm had turbine pumps with power supplied by Waukesha and Minneapolis-Moline engines operating on natural gas. Figure 8 presents the gas consumption per unit of water pumped for the different wells. Pump efficiency is also presented in Figure 8. In general, the overall pumping-plant efficiencies were around 10 percent, pump efficiencies ranged from 44 to 60 percent, and engine efficiencies ranged from 16 to 20 percent. Pumping-plant efficiencies could be improved by increased maintenance and replacement and by proper selection of engine and pump sizes for the specified lifts and flow encountered in the Mesilla Valley. A new pumping plant operated on natural gas should have an overall efficiency of 15 percent (Buckingham, 1978). ## Trickle-Irrigation System Used to Irrigate a Pecan Orchard The pecan orchard at the Demonstration Farm was under trickle irrigation for two years. Applied water data are presented in Tables 15 and 16. Using a water-balance technique, measurements were made on the consumptive use of pecan orchards at New Mexico State University's Plant Science Farm. The trees were 2-3 years younger than those Figure 8 TABLE 15. APPLIED WATER FOR THE DEMONSTRATION FARM IN 1975 AND 1976. | Irrigation Period | Water
Applied
Per Tree | Daily Water
Applied
Per Tree | Total
Water
Applied | Rainfall | Evapotranspiration
(ET) | |------------------------|------------------------------|------------------------------------|---------------------------|----------|----------------------------| | | m 3 | m 3 | ha-cm/ha | ha-cm/ha | ha-cm/ha | | Pecans (1.32 hectares) | | | | | | | 5-12-75 to 5-19-76 | :477 | 090. | 1.19 | / · | | | 5-20-75 to $5-27-76$ | .483 | .061 | 1.21 | 0.3 | | | 5-28-76 to 6-04-76 | .354 | 650. | 0.88 | ı | | | 6-05-76 to $6-18-76$ | 1.468 | .184 | 3.67 | 2.0 | | | 6-19-76 to $7-01-76$ | .285 | .026 | 0.71 | ı | | | 7-02-76 to $7-10-76$ | .424 | .047 | 1.06 | 1.0 | | | 7-11-76 to $7-17-76$ | .428 | .061 | 1.06 | 0.8 | | | 7-18-76 to 7-29-76 | .245 | .031 | 0.61 | 2.6 | | | 7-30-76 to 8-05-76 | .829 | .118 | 2.07 | H. | | | 8-06-76 to 8-27-76 | 2.078 | .094 | 5.21 | 4.0 | | | 8-28-76 to 9-07-76 | .435 | .065 | 1.47 | 3.5 | | | 9-08-76 to 9-14-76 | .175 | .025 | 0.43 | 3.2 | | | 9-22-76 to 10-01-76 | 1.073 | .107 | 2.68 | 6.0 | | | 10-28-76 | | | 1 | 9.0 | | | Season Total | 8.754 | .938 | 22.25 | 18.1 | 65.7 | TABLE 16. APPLIED WATER FOR THE DEMONSTRATION FARM IN 1977 | | Total
Water | Average
Daily Water | Total | | | |------------------------|---------------------|------------------------|------------------|----------|----------------------------| | Irrigation Period | Applied
Per Tree | Applied
Per Tree | Water
Applied | Rainfall | Evapotranspiration
(ET) | | | m 3 | в ш | ha-cm/ha | ha~cm/ha | ha-сm/ha | | Pecans (1.32 hectares) | | | | | | | 1-01-77 to $4-07-77$ | | | 12.45 | ı | | | 4-08-77 to 4-28-77 | 1.153 | .058 | 2.78 | 1 | | | 4-29-77 to 5-20-77 | .421 | .020 | 1.01 | 0.4 | | | 5-21-77 to $5-27-77$ | .290 | .048 | 0.73 | ī | | | 5-28-77 to 6-03-77 | 766. | .166 | 2.39 | 0.1 | | | 6-04-77 to
$6-14-77$ | 7444 | .044 | 1.09 | · | | | 6-15-77 to $6-22-77$ | .493 | .070 | 1.19 | ì | | | 6-23-77 to 6-29-77 | .290 | 870. | 0.73 | 0.2 | | | 6-30-77 to 7-05-77 | .483 | .080 | 1.19 | 5.0 | | | 7-06-77 to 7-18-77 | 1.707 | .142 | 4.12 | 1 | | | 7-19-77 to 7-26-77 | 1.032 | .147 | 2.48 | 1.2 | | | 7-27-77 to $8-02-77$ | 656. | .160 | 2.28 | 9.0 | | | 8-03-77 to 8-09-77 | 2.432 | .405 | 5.89 | ı | | | 8-10-77 to 8-24-77 | 2.108 | .151 | 5.14 | 1.0 | | | 8-24-77 to 9-03-77 | 1.442 | .144 | 3.49 | 1.9 | | | First Freeze | | | | | | | 10-28 | | | | | | | Season Total | 14.251 | | 96.95 | 15.5 | 65.7 | | | | | | | | at the Demonstration Farm and were flood irrigated. They would have had larger evaporation losses than the trees irrigated by the trickleirrigation system. Preliminary 1976 data for the Plant Science Farm orchards indicated a higher consumptive-use than originally expected. Consumptive use measured for 1977 was 65.7 ha-cm/ha. It was felt that the difference between the applied water plus rainfall at the Demonstration Farm in 1976 (40.3 ha-cm/ha) and the measured consumptive-use at the Plant Science Farm in 1977 (65.7 ha-cm/ha) was not due entirely to additional evaporation losses caused by surface irrigation, but that the Demonstration Farm trees were stressed for moisture in 1976, depleting the soil moisture reservoir and probably consumptively using less water than measured at the Plant Science Farm in 1977. Based upon preliminary 1976 Plant Science Farm consumptive use data, additional water was applied to the Demonstration Farm in 1977 with a flood irrigation at the start of the growing season. This resulted in an irrigation efficiency computed to be 105 percent. The extra 5 percent was probably due to experimental error. Yield from the trickle-irrigated pecan orchard in 1977 was 1214 kg/ha. The average yield in the Mesilla Valley for a pecan orchard of this age is approximately 784-1009 kg/ha. The trickle yields were comparable to those obtained under flood irrigation but represented a great savings in water. Under a typical flood irrigation, 73-97 ha-cm/ha of water would be applied, compared to 47 ha-cm/ha under trickle irrigation near a 100 percent irrigation efficiency, assuming a normal rainfall year. ## Trickle Irrigation and the Plant Water Potential of Pecan Trees During the summer months of 1977, the trickle-irrigated pecan orchard received water at a rate of approximately .15 m^3 per day per tree. Plant water potential measurements (Slatyer, 1967) were made to determine if the trees were responding as they would under conventional irrigation techniques. Figure 9 is a plot of the daily plant water potential cycle comparing the drip-irrigated with floodirrigated trees. The plant water potential at night approached the soil water potential where the minimum value observed was approximately -1.6 bars. Measurements were made on August 10, after the drip system had been shut off for four days to allow the foreman to cultivate the field. The results showed a higher peak for the dripirrigated trees than the flood-irrigated trees indicating that the drip-irrigated plants were undergoing a slight stress. The available soil water reservoir, irrigated by the drip system, was small and the four days appeared to be sufficient to deplete the reservoir. Comparing the two systems, the mid-day reading indicated that the drip- and flood-irrigated pecan trees were very close in plant water potential when the drip system is operated according to schedule. #### Drip Irrigation of Row Crops Applied water information for the drip-irrigated row crop demonstration of tomatoes and peppers is presented in Table 17. The seasonal irrigation efficiency was 48.5 percent for the tomatoes and 65.6 percent for the peppers. The same amount of water was applied to both crops because of the design of the irrigation system. The low irrigation efficiency was due to the three flood irrigations of 10 ha-cm/ha each that had to be applied at the beginning of the Plant water potential for a pecan tree irrigated under drip and flood irrigation (1977) Figure 9. TABLE 17. APPLIED WATER INFORMATION FOR THE DRIP IRRIGATED ROW CROP DEMONSTRATION OF TOMATOES AND PEPPERS | Irrigation
Date | Total
Water
Applied | Application
per
Hectare | Rainfall | Evapotranspiration
(ET) for
Tomatoes Peppers | | |----------------------|--|---|---|--|----------------| | | (m ³ x10 ³) | (ha-cm/ha) | (ha~cm/ha) | (ha-cm/ha) (ha-cm/ha) | | | Trickle Plot | (.22 hectares) - | Tomatoes and Peppers | ers - Planted 4-8-77 | 7 - Harvested 8-26-77 | | | 4-13-77 | .411 | 18.68 | ı | | Seasonal field | | 4-28-77 | .462 | 21.00 | ı | | Irrigation | | 5-18-77 | .360 | 16.36 | 0.4 | Flood Irrigation | Efficiency | | 5-26-77 | .308 | 14.00 | ţ | | for Tomatoes | | 7-01-77 | .288 | 13.09 | 1.1 | | 48.5% | | 7-00-7 | .005 | 0.23 | 3.5 | | | | 7-11-77 | .016 | 0.73 | l | | Seasonal field | | 7-18-77 | .180 | 8.18 | I | | Irrigation | | 7-21-77 | .151 | 98.9 | ı | | Efficiency | | 8-02-77 | .071 | 3.23 | 1.5 | | for Peppers | | 8-08-77 | .155 | 7.04 | 1 | | 65.6% | | 8-14-77 | .014 | 0.64 | 0.7 | | | | 8-20-77 | .032 | 1.45 | 0.1 | Particular de la calcular calc | | | Season Totals | ls 2.459 | 111.49 | 7.3 | 57.7 77.9 | | | Yields:
Tomatoes | | | kilograms/hectare | | | | Hung.
Bell
Big | Hungarian wax peppers
Bell peppers
Big Jim peppers | – 29065, ki
– 20521, ki
– 20702, ki | kilograms/hectare
kilograms/hectare
kilograms/hectare | | | | 0 | | :

 | 3 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | growing season since the drip-irrigation system was inoperable due to technical problems. A yield of 36,602 kg/ha for the drip-irrigated tomatoes compared favorably with Demonstration Farm average yields of 17,900 kg/ha and 29,800 kg/ha for flood-irrigated tomatoes in 1977 and 1976, respectively. # Salt Movement Below a Drip-Irrigation System The irrigation efficiency, as shown in the drip irrigation of the pecan orchard, can be close to 100 percent. Salts will precipitate and be stored beneath the root zone over a long time period. In order to investigate this problem, soil samples were taken during the second and third years of the demonstration project. Table 18 presents the salt content of soil samples taken from flood-irrigated alfalfa and lettuce and the drip-irrigated pecan orchard in 1977. Salinity of the soil samples on pecans varied between January and November. This was attributed to variability within the field and/or to actual changes in the salt content within the soil profile. It appeared that near the pecan trees there was a salt buildup to a depth of 1.2 meters. Farther away from the tree trunks the salt buildup was closer to the surface. This was expected due to the shape of the water front around the emitter; the greatest leaching occurred directly beneath the emitter, and less leaching occurred away from the emitter. The location of the emitters around the trees was at the same location as the sample taken at the one meter distance from the tree trunk. The salt content of the pecan orchard appeared to be higher than that encountered under the alfalfa and lettuce fields. The higher salt SOIL ANALYSIS FOR SALT CONTENT FOR SELECTED SAMPLES, EPA DEMONSTRATION FARM, 1977 | | samb i e | • | .c. | - | Hd. | Saturation | ıtion | င်ခ | 80 | N.a | × | เว | | လို | нсо | °05 | |------------------|-------------|---------------|---------|--------------|------|---------------|-------|-------|---------|-------|-----------|---------|-------|---------------|-------|---------------| | | (cm) | 臣) | (mmhos) | | | (percent) | ent) | 7 | 1 1 3 1 | 1 1 1 |) : : : : | (шеф/Г) | | 1 | | † ;
t | | | | . Fan. | Nov. | Jan. | Nov. | Jan. | Nov. | | | | | Jan. | Nov. | |
| | | | 0.0- 7.5 | .92 | | 7.73 | | 32.5 | | 42.4 | 1.48 | 3.84 | 15. | 1.89 | | 0 | 70.7 | 4,16 | | | 30 0- 37 5 | 68. | | 7.77 | | 29.8 | | 4.13 | 1,42 | 3.95 | 17 | 1.70 | | 0 | 3.50 | 4.44 | | Alfalfa | 60.0- 67.5 | 1.22 | | 8.03 | | 28.9 | | 3.16 | 1.24 | 4.17 | 12. | 1.86 | | 00 | 3.02 | 4.36 | | | 90.0- 97.5 | 2, 31 | | 8.03 | | 25.6 | | 3,76 | 2.92 | 18.28 | 36. | 6.76 | | > = | 3.18 | 15.40 | | | 120.0-127.5 | 1.03 | | 8.20 | | 23.8 | | 2,18 | 66. | 8.02 | 61. | 2.42 | | 0 | 1.48 | 7. '0 | | | 175.0-187.0 | 7.4 | | 8.35 | | 22.0 | | 1.59 | ę. s. | 6.24 | 41. | 1,98 | | 0 | 2.08 | 3.96 | | | 0.01.01.01 | ţ ; | | K : | | 63.0 | | 8g. | 85 | 4.59 | 71. | 1.62 | | 0 | 1.68 | 2.52 | | | 0.0- 7.5 | 58 | | 8.08 | | 61.3 | | 4.28 | 2.31 | 7,87 | . 58 | 4.91 | | 0 | 2.18 | 7.60 | | | 30.0- 37.5 | 10.1 | | 4.74 | | 26.2 | | 4.60 | 2.85 | 7.74 | 59. | 16.4 | | 5 | 3.08 | 0: 'Z | | Lettane | 60.0- 67.5 | 88. | | 8.29 | | | | 7.70 | 1.30 | 7.77 | d. | | | ၁ | 2.40 | 5.10 | | | 90.0- 97.5 | 1.02 | | 8.48 | | 30.1 | | 2.24 | . 54 | 5.28 | 1 5 | 2.48 | | > C | 7. 7. | 3.60 | | | 120.0-127.5 | .61 | | 8.35 | | 33.8 | | . 53 | . 75 | 4.75 | . 20 | 1,20 | | . 0 | | 2 2 | | | 150.0-157.5 | , 74 | | 8.32 | | 28.8 | | 1.91 | 72 | 5.84 | . 22 | 2.13 | | 0 | 1.78 | 4.70 | | | | | • | 0 1 | : | 7:17 | | 77.1 | 77.1 | ٧. عع | 07. | 2.13 | | Ď | 2.46 | 5.08 | | Peran | 7.5-15.0 | 1.21 | 3.56 | 7.88 | 7.85 | 20.0 | 35.8 | 1.95 | 1.68 | 8.30 | 1.07 | 3.12 | 16.16 | 0 | 5, 50 | 5.00 | | samples | 30.0- 37.5 | 1.25 | 3.70 | 8.01 | 7.72 | 100 | 8.98 | 1.31 | 1.64 | 94.01 | | 9/ :7 | 12 61 | 0 0 | 5.64 | 7.0 | | located | 60.0- 67.5 | 1.81 | 4.67 | 8.01 | 7 71 | 50.4 | 46,3 | 4.13 | 1.46 | 14.91 | | 6.67 | 10.7 | o c | 3.00 | 10.10 | | at tree | 90.0- 97.5 | 4.00 | 2.60 | 7.83 | 7.87 | 54,8 | 6.44 | 21.51 | 8.20 | 25.64 | 09 | 5.08 | 11.28 | 0 | 98 | 9 | | trunk | 120.0-127.5 | 7.58 | 6.59 | 7.99 | 7.50 | 50.5 | 40.3 | 14.43 | 15.14 | 54.90 | . 79 | 5.62 | 28.54 | 0 | 1.46 | 73.60 | | | 175.0-182.0 | 5.33 | | 8.25 | | 34.5 | | 7.69 | 7,39 | 53.62 | .45 | 19.11 | | 0 (| 1.46 | 48.80 | | Pocan | 7 2 | 1 2 3 | | 6 | | : : | | j | 5 . | £0.07 | 7 | 10.23 | | > | 70.1 | 44.40 | | samples | 7.5- 15.0 | 60.1 | | 20.8 | | 1.05 | | 2.94 | 1.55 | 3.86 | | 4.29 | | C (| 4.54 | 2.40 | | located | 30.0~ 37.5 | 1.53 | | 8.06 | | 71.7 | | 1.42 | 71.1 | 13.45 | ۶ ۲ | 2.40 | | > | 7 . | 0.4.0
0.40 | | E W | 60.0- 67.5 | 4.25 | | 7,88 | | 85.0 | | 22,14 | 9,12 | 28.83 | . 50 | 7.07 | | o c | 1 20 | 2.7 | | from | 90.0- 97.5 | 4.41 | | 7.85 | | 52.3 | | 18.38 | 9.91 | 29,68 | .45 | 11.34 | | 0 | 1.32 | 48.80 | | crunk
crunk | 120.0-127.5 | 6.40 | | 7.95 | | 46.4 | | 15.38 | 12.52 | 54,26 | . 54 | 23,16 | | 0 | 1.32 | 60.80 | | יו בנפפ | 175.0-182.0 | 7.17 | | 8.21 | | 35.1
33.0 | | 5,93 | 6.93 | 55.76 | 6,50 | 20, 54 | | 00 | 1.48 | 47.60 | | Pecan | 0.0- 7.5 | 1.11 | 1,39 | 8.08 | 7.71 | 49.0 | 46.2 | 3.88 | 1.27 | 7.70 | . 72 | 3.86 | 01.7 | | 57.2 | | | sambles | 7.5- 15.0 | 4.34 | | 7.91 | | 80.1 | | 17.71 | 9,81 | 29.68 | | 12.87 | |) C | 1.26 | 76.00 | | located | 30.0- 37.5 | 1.40 | 0.67 | 8.12 | 7.82 | 53.7 | 40.1 | 1.57 | 1.19 | 11.15 | .63 | 4.75 | 1.35 | 0 | 3,18 | 2,10 | | FICE | 90.0- 67.5 | 2.58 | 0.64 | 7.99 | 7.83 | 85.0 | 39. | 5,07 | 3.19 | 21.37 | 2.5 | 8,35 | 1.39 | 0 | 1.72 | 20,20 | | crunk | 120.0-127.5 | | | 7 00 7 | 0,0 | 30.0 | 74.7 | 26.95 | 1.7 | 3.78 | 57 | 5.66 | 1.63 | ۰ ، | 2.06 | 3.50 | | of tree | 150.0-157.5 | 6,72 | 3 | 8.21 | 6110 | - 6. | 7.0.4 | 11.89 | 97.78 | 40.05 | 60.0 | 21.52 | 1.31 | 0 0 | 13.60 | 77,00 | | | 175.0-182.0 | 1.48 | | 8, 58 | | 23.1 | | 53 | 98 | 13.68 | 91. | 3.85 | | 0 0 | 2:22 | 9.10 | | Pecan | 0.0- 7.5 | 2.11 | 1.95 | 8.03 | 7.87 | 49.4 | 45.4 | 6.17 | 2,43 | 14.57 | .87 | 7, 32 | 6.51 | 0 | 2.86 | 14.20 | | samples | 7.5- 15.0 | 2.20 | ; | 8.14 | | 53.6 | | 6.15 | 2.41 | 16.01 | 98 | 7.69 | | 0 | 2.26 | 15.60 | | Located
2.7 m | 50.0~ 37.5 | 3. /1
10 / | 4.36 | 8.00
7.87 | 7.80 | 24.5 | 43.2 | 12.73 | 2.5 | 30.06 | .83 | 14.80 | 20.20 | 0 | 97.1 | 37.60 | | from | 90.0- 97.5 | 4.44 | 6.36 | 7.07 | 2,7 | ν. ος
α ος | 100.7 | 20.47 | 10.37 | 34.44 | 77. | 5.3 | 28.99 | 0 (| 1.28 | 48.00 | | trunk | 120.0-127.5 | 5.06 | 6.48 | 8.16 | 7.64 | 36.8 | 27.3 | 10.82 | 7 | 43.70 | ÷ 7 | 10.93 | 25.80 | > < | 77. | 20.00 | | of tree | 150.0-157.5 | 3.63 | | 8.32 | | 28.0 | | 4.70 | 4.32 | 34.25 | 30 | 11, 29 | 50.0 | | 8 | 30.00 | | | | | | | | | | | | | | | | ; | | | * Based on analysis of saturation extract samples at indicated saturation percent. Table 18 concentrations in the area of the drip-irrigated pecan orchard could be due to the irrigation method or soil types present. The high level of gypsum in the low layers has been encountered in other areas of the valley that were flood irrigated. # Infiltration Measurements in Canals Deep seepage from the main and distribution canals in an irrigation system has been measured to be as much as 30-50 percent of the total flow Rohwer (1946). It is difficult to estimate transmission losses because of the large variability associated with seepage measurements from site to site. In studying the influence of concrete lining on seepage losses from farm ditches Hanson (1966) reported a large variability in the transmission losses from unlined farm ditches. Losses varied from less than one percent of the flow to as much as sixteen percent with an average loss of about seven percent when the turnouts were sealed. Seepage loss depends upon the type of soil and the sediment load in the water as it affects surface sealing. Other factors that affect seepage loss percentage are the velocity and flow depth at which the water moves through the canal. For a given discharge, higher velocities require less cross-sectional area and wetted perimeter through which seepage may flood, a shorter time for water to be lost by seepage, and consequently, less seepage percentage. If weeds are allowed to grow in a ditch the velocity is lower, thus increasing the flow depth, the time opportunity for seepage, and the seepage loss percentage. Using the ponding technique, measurements of the steady-state infiltration rate ranged from 51 cm/day for a section of Walter lateral to 11.6 cm/day for a farm field ditch, and 6 cm/day for the Upper Chamberino and main distribution canal (see Table 19). Water temperature data were analyzed using the technique described by Stallman (1965). With this technique, the lower detectable limit of percolation loss is about 2 cm/day. All the measurements indicated losses greater than this amount. The temperature determinations of infiltration rate in the farm supply ditches and Upper Chamberino lateral are presented in Table 19. Infiltration rates determined for the Upper Chamberino lateral from temperature profile measurements were greater than those determined by using the ponding technique. The increased infiltration rate could be accounted for the by fact that there was a greater head or height of water in the canal when the temperature measurements were made than during the ponding test. In the farm ditches, the ponding measurements of infiltration were greater than those determined using the temperature technique. Using the average infiltration rate in the Upper Chamberino lateral of 12 cm/day, the present loss per 1000 meters of canal was calculated for different flow levels and presented in Figure 10. The loss represents a small percent unless the flow becomes very low or the length of canal excessively long. Based on an infiltration rate of 10 cm/day (the average of the two lower infiltration rates in the farm ditches), the seepage loss from the entire farm distribution system represents 1.1 percent of the applied water over the growing season. Based on the average of the two largest infiltration measurements, 47.2 cm/day, the seepage loss represents 5.6 percent of the applied water. TABLE 19. INFILTRATION RATE IN THE UPPER CHAMBERINO AND FARM SUPPLY DITCH | Date | Test
No. 1/ | Location ^{2/} | Method | Final
Infiltration
Rate | |----------|----------------|----------------------------------|-------------|-------------------------------| | | | | | (cm/day) | | 8-09-77 | 1 | Upper Chamberino | Temperature | 12.9 | | 8-09-77 | 2 | Upper Chamberino | Temperature | 16.8 | | 7-12-77 | 3 | Upper Chamberino Drain | Temperature | 13.0 | | 10-22-76 | 4 | Upper Chamberino | Ponding | . 6.0 | | 8-26-77 | 5 | Farm Ditch Field 4
Location 1 | Temperature | 8.0 | | 8-26-77 | 6 | Farm Ditch Field 4 | Ponding | 11.6 | | 10-06-76 | 7 | Field Ditch Field 3 | Ponding | 43.2 | | 11-17-77 | 8 | Walter's Lateral | Ponding | 51.2 | $[\]underline{1}$ / Locations of test sites are shown on Figure 2. ^{2/} Clay soil Figure 10 ## Drain Flow Measurements Weekly measurements of the drain flow were made using current meters. Water samples were taken at the time that the flow measurements were made at Sites B and D (Figure 4). As flow rate from B to D in the drains increases, electrical conductivity or salt content of the drain water decreases (Figure 11). The measured data for flow are presented in Appendix B and the water quality data in Appendix C. The salt content of the drain water did not change significantly from Sites B to D. At the 5 percent level of probability, there was no difference in the mean flow during the growing season (April through September) between Sites B and D for 1975 and 1976. This was due to the nonsteady-state condition of the drains. Excess irrigation water was constantly being dumped into the drains causing marked increases or decreases in flow between measurement Sites B and D. During the 1977 growing season, most of the water in the valley near the measurement drain sites was pumped water and the drain was closer to a steady-state condition during the measurement periods. The differences in flow between Sites B and D for 1977 are presented in Figure
12. During most of the growing season, the flow rate increased significantly at the 5 percent level of probability from Site B to Site D, indicating that the farm was contributing return flow to the drain system. Along with measurements in flow obtained with a current meter, water depths were measured at La Mesa Drain Sites B and D with water stage recorders. A rating curve was determined for the sites using the flow data. Analysis of the data indicated that the canal bottom shifted by scouring and deposits and was insufficiently stable for Figure 11. Flow and electrical conductivity at La Mesa Drain Sites B and D for 1975, 1976, and 1977. Figure 12. Drain flow Site D minus Site B m^3/sec a rating curve of flow depth vs. flow rate to be determined for Site B. However, the rating curve for Site D was estimated to fit a straight line with a correlation coefficient of .9. The rating curve equation is: depth = .0017 flow + .14 where depth = meters flow = cubic meters per second. Using this equation and the water stage levels determined with the water stage recorder, the daily flows for 1976 and 1977 were calculated for Site D (Figure 13). The daily flows for each month are presented in Appendix A. The daily flows fluctuated considerably during the 1976 irrigation season due to the dumping of excess irrigation water from the irrigation canals into the drainage canals. There appeared to be as much variation in the daily flows as there was in the weekly flows measured with a current meter. It has not been possible to determine the amount of fluctuation due to return groundwater flow, and how much was due to surface waste water. ## Groundwater Level Fluctuations Weekly piezometer measurements were made on a transect perpendicular to the La Mesa Drain. The data are presented in Appendix D. Several of the piezometers became plugged with soil toward the end of the study and had to be abandoned. A statistical analysis was done using a steady-state drain-flow model to try to correlate piezometer height and increase in drain flow between Sites B and D in 1977. An increased gradient, due to the rise in the water table from excess irrigation water, should have caused an increase in flow between Sites B and D. An analysis was conducted only on 1977 data when the increased flow Figure 13. Daily drain flows at Site D in the La Mesa Drain. was statistically significant. However, the results indicated that the system could not be statistically described at the 5 percent level of probability by a steady-state model applied to each measurement point. As can be observed from a plot of the water table level, the groundwater system (Figures 14 and 15) was not homogenous but contained lenses of high and low permeability. This resulted in an uneven gradient of the groundwater away from the drains. The plot of the groundwater level represents a response to both excess irrigation water and pumping from the wells in the area. During 1976, the groundwater table was low in January, February, and March and started to rise by May after water had been released into the irrigation system. This rise continued through September due to excess irrigation water. After September, the groundwater table again dropped as excess irrigation water decreased and the drains lowered. In 1977, when most of the irrigation water was supplied by groundwater, the groundwater table continued to decline throughout the year, from January through December. Due to the cropping pattern, there was less return flow although the overall farm-irrigation efficiency did not change. ### Groundwater Salinity There was a significant increase in salinity in groundwater monitoring Wells 1 and 3 between 1976 and 1977 (Table 20). The salinity in Well 2 increased in value but was not statistically significant at the 95 percent confidence level. The level of salinity in the 15-meter well was significantly different from the level of salinity in the 10-meter well which, in turn, was significantly different from the salinity level in the 6-meter well for both years. A TABLE OF WATER QUALITY DATA SIGNIFICANT AT THE 95 PERCENT CONFIDENCE LEVEL FOR THREE GROUNDWATER OBSERVATION WELLS AT 15, 10, AND 6 METER DEPTHS TABLE 20. | Well Comparison* | | Trivit de decrease de la constante const | | | Che | mical Con | Chemical Constituents meq/ ℓ | | | | |------------------------------------|--------------------|--|---------|--------|--------|-----------|-----------------------------------|------|-----------------|-----------------| | For Yearly Mean Values | ECx10 ³ | Hd | Cations | Anions | Ca Mg | На К | c1 c0 ₃ | нсо3 | so ₄ | NO ₃ | | Well 1, 1977 Minus
Well 1, 1976 | +.18 | * | | | -1.4 | 1.3 | 4. | | | | | Well 2, 1976 Minus
Well 2, 1977 | | | 2.4 | 4.5 | ĩ. | 2.2 | 1.56 | | | | | Well 3, 1976 Minus
Well 3, 1977 | ن
1 | | | | -1.9 | 1.27 | | | | | | Well 2, 1976 Minus
Well 1, 1976 | +.5 | | 7.9- | -5.61 | +3.27 | 12.3 | -3.2 | | -3.1 | -36.4 | | Well 1, 1976 Minus
Well 3, 1976 | 89 | | 7.8 | 7.4 | 2.0 .5 | 6.3 | 3.6 | | -8.0 | 37.7 | | Well 2, 1976 Minus
Well 3, 1976 | 18 | | | 1.8 | 1.2 | -4.0 | | | | | | Well 1, 1977 Minus
Well 2, 1977 | ۱
ش | | 9.5- | -3.6 | 2.0 | -1.7 | 2.1 | | -2.3 | 36.7 | | Well 2, 1977 Minus
Well 3, 1977 | 5 | | 9.4- | -4.8 | 7. | -4.91 | 1 1.8 | -1.1 | 2.0 | | | | | ! | | | | Marke de- | | | | | * Depth of Wells: Well 1 = 15 meters; Well 2 = 10 meters; Well 3 - 6 meters. ** Blanks indicate there was no significance. The water quality continually degraded from the deeper to the shallower wells. The changes of individual constituents do not present a clear picture. The nitrate content did not change statistically from year 1976 to 1977, but there was a degradation of the nitrate concentration from the shallower to the deeper wells increasing to an average of 38.7 ppm. There was no significant difference between Well 2 and Well 3 at the top two depths (6 and 10 meters). Both of the top two depths were significantly different from the bottom depth. ### SECTION 5 #### CONCLUSION Using irrigation scheduling on the 450-acre demonstration, the yearly farm irrigation efficiency was 63 percent, a 13 to 23 percent increase over the 40 to 50 percent irrigation efficiency considered normal for the Mesilla Valley. The results of this study show that although the overall irrigation efficiency of the Demonstration Farm (63 percent) was good with irrigation scheduling, with large variations from field to field ranging from 80 percent to 35 to 40 percent. Field irrigation efficiencies did not correlate with the type of crop being grown or field size. The canals at the measurement sites had very low seepage losses. In the main canal, the maximum loss per 1000 meters of canal ranged from 3 percent down to .2 percent, depending upon the flow in the canal. Seepage losses from the farm ditches measured were 5.6 to 1.1 percent of the total applied water over the growing season. Trickle irrigation of the pecan orchard resulted in irrigation efficiencies of nearly 100 percent. Measurements are necessary to determine if any detrimental effects would occur from salt accumulation due to the continued use of trickle irrigation with irrigation efficiencies approaching 100 percent. There was a negative correlation between groundwater height on the Demonstration Farm and increase in drain flow through the farm during 1977. During 1975 and 1976, drain-flow measurements at two locations did not show a statistical increase or decrease in the flow through the Demonstration Farm. Consequently, change in drain flow did not correlate to changes in groundwater height. Short-term changes in flow rates during the growing season may be influenced by the amount of excess surface water being returned into the drains rather than by the height of the groundwater table. The effect of irrigation scheduling on drain flow quantity was not detectable.
However, irrigation scheduling at the Demonstration Farm was estimated to increase the irrigation efficiency by approximately 13 percent. Salinity of the drain water showed a negative correlation with flow, decreasing as drain flow increased in all years. Groundwater quality at the sampling points on the Demonstration Farm indicated an increase in nitrate content and a decrease in total salinity with depth below the water table. ## SECTION 6 ### RECOMMENDATIONS - 1. For maximum benefit of water supplies in the Mesilla Valley, farm irrigation systems should be designed for minimum leaching. - 2. Increased efforts are needed to better define the actual water use of crops in the Mesilla Valley, in particular the water requirements of pecan orchards. - 3. Increased efforts are needed to further encourage the utilization of irrigation management scheduling and sprinkler irrigation of vegetable crops for seed germination in the Mesilla Valley. - 4. Use of combination of irrigation systems should be investigated for seed germination, i.e., trickle or sprinkler and flood. - 5. Equipment to measure applied water to each field should be incorporated in farm irrigation systems to improve field irrigation efficiencies. - 6. Continued monitoring of the salinity in the soil beneath the field sites where irrigation sheduling is practiced would help to determine the long-range effect of increased efficiency on salinity buildup. ### REFERENCES Advisory Committee on Irrigation Efficiency. 1974. Special Report on Measures for Reducing Return Flow from the Wellton-Mohawk Irrigation District. 109 pp. Buckingham, Frank. 1978. New Mexico Pump Study Points to Farmer's Need for Efficiency Knowledge. Irrigation Age, January. Gregory, E. J. and Eldon G. Hanson. 1976. Predicting consumptive Use with Climatological Data. New Mexico Water Resources Research Institute Report No. 066, p. 42. Hanson, Eldon G. 1966. The Seepage Problem Defined. Paper presented at the 1966 winter meeting of American Society of Agricultural Engineers, Chicago. Henderson, Donald C. and Earl F. Sorensen. 1968. Consumptive Irrigation Requirements of Selected Irrigated Areas in New Mexico. New Mexico State University, Agric. Exp. Sta. Bul. 531, p. 44. Jensen, Marvin E. 1973. Consumptive Use of Water and Irrigation Water Requirements. Tech. Committee on Irrigation Water Requirements, Irrigation and Drainage Div., ASCE. 215 pp. Jensen, Marvin E. 1975. Scientific Trrigation Scheduling for Salinity Control of Irrigation Return Flows. U.S. Environmental Protection Agency Rpt. 600/2-75-064. King, W. E., J. W. Hawley, A. M. Taylor, and R. P. Wilson. 1971. Geology and Ground Water Resources of Central and Western Dona Ana County, New Mexico. New Mexico Bur. of Mines and Min. Resources, Hydrologic Rept. 1. 64 pp. Leggat, E. R., M. E. Lowry, and J. W. Hood. 1972. Ground-Water Resources of the Lower Mesilla Valley, Texas and New Mexico. Texas Water Commission Bulletin 6203. 109 pp. MacGillvray, N. A. 1975. Vegetative Water Use in California, 1974. Dept. of Water Resource. Bul. No. 113-3. 104 pp. Maker, H. J., R. E. Neher, P. H. Derr and J. U. Anderson. 1971. Soil Association and Land Classification for Irrigation: Dona Ana County. Agric. Exp. Sta. Research Rpt. 183, New Mexico State University, Las Cruces. 141 pp. Rasnich, B. A., and F. S. Nakayama. 1973. Nitrochromeazo titrimetric determination of sulfate in irrigation and other saline waters. Communication in Soil Sci. and Plant Analysis. 4(3):171-174. Rohwer, C. 1946. Canal Lining Material. Division of Irrigation and Water Conservation. SCS, USDA, Colorado Agríc. Exp. Sta. Slatyer, R. O. 1967. Plant-Water Relationships. Academic Press, New York, N.Y. Stallman, R. W. 1965. Steady One-Dimensional Fluid Flow in a Semi-infinite Porous Medium with Sinusoidal Surface Temperature. Geophysical Research. 70(12):2821-2827. Tyler, C. L., G. L. Corey, and L. R. Swarner. 1964. Evaluating Water Use on a New Irrigation Project. University of Idaho Agric. Exp. Sta., Research Bul. No. 62. 24 pp. United States Congress, Senate Select Committee on National Water Resources. 1961. Population Projections and Economic Assumptions. 86th Congress, 2nd Session, Comm. Print 5, Washington, Government Printing Office. 49 pp. United States Department of Agriculture, Soil Conservation Service. 1977. Soil Survey of Dona Ana County (advance copy). Las Cruces, New Mexico. United States Department of the Interior, Bureau of Reclamation. 1938-77. Unpublished data sheets. El Paso, Texas office. United States Department of Interior, Bureau of Reclamation, 1971. Use of Water on Federal Irrigation Projects, Minidoka Project, North Side Pumping Div., Unit A. Crop and Irrigation Data, 1964-1968, Vol. 1, Summary Report. 154 pp. United States Department of Interior, Bureau of Reclamation, 1973. Evapotranspirometer Studies of Saltcedar Near Bernardo, New Mexico. File Rpt., Albuquerque Development Office. 31 pp. United States Department of Interior, Geological Survey. 1974. Water Resources Data for New Mexico: Part 2, Water Quality Records, 291 pp. U. S. Environmental Protection Agency. 1971. Methods for Chemical Analysis of Water and Wastes. Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, Cincinnati, Ohio. 316 pp. United States Water Resources Council. 1968. The Nation's Water Resources, the First National Assessment. Washington, Government Printing Office. Willardson, L. S. 1972. Attainable Irrigation Efficiencies. ASCE Jour. of Irrigation and Drainage. 98(IR2):239-246. Appendix A CLIMATIC DATA # Legend for Climatological Data - T (Max) = Maximum Air Temperature ${}^{\circ}C$ - T (Min) = Minimum Air Temperature OC - H (Max) = Maximum Humidity in percent - H (Min) = Minimum Humidity in percent - DBT = Dry Bulb Temperature OC measured on specified day at recorded time - WBT = Wet Bulb Temperature measured on specified day at recorded time - S(Ly) = Solar Radiation in L angles for 24 hours - Wind (24 hr.) = Accumulated wind run in km/day - Pan (E) = Class A Evaporation Pan (cm) - PRE = Precipitation (cm) - Total E = Accumulated Pan Evaporation - -0.00 = No data collected - 0.0 = No data collected for solar radiation Table A-1. Climatological data for Las Cruces, New Mexico 1975. | TUTAL
EVAP
CM | 0000 | 0
1
1.354
1.35 | 7726m

#0726
#0726 | 64440
4400
44000
640000
1 | 22230
25230
25230
25300 | 22.77.
20.77.
20.77.
20.77.
20.77. | 7.92 | | |------------------------------|--|---|---
---|--|---|---------|-------------------| | PREC 1P
CM | 00000 | 00000
00000 | 00000 | 20020 | 3
00000
00000 | 00000 | U.38 | | | PAN
EVAP
CM | 00.200 | 00000
-7777
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770
-7770 | 00000
4 | 20000
000000
000000 | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | -00-0151
00-00-00-00-00-00-00-00-00-00-00-00-00- | 61.0 | 0.27 | | HIND
Z4-HRS
KM | 2333
2333
1666
1666 | 124.
1804.
4833. | 2221462
201452
130445 | 12074
1501
1516
1503 | 24
20
40
40
40
40
40
40
40
40
40
40
40
40
40 | 22250
42250
42250
430
430
430
430
430
430
430
430
430
43 | 163. | 183. | | SULAR | 20000
30000
300000
300000
00000 | 326.0
232.0
318.0
248.0 | 377 00000
377 000000 | 22
24
20
20
20
20
20
20
20
20
20
20
20
20
20 | 20000 | 2000 A BE | 116.2 | 186.6 | | 3.536
1881 | 00000 | 20200 | 22000 | 00000 | 30030 | 00000 | 0*0- | 20. | | 0.550
0.550 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.0- | 0.0 | | HEMEN)
PERCENT | 00000 | 20202 | 20000 | 20000 | 20000 | 20000 | 0.0- | 0.0 | | H (MAX)
PERCENT
UR DPI | 20.00
20.00
20.00 | 2000000
CRUMNO
 | 2 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - | ון!!
מאמשפה
מרשימים | 1111
6004
14118 | שומקרשל
הסירס ס | 6.7 | 4.4 | | I LMIN)
DEG.C | 1 2 2 2 2 2 2 2 2 2 | -7.2
-4.4
-6.1
-0.6 | 13.9
-10.0
-17.2 | 000000
000000
000000 | 27
27
27 | 00-m-00
000-
000- | 5.0 | -3
4
3 | | 11 RAX)
Df 6.C | wrwr0
52520 | 42.40
444.40 | 0.00 | 34
38
58
56
56
56
56
56
56
56
56
56
56
56
56
56 | 23.11.2 | 22283
22283
22283 | 6-61 | در
شور | | TIME | 8330
8330
8300
8300 | 200000
200000
200000000000000000000000 | . ၁၁ဝ၁ဝ
നെന്ന
നേന്നെന്ന
നേത്രമ | 20000
20000
20000 | 33883
00000 | 20000
20000
20000 | 830 | OE v | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC |
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LASCENCE
LAS | LASSCKUC
LASSCKUC
LASSCKUC
LASSCKUC
LASSCKUC
LASSCKUC
LASSCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | ME AN
STANDARD | | UAFE | 1001
1002
1003
1003
1003
1003
1003
1003 | 10275
10375
10375
10375
11075 | | 2022
2022
2022
2022
2022
2022
2022
202 | 2222
2222
2222
22232
22233 | 12211
12211
12281
1209
130
130
130
130
130
130
130
130
130
130 | 21111 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | TOTAL
EVAP
CM | 84.28
84.997
94.997 | 9-63
9-85
10-44
11-05 | 1122
122
222
222
222
222
222
222
222
22 | 40.000
40.000
4
64450 | 16.65
17.22
17.22
17.55 | 18.06
18.69
19.15 | | |------------------------------|---|--|--|--|--|-------------------------------|------------------| | PRECIP | 07000 | 30000
30000 | 00000 | 00000 | 00000
-0000 | 000 | | | PAN
CEVAP | 00000
 | 00000 | 2000
2000
2000
2000 | 00000
7830
7830 | 00000
440000
6430000 | 0.41
0.63
0.46 | 0.40 | | WINU
24-IIKS
KM | 8855.
1247.
176. | 2 200 × 4 • • • • • • • • • • • • • • • • • • | 1.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00 | 232.
1030.
105.
206. | 251.
150.
840.
111. | 106. | 170. | | SCLAR | 40000
40000
40000
40000
60000 | 2000
2000
2000
2000
2000
2000
2000 | 4400
4500
46074
66074
46074 | 48444
080000
080000
000000
000000
0000000 | 22723
2723
4563
231
4531
4531
4531
4531
4531
4531
4531
45 | 450.7.4 | 364.7 | | M01
DE5.C | 00000 | 20200 | 00000 | 30000 | 00000 | 000 | 000 | | 081
086.c | 30300
30000
11111 | 20020
20020 | 00000 | 00000 | 90000 | 000 | 0.0 | | HCMINI | 00000 | 00000 | 00000 | 22002 | 00000 | 0000 | 0.0 | | H (MAX)
PERCENI
UR DPT | 11 | | 00.00 | 1111
5.026
6.1926 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | - 2.2
2.2 | 3.5 | | 1 (MIN)
DEG.C | 700007
790007 | 11 11
WARNIN
24201 | 2000 | 95928
772m0 | | 23.0
- 1.0
- 6.6 | 7.5-7 | | JE BAX) | | 44454
5456
5466
5466 | 112241
24241
1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 11117
ಗಹಿಗಗಿಂ
ನಿಹಿಪಿತಿನ | 24
24
24
24
24
24
24
24
24
24
24
24
24
2 | 446
466
564 | 16.7 | | TI ME | 00000
00000
00000
00000 | 00000
00000 | 00000
00000
00000 | 20000
20000
20000 | 88888
88888
8888
8888
8888
8888
8888
8888 | 833C
833C | LEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCAUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARE | | DATE | 20175
20275
20375
20475
20575 | 20 675
20 775
20 875
20 975
21 075 | 20000
2442
2442
2442
2000
2000
2000
200 | 21 675
21 75
21 875
22 0 75 | 222
2222
2222
2224
5
5
7
5
7
5
7
5
7
5
7
5
7
5
7
5
7
5
7 | 22675
22775
22875 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | TUTAL
CM | 200.00
200.00
200.00
200.00
200.00
200.00
200.00 | 22.3.34
22.3.34
22.3.34
25.5.30
25.5.30 | 25.68
226.91
227.59
27.99 | 2228
2228
2425
2448
2448
2448
2448
2448 | 35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50
35.50 | 200000
200000
200000 | 39.80 | | |-----------------------------|--
--|--|--|---|--|---------|-------------------| | PRECIP | 20000 | 00000 | 0000 | 00000 | 22000 | 00000 | 0.0 | | | EVAN
CEVAN | 0000
44.0000
44.0000 | 00000
4m049
4m06m | 0000
944
944
944
944
944
944
944 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.81
1.22
1.04
0.11 | 0.28
0.28
0.20
0.63 | 0.66 | 0.67 | | H IND
24-HRS
KM | 80.
1822.
1872.
187 | 3203
2295.
1886. | 422
1452
3286
4028 | NW N
BBB-4
0025000 | 3006
327. | 22223
2224
2247
2247 | 226. | 267. | | SCLAR | 4444
30244
5024
6030
6030
6031 | 44044
80044
84040
8444
6444
6444
6444 | 4400
4400
444.
444. | 2000
2000
2000
2000
2000
2000
2000
200 | 4ωυνη
ν4πο
ποππο
παπ4ο
 | 4-40
48-40
48-40
54-40
64-40
600-64 | 780.7 | 446.8
144.6 | | war
DEG.c | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.0- | 0.0 | | DEC. | 00000 | 00000 | 20000 | 20022 | 11111 | 27000 | 0.0- | 0.0 | | HIMINI | 20202 | 22220 | 00000 | 00000 | 00000 | 00000 | 0.0- | 00.0 | | H(MAX)
PERCENT
UR DPI | 7-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 00000 | 00000 | 00000 | 70000 | 04646
6466
6466
6466 | -1.7 | -0.3 | | 1 (M1N)
0166.C | 2000
2000
2000
2000
2000
2000
2000
200 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ~~~~~
~~~~~
~~~~~
~~~~~ | 44.65.0
4.65.0
4.65.0
4.65.0 | -22.52
0.52 | 201-1
* • • • • • • • • • • • • • • • • • • • | -2.2 | 3.1 | | OEGAX) | 2000
2000
2000
2000
2000
2000
2000
200 | 12212
2012
2018
2018 | 21112
2112
3112
3112
3112
3112
3112
311 |
01-02/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05-44/0
05- | 277127
49767
41348 | 2221
2221 | 0.05 | 1.9
5.5 | | I I PE | 00000
7,50000
8,50000
8,50000
8,50000
8,50000 | 22240
2226
20000 | 00000
99888
88888
88888 | 30000
30000
10000 | 00000
00000
00000 | 20000
20000
20000 | 93 C | DEV | | 51.16 | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRIC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCALC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASUKUC | ME AN
STANDARD | | DAIC | 30275
30275
30475
30475 | 2006
2006
2006
2006
2006
2006
2006
2006 | 22222
22222
22422
22422
22422 | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 2222
2222
2222
2222
2232
2232
2232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232 | 3222
3222
3222
3323
3323
3323
3323
332 | 33175 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | TOTAL
EVAP
CM | 40.82
41.40
42.01
42.80
43.54 | 4444
4454
6534
6836
6336 | 500
500
500
500
500
500
500
500
500
500 | 500 00 00 00 00 00 00 00 00 00 00 00 00 | 500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
50 |
59
61.19
62.17
63.17
63.17 | | |-----------------------|--|--|---|---|--|--|------------------| | PRECIP | 20000 | 00000 | 00000 | 00000 | 00000 | 22000 | | | P AKI
EVA P
CM | 00.50 | 00.00
00.00
00.00
00.00
00.00 | 16.0
0.16.0
0.76
0.79 | 1.04
0.79
0.79
0.79 | 0.71
0.56
0.91
0.36
0.86 | 0.63
0.76
0.99
0.61 | 0.79 | | NA ND
24-HRS
KM | 240000
246000 | | 1222
1222
1226
1226
1226 | 2222
2222
2222
2322
2322 | 47-4-4
8-4-4-8
8-4-4-4-4-4-4-4-4-4-4-4-4-4 | 25-02-02-02-02-02-02-02-02-02-02-02-02-02- | 250.
148. | | SGLAR | 200000
200000
200000
200000 | 445574
445014
74564
74564
74564
74564 |
666554
420054
44204
54464
5464
5464
5464
5464
5464
5464
5 | 5883.6
640.2
636.2
640.4 | 60000000000000000000000000000000000000 | | 550.8
112.9 | | VB1
DF6.c | 20000 | 20000 | 00000 | 00000 | 20000 | 07000 | 0.0 | | 081
066.c | 70000 | 20200 | 00000 | 20000 | 20000 | 00000 | 0.0 | | PERCENT | 00000 | 20000 | 99999 | 00000 | 00000 | 00000 | 000 | | HERCENT
UR OPT | 11111
442044
44044 | 11111
0.00
0.00 | 7 m m/m m 7
+ 0 + 2 0
+ 0 m m m m 7
 | 7 | -0.6
-0.0
-0.0 | 2.51
2.51
2.51
2.51 | 8 ° 7 | | 0.03.030
0.030 | M-WC0 | NN | 85004H | 38677
1000-1 | 2007-40
•••••
3000 | 27.75
5.75
5.75
7.75 | 3.5 | | 1 (MAX)
DEG .C | 2022
2022
2022
2022
2022
2022
2022
202 | 7,4mm,1
15,40,4
13,10,0 | 177177
477877
760 mm | 22697
22697
22697
22697 | 22222
22222
22222
2422
2422
2422
2422 | ಸಭ್ಯಗಳ
ಪರಭಾಗ
ಸರಂಭಾಗ | 7.67
7.47 | | 11 NE | 833C
833C
833C
833C | 88888
88888
88888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
9888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
9888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
9888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
98888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
9888
988
9888
9888
9888
9888
9888
9888
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
988
98
9 | 883
833
833
833
833
833
833
833
833
833 | 20000
20000
20000 | 00000
00000
00000 | 2222
2222
2222
2222
2222
2222
2222
2222
2222 | DE V | | S1.TE | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | nean
Standard | | DATE | 400175
400175
400175
400175
700175 | 440
4004
4004
4009
100
100
100
100
100
100
100
100
100 | 44444
111111
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
1444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
1444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
14444
1 | 41 675
41 675
41 675
42 675
67 675 | 4422
4422
44343
4443
4443
445
445
445
445
445
445 | 24444
24244
27246
2769
2769
2769
2769
2769
2769
2769
276 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | IUTAL
EVAP
FM | 64.34
65.35
66.01
67.18 | 68.99
70.48
71.27 | VIU460
46460
46460
46460 | 77.67
79.61
79.60
80.44 | 88888
6976
6976
8076
8076
8076
8076
8076
8076
8076
80 | 86.97
88.19
89.31
90.04 | 64*16 | | |------------------------------|---|---|---|---|---|---|---------|------------------| | PREC1P
CM | 00000 | 00000 | 00000 | 00000 | 20000 | 00000 | 0.0 | | | PAN
CAAP | 0-17
0-17
0-19
0-19
0-19 | 0.71
0.71
0.79
0.79 | 0.71
1.09
0.94
1.32 | 0.84
0.94
0.99
0.84 | 1.17 | 0.89
1.12
0.14
0.61 | 98.0 | 0.91 | | N ND Z4 - HKS | 271.
204.
274.
399. | 209.
116.
100.
209. | 151
221
3203
124 | 24-22-22-22-23-23-23-23-23-23-23-23-23-23- | 24000
24000
42000
42000 | 102201
20201
20202
2000 | 124. | 203. | | SCLAR | 653
650
650
650
650
750 | 650000
650000
650000
650000
650000 | 657.5
664.7
678.0
673.4 | ## ### ### ########################### | \$ | 5646
5646
567
567
567
567
567
567
567
567
567
56 | 693.1 | 542.7 | | WES.C | 20000 | 65000
63000 | 30000 | 00000 | 99969 | 20000 | 0.0- | 0.0 | | Det.c | 00000 | 20200 | 00000 | 20070 | 00000 | 00000 | 0.0- | 00.0 | | PERCENT | 20000 | 00000 | 30000 | 20000 | 00000
| 20000 | 0.0- | 90 | | H (MAX)
PERCENT
UK DPT | 0.10 | 120.00 | 0000 | | 20~32
20~32 | 767.62 | 6.8 | 3.0 | | CE G.C | -01-10-10-10-10-10-10-10-10-10-10-10-10- | 920004 | 2228mm | 24.00 | 000000
000000 | 2000
2000
2000
2000
2000
2000
2000
200 | 6.1 | 3.9 | | I (MAX)
DEG.C | 55755
55755
5565
5565 | スピンごろ
スピーロの
まなどがむ | 000000
000000
000000 | 2000
2000
2000
2000
2000
2000
2000
200 | عرالا ع
604عام
56منان | 2222
2222
3226
64
64 | 31.7 | 25
25
25 | | 11 M | 00000
00000
00000
00000 | 20000
50000
50000
50000 | 22262
20000
20000 | 00000
50000
50000 | 22222
22222
2222
2222
2222 | 00000
38888
00000 | 830 | DE.V | | SI 16 | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANDARD | | DATE | 000000
00000
00000
00000
00000
00000 | 5005
5005
5005
5005
5005
5005
5005
500 | 200000
11411
100000
200000 | 52162
5216
5216
5216
5215
5215
5315
5315
5315
5315
5315
5315 | 522175
522775
524775
524775
54775 | 888888
88888
8888
888
888
888
888
888 | 53175 | | Climatological data for Las Cruces, New Mexico 1975 (continued). Table A-1. | TOTAL
EVAP | 92.33
94.29
95.46
95.66 | 97.94
98.68
99.62
100.61 | 102.61
103.50
104.44
106.33 | 109.09
110.44
112.04
113.08 | 115.31
117.10
118.24
119.33 | 120.24
121.33
122.40
123.60
124.76 | | |----------------------|--|--|---|---|--|---|-------------------| | PREC1P | 20000 | 00000 | 20000 | 20000 | 20202 | 00000 | | | P AN
E VA P
CM | 0.84
0.97
1.17
1.19
1.02 | 1.22
0.94
1.22
1.22 | 00.00 | 7.0002
7.0002
7.0002 | 10.12 | 0.86
1.09
1.12 | 1.11 | | MA NO SKA | ###################################### | 201112
201555
20155 | 1126
124
153
153
153
153
154
154
154
154
154
154
154
154
154
154 | 2224
2224
6556
610 | 44044
40444
60446
60446 | 22.1.58 | 174. | | SULAR
LY | 00000
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% | 6655.0
641.2
594.0
0.0 | 668
665
6641
6641
6640
6640
6640 | 693-7
6865-7
650-4
671-1 | 00000 | 00000 | 432.3
314.8 | | MB1
DEG.C | 00000 | 00000 | 00000 | 90000 | 00000 | 20002
20002
11117 | 00
00 | | DEG.c | 00000 | 30000
11111 | 00000 | 00000 | 00000 | 22220
22220
11111 | 00.0 | | HENCENT | 20000 | 00000 | 20000 | 00000 | 20202 | 00000 | 0.0 | | HERCENI
UR DPT | 4ሠ4応ພ
••••
4ሠ4ብພ | 00000
00000
00000 | | MA WA | 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2.05.0
2.05.0
5.05.0 | 10.2 | | of G.C. |
1150.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.0 | | | MACE | 5-05-6
9-5-6
12-5-6
12-6-6 | 27723 | 13.0
3.4 | | FIMAX P | amama
magana
aaraa | 20000
20000
20000 | ಎಬಎಎಎ
ಎಬಎಎ
ಎಎಎಎಎ
ಎಎಎಎಎ | യചയപ്പയ
സയപ്പാഗ
സ്സ്സ് | акака
Оказа
Изболі | alacia
propert
destant | 34.9 | |) 1 kt | 20040
20040
20040 | 00000 | 20000
20000
20000 | 88788
88888
88888
88888
88888
88888
88888
8888 | 0000
00000
000000 | 36060
36060 | GE V | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASSCRUC
LASSCRUC
LASSCRUC
LASCRUC
LASCRUC | ML AN
STANDAKO | | DATE | 60175
60275
60375
60475
60575 | 60775
60775
60875
60575
61 C75 | 661275
61275
61275
61275
61575 | 661166
61166
62166
62166
62166
62166
62166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
63166
6316
63166
6316
63166
63166
6316
63166
63166
63166
63166
63166
63166
63166
63166
63166
63 | 622.15
622.15
623.15
624.75
625.15 | 62775
62775
62875
62875
63675 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | EVAP
ENAP | 125-91
127-18
128-07
126-85
129-36 | 131.
131.
132.
132.
134.
134.
114. | 1354-567
1356-37
136-37
136-56 | 139.67
140.36
141.73
142.77 | 1443-1443-1445-1445-1446-1446-1483 | 147.42
148.44
150.24
150.77 | 152.65 | | |------------------------------|---
---|--|---|--|--|---------|------------------| | CH CIP | 2020 | 00000
04004
00000 | 30000
80000 | 00000 | 00000 | 00700 | 0.0 | | | P AN
CMAP | 1-14
00-89
0-79 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 000000000000000000000000000000000000000 | 1.09
0.71
0.01
0.01 | 0.36
0.36
0.36 | 0.00
0.00
0.00
0.48
0.61 | 1.07 | 0.90 | | 41 AD
24-11KS
KM | 2229
22109
1611
11611 | 82.55
82.55
82.55
82.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55
83.55 | 24 PE
24 95 95
24 95 95
24 95 95
24 95 95
24 95
25 95
25
25 95
25
25
25
25
25
25
25
25
25
25
25
25
25 | MAM T
WWW D D
W O O M B
W O O M B | 200044
00004
000004 | 1225
1205
12023
10042 | 63. | 160.
55. | | SGLAR | 683.5
677.1
673.5
612.8 | 664944
664944
6649144
6649144 | \$ | 9.75
0.0
0.0
5.177
5.178
5.218 | 5443
6223
8980
0 0 0 0 | 645
645
645
645
645
645
645
645
645
645 | 6.649 | 496.8
214.9 | | ŏĕĞ.c | 00000 | 00000 | 20111 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ##7701
11111 | 79-1-1 | 6.8- | | | DBT
DEG.C | 22402 | 000-0 | 00000 | 00000 | 00000 | 20202 | 0.0- | 20.00 | | H (MIN)
PERCENT | 00000 | 00000 | 20020 | 00000 | 00000 | 20000 | 0.0- | 0.0 | | H (MAX)
PERCENT
OR DPT | 20.0
17.2
20.0
20.0
21.1 | 2480
2480
2480
2480
2480
2480
2480
2480 | 125.1
125.1
125.0
125.0 | 20020000000000000000000000000000000000 | 200
200
200
200
200
200
200
200
200
200 | 20111166
13011111111111111111111111111111 | 11.7 | 16.9 | | DEGIC | 18.9
20.0
20.0
20.0
17.2 | 18.9
17.6
16.7
17.8 | 3m0m0
0m0m0
0m0m0 | 17.5688
17.5688 | ₩888
₩888
₩966 | 1122
672
672
672
672
672
672
672
672
672
6 | 15.0 | 8.71 | | (MAX)
DEG.C | 22622
24622
35444 | ಸ್ಥಾಪ್ತಾಪ್ತ
ಸ್ಥಾಪ್ತಿಪ್ಪಾಪ್ತಿ
ಸ್ಥಾಪ್ತವೆಗ್ಗ | ಎಂಬಬಹುಬ
ನಡೆಗಳು
ತೆಪ್ಲಿಕ್ಕು |
ಬಬಬಬಬ
೧೦೮೨೮4
೨೦೨೩ನೇ | ಸ್ಥಾರ್ಥ
ಇರುಬ್ಬ
ಸ್ಥಾರ್ಥ | をなるない
しななない
しないない
しないで | 36.3 | 13.2 | | 11 ME | 000000
000000
000000 | 88888
88888
90000
90000 | 2000
2000
2000
2000 | 00000
00000
00000 | 6330
6330
6330
6330
6330 | 00000
00000
00000 | 830 | LEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANDARD | | DATE | 70175
70275
70275
70475
70475 | 70675
70775
70875
70975 | 711275
71275
71575
71575
71575 | 711675
71875
72075 | 122175
122175
123175
125175 | 22
22
22
22
24
26
26
26
26
26
26
26
26
26
26
26
26
26 | 73175 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | EVAPL
CM | 1153
11564-22
1564-23
1564-23
1564-23 | 158.98
159.76
160.58
161.67 | 163.42
1643.42
165.33
166.33 | 167.18
168.22
168.68
169.65
170.13 | 170.84
171.30
171.96
172.69 | 174.27
175.86
175.86
176.60 | 178.28 | | |------------------------------|---|--|--|---|---|---|---------|---------------------| | PRECIP | 0.00 | 00000 | 78
04000
11111 | 000000000000000000000000000000000000000 | -0000
20000
20000 | 00000 | 0.0 | | | E VAN
CM VA P | 0005
0005
0005
0005
0005
0005
0005
000 | 0.00
10.00
10.00
10.00 | 00000
50000
50000 | 0.0
0.0
0.0
0.7
0.7
0.7
0.4
8 | 0.00
0.74
0.00
0.74
0.34
0.34 | 00.04
00.68
00.68
00.76
00.76 | 0.89 | 0.83 | | M NO 24-14 S
KM -14K S | 98.
206.
161.
130. | 1 945
945
1 965
1 965 | | 118834
2005. | #
\$\$\$\$\$
\$\$\$\$
\$\$\$\$ | 177.
177.
162. | 156. | 134. | | SGLAR | 0.000 % | | 4313.55
4313.55
5010.00
501.50 | 0000
0000
0000
0000
0000
0000 | ላጉሌሌ
የአግተር
ተመመጣ
ተመመጣ
ተነ * * * * * * * * * * * * * * * * * * * | 200000
200000
200000
200000
200000
200000 | 5711.5 | 501.5 | | WBT
DEG.C | 3777
3777
11111 | 11111
90,880
40,000 | 11111
22380-
200000 | 25.55
2.55
2.55
2.55
3.55 | 7 | 4.44
1.88
1.81
1.81 | -6.5 | -8-
0.8 | | oei.c | 1 1 1 1 1
04000
1 1 1 1 1 | 1111
12440
14400
1111 | 1 | | 21111
2110
2110
2110
2110
2110
2110
211 | 1 | 9*8~ | 75.8
1.3 | | PERCENT | 20000 | 20000 | 00000 | 99999 | 00000 | 20000 | 0.0- | 0.0 | | H (MAX)
PERCENT
UR DPT | 11111
13777E | ###################################### | 02-41W
04-41W
02000W | 44444
44444
44004 | 17.08
17.08
12.2 | 1175
175
106
106
106
106
106
106
106
106
106
106 | 13.3 | 14.0 | | I (MIN) | 2/2/2/2
2/2/2/2 | mmmmm
Superior
Munuma | 7277
7277
80729 | 0446
646
644
644
644 | 2-82-7-
2-82-7- | 2000-E | 15.0 | 16.3 | | (MAX) | አዲህብህ
ዕላጨጣሪ
ጣሲኒራርሳ | さいほうこう
スーコース
ジャープン | 744
1444
1444
1444 | 22.22
22.22
22.22
22.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22
23.22 | **መብብ
ትላታቀት
የሚኒኮኒኮ | 4000m
4000m
4040-4 | 34.5 | 23.5
5.1 | | J I VE | 00000 | 20200
22000
20000 | 20000
20000
20000
20000 | 200000
200000
200000 |
88888
88888
88888
88888
88888
88888 | 8833
833
830
830
830
833
833
833
833
833 | 930 | CE V | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | ME AN
S I ANDARD | | DAIE | 80175
80275
80475
80475
80575 | 806/3
808/3
808/3
809/3
810/3 | 88 B B B B B B B B B B B B B B B B B B | 818775
81875
81875
82075 | 622175
822175
82275
82475
82475 | 82675
82775
82875
82675
83075 | B3175 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | EVAP
CM | 179.12
180.06
180.67
181.63 | 182.09
183.35
184.07
184.66 | 185.34
186.46
186.92
187.17 | 188-29
188-85
190-56
190-8 | 191.51
192.02
193.61
193.67 | 194.00
194.69
194.97
195.48
195.93 | | |-----------------------------|---|---|---|--|--|--|------------------| | PREC 1P | 00000 | 00000 | W-000 | 00000 | 20000 | 00000 | | | P AN
C M A P | 0.984
0.94
0.61
0.75 | 0.23
0.86
0.41
0.71 | 0.00
0.46
0.53
0.53 | 0.58
0.56
0.71
0.61 | 00000
300004
0-40000 | 00000
00000
00000
00000 | 0.59 | | MIND
24-HRS
KM | 154.
2035.
167. | 1240.
1229.
245. | 2980.
740.
66. | 134.
127.
117. | 124.
1089.
1099.
64. | 000000
0000000000000000000000000000000 | 147. | | SGLAR | 24455
24455
24455
2545
2545
2545
2545
2 | 44848
24548
24548
44549
4454
4454
4454
4454
4454
4454 | 24242
2000
2000
2000
2000
2000
2000 | 40064
40064
444
444
744
744
744
744 | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | 503+7
4666-8
4666-8
419-8 | 446.4 | | JBC.C | 1
== | 20.21.1 | - 1 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 2001
2001
2001
2001
2001
2001
2001
2001 | Mademania
1 0 0 0 0
Order Mini
I minimized | 1 3
 | 9.61
4.61 | | EBI
DEG.C | | 11111
6495
84945 | 111
1000
1000
1000
1000
1000 | 05.00
05.00
11111 | 75000
75555
7111 | 1111 | -8.7 | | PERCENT | 20000 | 50000
00000 | 00000 | 00000 | 00000 | 00000 | 0.0 | | HIMAX)
PERCENT
UK DPT | | | 0-196F | 52221
57221
57221
57221 | 11
22
20
20
20
20
20
20
20
20
20
20
20
20 | 8
2 | 4-5
4-9 | | JERIN)
DEC.C | 227 | 14456
14456
14466
14466 | 113.55
113.55
113.55 | 200000
200000
200000 | 11.22 | 440~° | 11.9 | | I (MAX)
DEC.C | 227.27.
227.27.
23.00.00.00.00.00.00.00.00.00.00.00.00.00 |
33.25
33.25
32.25
32.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25
33.25 | 2014/2
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20
2008/20 | awwa
onddo
awwdii | 22225
22225
2445
2445
2445
2445
2445
24 | 014440
30003
40036 | 28.6 | | 11 P.E | 20000
20000
20000
20000 | 883300
83300
833000
8300000000000000000 | 8330
8330
8330
830
830
830 | 88888
98888
9888
9888
9888
9888
9888
9 | 30000
8888
8888
8888
8888
8888
8888
888 | 00000
000000
000000 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DATE | 90175
90275
90375
90475
90575 | 90675
90775
90875
90875
91075 | 99999
999999
999999
999999 | 91 615
91 775
91 975
92 075 | 99999999999999999999999999999999999999 | 92.675
92.875
92.875
93.075
93.075 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | TOTAL
EVAP
CM | 196.62
197.28
197.74
198.17
194.50 | 199-08
199-67
200-12
200-53 | 201-45
201-95
202-41
203-22 | 2013 - 58
204 - 24
204 - 24
204 - 52 | 205.84
206.20
206.20
207.26
207.62 | 207.95
203.43
203.61
209.19 | 210.39 | | |-----------------------|---|---|--|---|---|--|---------------|------------------| | PRECIP | 00000 | 00000 | 00000 | 00000 | -0000
60000 | 20000 | 0.0 | | | P AN
E VAP
C.N. | 0000
0000
00000
00000 | 00000
88.0000
84.44 | 0.55
0.55
0.54
0.346
0.36 | 00000 | 00000
244400
448884 | 000000000000000000000000000000000000000 | 6.63 | 0.47 | | WIND
24-HRS
KM | 204.
204.
699. | 1159.
1159.
795. | 114.
114.
129.
92. | 1117.
1117.
108. | 172243.
12243.
1221. | 129.
129.
203.
187. | 201. | 125. | | SOLAR | 4444
60000
60000
60000
60000 | 44444
44564
44564
44564
4654
4654
4654 | 448944
448944
448944 | 44434
4000
4000
4000
4004
4004 | 1 52 54 54 54 54 54 54 54 54 54 54 54 54 54 | 24828
20827
20827
20027
20027
20042 | 371.6 | 413.4 | | NB3
DE6.c | 11111 | 0.0m20
• • • • •
• • • • •
• • • • •
• • • • | 1 | | 2 | | -12.0 | -13.9 | | 0.090
0.050 | 250000
250000
250000
2500000
25000000
2500000000 | 11111
12211
122111
122111 | 12.7
-11.1
-11.3.9 | 114.5 | 1111
2444
2444
2444
2444 | 11111
20000
20000 | 4.6- | -12.4 | | HIMINI | 00000 | 00000
11111 | 00000 | 20000 | 20000 | 20000 | -0.0 | 0.0 | | HERCENI
DE DPT | 20-10-
240-10 | 2-20
2-20
2-40
2-40
3-40
3-40
3-40
3-40
3-40
3-40
3-40
3 | -0.0
-0.0
-0.0
-1.0
-1.1 | 21-1-0
21-1-0
21-1-0 | 0000Km | 111
40004
40004
500004 | <i>t</i> • 1. | -1.4
5.6 | | DE G.C | ## @ @@ | 20004 | 07820 | | 3440W

W4430 | | 5.6 | 2.0 | | JEMAX)
DE G.C | 721177
84440
6151990 | 2275
2275
3275
3075
3075
3075 | ವಹಬ್ಬರ
ಎಂಬಬರ
ಕರೆಕ್ಕಪ್ | クロンソン
マネション
マキュロロ
マキュロロ | 5.22
5.22
5.22
5.22
7.22
7.22
7.22
7.22 | ///////////////////////////////////// | 6.45 | 25.2
3.0 | | 3 4 5 E | വവ ാ വ
ഇത്തെയ്യ
ഇത്തെയ്യ | 20000
20000
80000
80000 | 20000
20000
20000 | 0000
0000
0000
0000 | 00000
88888
88888
88888
88888
88888
88888
8888 | 20000
20000
20000 | 830 | LEV | | SIIF | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC |
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MÉAN
STANDARL | | DA I E | 100175
100275
100375
100475
100575 | 1000275
1000775
1000875
1000875 | 1011/5
1012/5
1013/5
1014/5
1015/5 | 101 (75
101 775
101 875
101 975
102 075 | 102175
102275
102375
102475
102575 | 102475
102475
102975
103975 | 103175 | | Climatological data for Las Cruces, New Mexico 1975 (continued). Table A-1. | EVAP
CM | 210.72
211.10
211.40
211.71 | 212-47
212-47
213-31
213-92 | 2214-35
2215-01
2215-21
215-26 | 215-75
216-05
216-36
216-36 | 2117-24
2217-54
2217-54
218-35 | 218.56
219.63
219.53
219.71 | | |-----------------------------|--|--|--|---|--|---|------------------| | PRECIP | 00000 | 00000 | 20000 | 00000 | 20020 | 00000 | | | PAN
CMAP | 0.000 | 0.48
0.53
0.51
0.10 | 00000
44224
44220 | 00000 | 00000 | 000000
0000000000000000000000000000000 | 0.31 | | 24 - HR S
KM | 177
988.
465.
43. | 12.64.
1.48.
6.1. | 103.
723.
433.
60. | 20025
542025
54805
5580 | 161.
71.
74. | 1225
1225
1225
125
125
125
125
125
125
1 | 128. | | SOLAR | ###################################### | ####
#####
#####
##################### | መመመጠላ
የህዝታሪያ
የህዝታሪያ
የተቀቀ
መሪኮብየ | 22222222222222222222222222222222222222 | ##WWW
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11/21
11 | 2558
307.5
101.7
190.7
325.4 | 306.1
83.7 | | MEC.c | 20000 | 00000 | 20000 | 00000 | 00000 | 20000 | 00.0 | | 96)
560.c | 00000 | 00000
0000
00000 | 20202 | 00000 | 00000 | 20000
20000
21111 | 00.0 | | HERCENI | 00000 | 00000 | 00000 | 22220 | 00000 | 00000 | 0.0
0.0 | | HIMAX)
PERCENT
UR DPT | 20000
20000 | 00400
00400 | 2-1-2-6 | 4-1-40
4-600 | 1111
MANN
***** | 30004F | -0.4
4.0 | | JENIA) | 2.2
-0.6
2.3
2.2 | 00000 | 1 1 1 1 1 1 1 1 1 1 | 276743
276743
276743 | | 11 11
33 | | | 1 (MAK)
DEC-2 | 27222
01422
01423
01420 | 77/77/7
60/0mm
44/44/4 | 22.
22.
20.0
21.12.
22.25. | 7,47,44
4,87,04
4,5,45,4 | 11116
6224
70128 | 7//=
 | 7°5 | | 11 PE | 00000
20000
20000
20000
20000
20000 | 20000
20000
20000
20000 | 00000
00000
00000 | 00000
00000
00000
00000 | 00000
88888
88888
88888 | 00000
844884
88888 | CEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DATE | 1101
11027
10027
10037
10037
10037
10037
10037
10037 | 1106/5
1106/5
1106/5
1110/5 | 11111111111111111111111111111111111111 | 111675
1111675
1111675
1112675
1112675 | 11122111
1222111
1222111
1222113
123213 | 112475
112475
112475
113675 | | Table A-1. Climatological data for Las Cruces, New Mexico 1975 (continued). | EVAPL
CH | 219.83
220.47
220.47
220.47 | 221-00
221-28
221-56
221-56
222-04 |
22222
22222
22232
22232
22232
22232
22232
22232
22232
2232
2232
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2332
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
232
2322
2322
2322
232
2322
2322
2322
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
222
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
22
2 | 223.95
224.13
224.13
224.41
224.41 | 2224.58
2225.02
2255.02
2255.10 | 225.52
225.90
226.06
226.18 | | |-------------------|--|---|--|--|---|--|------------------| | PREC1P
CM | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | P AN CMAP | 70000 | 0000
0000
0000
0000 | 0.36
0.41
0.41
0.15
0.20 | 0.18
0.18
0.05
0.05
0.00 | 00000 | 0.23
0.38
0.15
0.13 | 0.23 | | MIND 24-HRS | 601
1004
1030 | 1205-
1205-
142- | 22264
23294
23294
124
124
124
124
124
124
124
124
124
12 | 2000-
2000-
663-
1246- | | 1898.
1898.
184. | 126. | | SELAR | 24.9
24.9
24.0
24.0
0.0
0.0 | 2994
2990
2990
2944
2944
2944 | 22796
22796
42866
406.04 | 2266.0
2366.4
2346.6
234.6 | 224
804
2146
9016
8016
8016 | 252
3052
3055
0050
8055 | 261.6 | | ugg.c | 20000 | 20000 | 00000 | 00000 | 00000 | 0000 | 00 | | 98J.c | 00000
1111 | 00000 | 00000 | 00000 | 90990 | 2000 | 90 | | HERLENI | 00000 | 22000 | 20003 | 00000 | 20000 | 0000 | 000 | | PERCENT
UR DPT | 00980 | 200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 10004 | ~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.2 | | (%:830
066:83 | 27-59
1-1-1-1 | 2000-
2000-
11111 | 72:52 | 1111 | ##################################### | 2-111 | 14.8
3.4 | | I (MAX) | ۲۵۱۱
۲۵۱۱
۲۵۰۵ م | 77.50.1
77.50.1 | 5471
1204
1208 | 20111
20121
20121 | 44
46
100
100
100
100
100
100
100
100
100
10 | 40.81
10.81 | 14.6
4.d | | | 28888
2000
2000
2000 | 20000
20000
20000 | 30000
30000
30000 | 20000
20000
20000 | ######
######
00000 | 2000
2000
2000
2000 | 0£ v | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DALE | 120175
120275
120375
120475
120675 | 12073
120475
120975
121675
121175 | 12121
12121
121375
121475
121675 | 1217
121875
121975
122075
122175 | 1222
1222
1222
1224
1225
1225
1225
1225 | 122415
122415
123915
123015 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976. | TUTAL
FVAP
CM | 00000
100000
100001
100001 | 00000
1.000
1.000
1.000
1.000 | 22.52
22.53
22.53
22.54 | 24400
04400
04400 | 44400

******************* | 0.000
0.000
0.000
0.000
0.000 | | |-----------------------------
--|--|---|--|--|--|------------------| | PREC IP | 200000 | 20000 | 20000 | 00000 | 0000
0.000
0.000 | 20000 | | | P AN
E VA P | 00000
******************************** | 0.25
0.20
0.33
0.33 | 00000
20000
20000 | 000000 | 00.250 | 000 | 0.26 | | WIND
24-HRS
KM | 100
682
685
655
705
705
705
705
705
705
705
705
705
7 | 142.
11.
148.
148. | | 2002
2002
2002
2003 | 2264.
2264.
1509. | 108.
92.
90.
142. | 135.9
9.10 | | SCLAR | 47.7
2008
3333.0
3108
315.5
4.5
5 | ###################################### | ###################################### | 22224
2404
2404
2444
2444
2444
2444
244 | 316.1
149.4
270.0
341.5 | 20000000000000000000000000000000000000 | 298.0 | | MBT
DEG.C | 263655 | 24455
24400 | 2000
2000
2000 | 00000 | 0000- | 00000 | \$ m. | | caf
Dec.c | ०२२७५५
०२२७५७
०७२७५७ | 002200 | #0000
#0000 | 00007 | 000007 | 90000 | 0 H CT | | PERCENT | 57777 | 00000 | 20000 | 00000 | 00000 | 00000 | 000 | | H(MAX)
PERCENI
CR DPT | 11111
15874
1580
1590
1590
1590
1590
1590
1590
1590
159 | 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000
7.000 | 1-1 | 7777
06.80
06.80 | 1111
4WVGV
4WVDV | -2.3 | | I (MIN)
DEG.C | 2 | 2.01-
2.00-
2.00-
0.00-
0.00- | ## 004
 | 20101 | 1 1 1 1 1 1 1 1 1 1 | 77.550 | اں
ع•ڈ
ع | | ICMAX)
DEG.C | 2 + 0 - 4 2
2 + 0 - 4 2
2 + 0 - 4 2 | レイビョロ
およなよむ | ::====
ææ∂æ¢
££±ååè |
112.5
12.5
13.0
13.0
6 | 14977
4457
1467
1467
1467
1467
1467
1467
1467
146 | 0.000
0.000
0.000
0.000
0.000 | 13.51 | | 3 1 PE | 000000
000000
000000 | 88888
8888
8888
8888
8888
8888
8888
8888 | 00000
88888
88888
88888
88888
88888
88888
8888 | 00000
00000
00000 | 33888
33000
30000 | 900000
0000000000000000000000000000000 | CEV | | SITE | A SOCIAL CONTROL OF SOCI | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DAIL | 19176
19376
19376
19576
19576 | 10.676
10.676
10.976
11.076 | 11276
11376
11576
11576 | 11.776
11.676
11.576
12.076 | 12276
12376
12376
12576
12676 | 122776
12876
13676
13676 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EQA AL | 7.1.1.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 88.46
99.17
99.63 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 127
127
127
127
127
127
127
127
127
127 | 15.70
16.38
17.07 | 18.11
18.67
19.25
19.91 | | |-------------------|--|--|---|--|---|--|------------------| | EREC 1P | 00000 | 20000 | 00000
30400
1818 | 00000 | 20020 | 0000 | | | E VAN
CMAP | 00000
00000
00000 | 00000 | 00000
20000
20000 | 00000
49674
49674
49684 | 00000
#17490
#17490 | 0000 | 0.45 | | MAND SALHRS | 666
161
1622
100 | - 00
- 00
- 00
- 00
- 00
- 00
- 00
- 00 | 2m2m
04000
04008 | 128
1348
1363
1364 | 132
1246
1214 | 11110
24117
24179 | 159. | | SOLAR | 264.4
200.00
200.00
200.00 | WW— V
WWW
WWW
WWW
WWW
WWW
WWW
WWW
W | 263.7
302.3
401.9
401.9 | 44000.24
4420.24
4420.24
4442.14
4442.14 | 44444
00000
00000
000000 | ************************************** | 355*1
105*1 | | 386.c | 7-0-0
10-0
0-0-0
0-0 | 10.0
14.9
10.5
10.5
10.5 | 12.23
10.0
10.0 | 10NN00 | 000m~
000m~
111 | -0.0
-2.2
-0.0 | 3.7 | | 0.83
0.66.c | 17.50 | -0.0
-0.0
21.1
5.5
13.5 | 0.00 mm m m m m m m m m m m m m m m m m | هممدر
مندهن | 000- | -0.0
7:2
-7:2
22:8 | 11.6 | | PERCENT | 00000 | 20000 | 00000 | 00000 | 22020
11111 | 0000 | 0.0 | | HERGENI
CR DPT | 111 | МЧВВЧ
* • • • •
МЧВФЧ | | 5-1-1-2 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 11
Wantard
4 4 4 4
Wantard | -0-1 | | 5.68.83 | 200-1-1-1-0
 | | 22246.0
228840 | N-NNO
1 11 | 00000
0000
0000
0000 | 2001
2001 | 4.5 | | DL G C | 2027
20121
20121
20131
20131 | オンスパコ
90227
でいって
でいって | 447,45
80,45
50,454 | -2-1-4-
4-11-7-6
1-7-7-7-1 | 22115
22140
52465 | 2222
2222
2426
2426
2426
2426
2426
2426 | 19.4 | | 11
1- | 22228
22228
24220
2420
2420 | 222000
22220
20000
20000 | 22888
22888
20000 | 30000
30000
30000 | 22000
2000
2000
2000 | 883
833
833
833
833
833
833
833
833
833 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DATE | 20176
20276
20376
20476
20576 | 20176
20176
20876
20976
21076 | 21176
21276
21376
21476
21576 | 21676
2176
21976
22076 | 22216
22216
222316
222316
22516 | 22676
22776
22876
22976 | | Climatological data for Las Cruces, New Mexico, 1976 (continued). Table A-2. | EVAP. | 20.78
22.34
23.50
23.64 | 2255
2555
452
452
452
452
452
452
453
453
453
453
453
453
453
453
453
453 | 27.28
27.91
28.45
29.59 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 20000000000000000000000000000000000000 | ##################################### | 39.45 | | |-------------------|---|--|---|--|---|---|---------|------------------| | PRECIP | 22000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.0 | | | PAN
CMAP | 0.86
0.56
0.53
0.633 | 00000
33400
64400
1 | 00000 | 00.556
00.556
00.71
00.86 | 00000
0000
0000
0000 | 0.86
0.66
0.69
0.69 | 0.56 | 61.0 | | MA -HRS | 248
6319
2865
1986 | 281112
2820
2820
2820
2820
2820
2820
282 | 348
100- | 152.
1412.
362. | 2.95
15.00
2.95
2.55
5.55 |
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | .16 | 247. | | SGLAR
LY | 442.
3389.
4887.
4589.
4689. | 342
4124
4666.0
3466.0 | 54048
122
122
123
134
134
134
134
134
134
134
134
134
13 | 5444
5465
5465
5465
5465
5444
5444 | 3,620,000,000,000,000,000 | 00000 | 0.0 | 225.4 | | ykl.c | 6.1
6.0
0.0
0.0 | 000000
00000
00000 | 26.20
2.20
5.70
5.70 | 0-000 | 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 | 40396V | и.
В | 2.1 | | Bes.c | E1100000000000000000000000000000000000 | 0.0
7.7
10.0
10.0 | 11.1
2.8
17.8
12.2 | 0,000 | 0517-1 | 10.0
0.0
0.0
0.0
0.0
0.0 | 8.5 | 3.6 | | PERCENT | 20000 | 20200 | 00000 | 00000 | 0000 | 20000 | 0.0- | 0.0 | | HERCENT
OR OPT | w-v-u | 420000 | 5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 1)
10445
10445 | 225
2002
1 | 2-044 | -3.3 | 32. | | 3. E. S. | N6408 | 5-HVV | ~woon | 11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.880.00 | 04040 | D*5- | 4.5 | | DI GAZ I | 2223
2223
1003
1600
1600 | 221728
221728
221728 | 22.4
22.4
22.4
24.4
24.4
24.4
24.4
24.4 | 1022
8432
2046
1 | 414144
42404
43404 | | 71.1 | 3.6 | | 11 F | 20000
200000
200000 | 00000
00000
00000
00000 | 30 20 20
70 20 20
20 20 20 | 2020
2020
2020
2000
2000
2000 | 88888
88888
88888
88888
88888
88888
8888 | 00400
00400 | u3 C | DE v | | SI TE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCKUL
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANDARD | | DATE | 30176
30276
30376
30476
30476
30576 | 30676
30776
30976
31076 | 31176
31376
31576
31576 | 31 676
31 676
32 0 76 | 322176
32276
32476
32576 | 32676
32876
32876
330976 | 33176 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EVAPL
CM | 4440
4421
4421
4421
4421
4421
4421
4421 | 4444
4454
4460
444
754
754
754
754
754
754 | 7448
500
500
500
6449
8446 | 000000
00000
00000
00000
00000 | 500000 | 60.051
61.29
62.29
63.09 | | |----------------------|---|--|--|--
---|---|------------------| | PRECIP
CM | 00000 | 20200 | 0.00 | 00000 | 00000 | 90999 | | | P AN
F VA P
CM | 0.66
0.46
0.79
0.89
1.04 | 0.14
0.16
0.16
0.19 | 0-00
 | 00000 | 0.71
0.94
0.86
0.86 | | 0.79 | | 24-HKS | ጣ መጠ
የውስተያ
የመጠመው
የተቀቀ | | 2248
2248
3290- | 40mg
04040
04040
04140 | 2.000 mmmm | 248
2712
2032
2032 | 214.
83. | | SGLAR | 00000 | 65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
6555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
6555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
65555
6555 | 44/260
44/260
6040
6040
60040 | 6001.9
6001.9
642.1
6142.1 | 50054
50064
50064
50064
50064 | 4WL44
4WL44 | 416.6 | | Wel.c | -0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
- | 20000 | -0.0
15.1
10.6 | -0-1-0
-0-7-5
-8-3 | M 100 | 8.71
12.6
12.8
1.1 | 3.7 | | Dec.c | 00000 | 20000 | 00000 | 00000 | 00000 | 00000
11111 | 20 | | PERCENI | 00000 | 20000 | 00000 | 00000 | 00000 | 00000 | 00 | | PERCENT
UR OPT | 10.2 | | 2-1-2-
 | 40-100 | W4644
••••• | 450000 | νω
ν:• | | J (MIN) | 00440
0440 | # 22007
20002
00000 | 54-766
54-766 | 25.2 | 73744

80840 | 88375525252 | 5.8
4.2 | | I (MAX)
DEC.C | 2222
2245
2445
1 | 22222
22222
22222
22222
22222 | スクスなー
おおみでら
なみ…やら | 2222
2222
2222
2222
2222
2222
2222
2222
2222 | 27.3
27.8
227.8
281.9
30.0 | 25.15
25.15
25.15
25.15
25.15
25.15
25.15
25.15
25.15
25
25
25
25
25
25
25
25
25
25
25
25
25 | 6.47 | | 1116 | 00000
000000
00000 | 8888
8888
8888
8888
8888
8888
8888
8888
8888 | 88888
88888
88889
88889
88888
88888
88888
88888
88888
88888
8888 | 363388
5566
5566
5666
5666
5666
5666
566 | 20000
20000
20000 | 00000
200000
2000000000000000000000000 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCEUC
LASSCEUC
LASSCEUC
LASSCEUC
LASSCEUC
LASSCEUC | LASCRIC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDAKD | | DATE | 40176
40276
40376
40476
40578 | 40676
40776
40876
40976
41376 | 41176
411276
414376
41576 | 41676
41776
41876
42076 | 42216
42216
42316
42416
42416 | 42776
42776
42676
43976 | | Climatological data for Las Cruces, New Mexico, 1976 (continued). Table A-2. | EQAP4. | 64.57
66.12
66.12
66.13 | 67.51
68.73
69.49
70.13 | 74.75 | 77.93
78.89
79.76
80.09 | 882.08
862.08
865.08
865.08 | 87.78
88.70
89.66
90.93 | 10.16 | | |-----------------------------|---|--
---|---|---|--|---------|------------------| | PRECIP | 00000 | 00000 | 00000 | 00000 | 00000 | 20000 | 0.0 | | | CEVAN
P | 0.69
0.79
0.01
0.61 | 010000000000000000000000000000000000000 | 0.00
0.03
1.00
1.10
1.10 | 00.00
00.00
00.00
00.00
00.00
00.00 | 2509~4
0.00
1.00
1.00
1.00
1.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.74 | 0.97 | | 24-HR S
KA | 2000
0000
0000
0000
0000
0000 | 3669.
3229.
1093. | 200261
200261
200261 | 2222
2222
12222
1222
1222
1222
1222
12 | 147-
1069-
1990-
2990- | 2554
1666
2338
293
293 | 77. | 215. | | SÇLAR
LY | 20044
20044
20044
20044 | 6537.
6537.
6537.
6537.
6537. |
651-1-15
651-55
651-1-15
651-1-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651-15
651 | 5524.8
610.2
404.0
486.8 | 6663
6663
6665
7462
7462
7462
7462
7462
7462
7462
7462 | 240644
24064
24064
24064
24064
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066
24066 | 672.0 | 602.6 | | DEG.C | 7-48
24-28
24-2-86 | 10
-00-5
-1-80
 | 6400 4
6400 4
640004 | 40-10-10-10-10-10-10-10-10-10-10-10-10-10 | 2 | 35mr-
•••••
••••
•••
•••
•••
•••
••• | 6.8 | 2.8 | | 083
DE6.c | 00000 | 00000 | 20000
11111 | 00000 | 00000 | 99999 | 0.0- | 20
20 | | FERCENT | 00000 | 90000 | 20200 | 20000 | 00000 | 00000 | 0.0- | 30.
30. | | HIMAX)
PERCENT
UR DPT | | ###
###
##940 | 00mma
00mma
00mma | | 11.00
20.00
20.00 | | 3.3 | 8.4
8. | | NINT
DEGINE | 4777
478
478
478
478
478
478
478
478
478 | -84-1
 | 0.01
0.01 | ~ x x y y y y y y y y y y y y y y y y y | 25.22
26.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22
27.22 | 2000
2000
2000
2000 | 1.9 | 8.5
2.5 | | I (MAX) | 2222
2222
2222
2223
2223 | 2222
266-33
266-13
 22028
22028
2442
2444
2444
2444
2444
244 | ンととなる
トトウペル
番番「つう | 3300
3410
5410
1040
1040
1040
1040
1040
1040
1 | ころできることできる。 | 11.1 | 28.4 | | 11 kë | 20000
200000
200000 | 20000
20000
20000
20000 | 88888
88888
88888
88888
88888
88888
8888 | 00000
00000
00000
00000 | 00000
000000
000000 | 00000
00000
000000 | 830 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANDAKU | | DA 1E | 50176
50276
50376
50476
50576 | 50676
50776
50876
50976
51076 | 51276
51276
51376
51576 | 51676
51776
51976
52076 | 55227
52227
52237
5247
5475
5775
5775
5775
5775
5775
577 | 522
522
522
526
526
53
63
63
63
63
63
63
63
63
63
63
63
63
63 | 23176 | | | | | | | | | | | | Climatological data for Las Cruces, New Mexico, 1976 (continued). Table A-2. | EVADL
CM | 94.00
95.25
97.47
97.59 | 100-84
101-73
102-49
103-50 | 105-82
107-16
106-05
109-50
110-44 | 6459
6459
6459
6459
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479
6479 | 117.50
118.72
120.47
121.39 | 123
1256
127
127
127
127
127
127
127
127
127
127 | | |----------------------|--|--|--|--|--|---|-------------------| | PREC 1P | 00000 | 0.00 | 00000 | 20000 | 00000 | 00000 | | | CHP
CAAN
9 | 0-25
0-25
0-25
0-25 | 2256
1022
1022
1022 | 4.010
0.35
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.4 | 1.27
1.47
1.32
1.02 | 1.02 | 0.76
1.19
1.60
1.60
0.00 | 0:30 | | MA-HKS | | 290.
203.
1113.
146. | 64434
64434
64434 | 138
286
1496
1220 | 2000
2000
2000
2000
2000
2000 | 2224.
1114.
145. | 184.
69. | | SULAR | 679.7
608.4
623.4
619.6
627.0 |
66522
66522
66532
66532
6653
6653
6653
6 | 7112.3
612.3
686.9
703.9 | 6887.4
6885.4
6700.4
629.0 | 641-14
641-14
641-14
641-14
641-14 | 6492-6
6492-8
6482-8
648-8
648-8 | 635.2 | | Wet.c | 16.72
16.72
15.68 | 011441
00141
00141 | 12.50 | 404-00
404-00
404-01 | 10.6 | 07007
07007
07007 | 15.4 | | 0.536
.c | 00000 | 00000 | 30000
90000
11111 | 00000 | 00000 | 00000 | 00 | | PERCENT | 20000 | 20022 | 00000 | 20000 | 00000 | 20020 | ეტ
ეტ | | PERCENT
OR OPT | 8.9
17.26
18.33 | ~~~~~
\$\frac{1}{2}\fra | NOONE | 0.00 | 11155
1155
1156
1156
1156 | 7.00- | 13.0 | | L(MIN)
DEGE | | 17.2
17.8
17.8
14.8 | 2.55
2.60
2.60
2.60
2.60 | 26234
26211
211232 | 25.65
17.22
11.12
10.65 | 2000
2000
2000
2000 | 14.4 | |) (MAX)
DEG : C | ######
######
######################## | 44444
44444
464444 | 774434
744434 | ፈய ቋພ
ቁພພພ፦
ቴ-ፌ-ፌ-ፌ-ፌ- | はよいない
とというマイ
はないでき
はない。 | #####
##\\\
\$\dagger
\$\dagger | 3.3
1.4 | | 1128E | 38393
70000
00000 | 0000
00000
000000
00000 | 20000
20000
20000 | 200000
2000000000000000000000000000000 | 8833
8330
8330
8330
8330
8330
8330
8330 | 00000
00000
00000 | CEV | | SITE | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | NE AN
STANDAKD | | DATE | 60176
60276
60376
60476
60576 | 60776
60776
60876
60976
61076 | 61176
61276
61376
61576 | 61876
61876
61876
62076 | 62276
62276
62376
62476
62576 | 62 676
62 776
62 876
62 976
63 076 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EVAPL | 227
1221
1227
122
123
123
123
123
123
123
123
123
123 | 127.05
127.05
128.29
139.33 | 1322-17
1322-18
132-118
1431-17 | 133.75
135.87
136.83
137.21 | 138.54
138.54
139.58 | 139-98
140-59
141-45
142-25 | 143.51 | | |-------------------------------|---|--|---|---|--|--|------------|------------------| | CMECIP | 00000
00000
00000
00000 | -0000
-0000 | 000
000
000
000
000
000
000
000
000 | 20202 | 00000
00400
00400 | 8
70004
20000 | 0.0 | | | EVAN
CHVAP | 00000 | -0.00
-0.00
1.24
1.75 | 00000 | 10.10
10.00
10.00
10.00
10.00 | 0.00
0.00
0.00
0.00
0.76 | 00000
000000
0000000000000000000000000 | 0.66 | 0.69 | | MIND
24-HRS
KM | 00000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4-000
200000
4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 201100
001100
001100
001100 | 103
833
124
134 | 100. | 146. | | SCLAR | 99000 | 6412.1
6413.0
641.3 | 20000000000000000000000000000000000000 | 465554
22264
22264
24325
40325 | 5443
56044
5002
5003
5003
5004
5004
5004
5004
5004
5004 | MWWW
AWAWA
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4 | 430.5 | 436.1 | | DEC.C | 00000 | -0-0
17-1
23-4 | 888
888
988
988
988
988
988 | 2000
0000
0000 | 22
22
23
24
24
24
24
24
24
24
24
24
24
24
24
24 | യയയയയ
ചെയ്യു | 14.5 | 18.5 | | 081
086.c | 00000
11111 | 94999
99999
11111 | 00000 | 00000 | 11111
20000 | 00000
1111 | 0.0- | 0.0 | | HIMIN J
PERCENT | 20000 | 00000 | 20000 | 00000 | 00000 | 00000 | 0.0- | 0.0 | | H (MAX)
PERCENT
UR OP I | 20000 | -0.0
1.3.3
17.8
20.6 | 100000
10000
10000 | 20.0
18.9
17.8
1.1 | 2011
2011
2011
2011
2011 | 011160
011482
00172 | 17.8 | 18.4 | | 1 (HIN)
Dec.C | 20000
20000
11111 | -0.0
-7.8
20.0
20.0 |
27.20
27.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 2000
1100
100
100
100
100
100
100
100
10 | 17.22 | 2007-20
2007-20
2007-20 | 18.3 | 17.8 | | I (RAX)
DEG • C | 00000 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | コリカスス
クタイプマ
グイプグイナ | 7.42.48
8.42.48
4.43.4 | 2022
2022
2022
2024
2024
2024
2024
2024 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 32.2 | 32.28 | | IIVE | 999999
999999
999999 | 20000
20000
20000 | 28883
20000
00000 | 2022
2022
2020
2020 | 2020
2020
2020 | 20022
20022
20020 | 830
830 | DEV | | SITE | LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC | LASCANC
LASCANC
LASCANC
LASCANC
LASCANC
LASCANC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANCARD | | DAIE | 70176
70276
70376
70476
70576 | 70 / 76
70 / 76
70 / 76
70 / 76 | 71176 | 71576
71676
71776
71876
71976 | 124.76
722.76
723.76
723.76 | 72576
72676
72776
72876
72976 | 73076 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | ERECIP ENTRY | 0.0
0.0
145.59
0.15
146.43
0.0
147.98 | 0.0
0.0
0.0
0.05
150.67
0.0
151.43 | 0.0
0.0
0.0
0.0
0.0
155.88
0.0
0.0 | 0.0
0.10
0.0
0.0
0.0
169.36
0.0
160.20 | 0.0
0.0
163.42
0.0
164.28
0.0
165.12
0.0 | 0.0
0.20
0.20
167.03
0.0
167.64
0.0
163.37 | 19.691 80.0 | | |-------------------------------|---|---|--|---|---|---|-------------|-------| | P AN
EVAN
CM AP | 00000
45000
45000 | 00000 | 7.00
7.00
7.00
1.00
1.00
1.00
1.00
1.00 | 0.142
0.142
0.194
0.94 | 09-10
09-10
09-10
09-10
0-10 | 175000 | 0.56 | 0.82 | | 24-HRS
KM | 200
200
200
200
200
200
200
200
200
200 | THE TOTAL STREET | 1451
1451
990
1145 | 166.
166.
204.
140. | 2003
1003
1003
1003 | 2003.
1633.
1163. | 148. | 129. | | SULAR | 5446
5466
5466
5466
5466
5466
5466
5466 | 500000
500000
700000
700000 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 450004
270000
27100000000000000000000000000000 | ₩₩₩₩₩
₩₩₩₩₩
₩₩₩₩₩₩ | 24024
44024
45047
70404 | 460.7 | 531.9 | | WEL
DEG.C | 1991
9865
8665
8665
8665
8665
8665
8665
8665 | 24.5.5.00 | 2000
2000
2000
2000
2000 | 16.09
18.09
18.09
18.09 | 77.22 | 1672
1672
1672 | 16.7 | 1.51 | | 08)
066.c | 00000 | 1111
2000
2000 | 00000 | 00000 | 11111
2020
2020
2020 | 20020 | 0.0- | 0.0 | | HERCENT | 20000 | 00000 | 00000 | 00000 | 11111 | 00000 | 0.0- | 0.0 | | H (MAX)
PERCENT
UR OP I | 782-18
782-18 | 44614
64454
90477 | | 77777
20000
2000 | 200000
200000
20000 | 76700
76700 | 13.3 | 15.9 | | I GINI | 0-986 | 2000
2000
2000
2000
2000
2000
2000
200 | Novido
Novido | 4444
700 000
7 1 1 1 1 | 22.00
20.00
20.00
20.00 | 40400
40400 | 13.9 | 15.7 | | I GMAX I | 24444
24444
24446 | መጠቀመብ
ታራቀሉብ
ብሾስግት | ವಾಬವಾದ
ವಾಬಗಳು
ವಿಕೇಶಿಕ್ಕಳು | M M M M M M M M M M M M M M M M M M M | 20042
20042
340042 | ಪಟ್ಟಲ್ಲ
ಪಟ್ಟಲ್ಲಾ
ಶಿಹ್ಮೇನಿನ | 31. | 33.8 | | 11 ME | 00
20
20
20
20
20
20
20
20
20
20
20
20
2 | 20000
20000
20000
20000 | 00000
98888
98888
98888 | 0000
00000
000000
000000 | 00000
20000
200000
200000 | 00000
00000
00000 | 583 | | | SITE | LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKLC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | KEAN | | UAIE | 80176
80276
80376
80476
40576 | 80 676
80 876
80 976
81 076 | 81176
81276
81376
81476
81576 | 81 476
81 776
81 876
81 976
82 076 | 82176
82276
82376
82476
82576 | 82 676
82 676
82 676
82 976
83 676 | 37168 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EVAP | 170.47
170.95
171.64
172.54 | 174.92
175.52
176.42
176.42 | 177-51
178-19
178-62
179-62 | 181.46
181.42
181.77
183.56 | 1884-35
184-35
185-06
185-06
5-06 | 185.86
185.05
187.71
189.24 | | |--------------------|---|--|--
---|--|--|------------------| | PRECIP | 000000 | 00000 | 00000 | 00000 | 00000 | 00000 | | | P AN
CAAP | 0.80
0.48
0.69
0.79
2.09 | 00000
440000
00444 | 0000 | 0.10 | 0000
7.45
0.000
0.000 | 0.27
0.69
0.69
0.67
1.53 | 0.65 | | 24-HRS | | 1860
1883
1884
1884 | 23450
23450
123450 | 114
1224 | 1001
1001
1004
1004 | 7
7.450
7.450
1.1150
1.1150 | 20
40
40 | | SGLAR | 4574
5718
5729
156-1 | 484222
847242
846442
866446
10053 | 4444
4444
4429
1.1 | 44846
64646
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
646666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
6466
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
6466
64666
64666
64666
64666
64666
64666
64666
64666
64666
64666
6 | 24-66
24-66
39-12-9 | 44004
9520-3
912-44
89-94 | 448•1
98•1 | | WBI
Dec.c | 4-50V
4-50V
400V0 | 0.4.6 | 200000
200000
2000000 | -ann- | 245
245
273
273
273
273
273
273
273
273
273
273 | 2400-
24400- | 15.0 | | DEC.C | | 440001
440001
4400000 | ~~~~
\$0,0~

0,0,0,0 | 22
118
118
100
100
100
100
100
100
100
100 | 20490
00440 | 35458
20088 | 18.2 | | HERCENI | 1 2 3 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 64464
746-0
68-0 | 131
131
131
131
131
131
131
131
131
131 | 43440
435410
435410 | 00000 | 24477
20000
20000 | 48.0 | | HERCENI
UR DPT | 100,0
68,0
99,0
99,0
100,0 | 0.000 | 00000 | 0.00
0.00
0.00
0.00
0.00 | 000
04.00
06.00
100.00 | 100.0
100.0
97.0
100.0 | 99.0
0.0 | | DECENSION OF CO. | 12.00
14.00
17.50 | 7444
747.64
02002 | 22244
22424
20424 | オグクログ
グラウング | 70000
00000 | 0-20
0-20
0-20
0-20
0-20
0-20
0-20
0-20 | 2.5 | | I (MAX)
Decic | ,
27,22,0
27,42,0
5,44,0,1 | รามสภา
ออาเพช
บ้องให้กับ | ಸಹಸ್ವಾಗ್ಯ
೧೦೮೩೩
ವಿಸ್ತನ್ನುಗಳು | 04000
04000
04000 | 22222
22222
22022 | 77727
98458
38658 | 28.3
2.6 | | 3471 | 0 683 C
0 83 C
0 83 C
0 83 C
0 83 C | 0 83 C
0 83 C
0 83 C
0 83 C | 00000
00000
000000
00000 | 00000 | 00000
22000
22000
20000 | 00000
00000
00000
00000 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDAKU | | DATE | 90176
90276
90376
90476
90576 | 50676
90876
90876
90976
91076 | 91176
91276
91376
91476
91576 | 91676
91776
91876
91976
92076 | 92176
92276
92376
92476
92576 | 92216
92876
92876
93076 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EUAAL | 188.58
189.14
189.68
190.36
190.91 | 191.40
192.00
192.31
193.70 | 193.40
194.06
194.16
194.46
194.83 | 1955.21
1956.386
1966.386
197.16 | 197.48
198.55
198.66
198.66 | 199.32
200.24
199.77
199.90
200.23 | 200.23 | | |-------------------|--|---|--|---|---|--|---------|------------------| | enec 1P | 60000 | 00000 | 0000C | 00000 | 00000 | 00000 | 0.0 | | | C
WAP | 0000
0000
0000
0000
0000
0000 | 0000
44.00
0.000
0.000
0.000
0.000 | 00000
W3-ww
WWOOL | 00000
600
8444
800 | 00000 | 00000 | 0.0 | 0.35 | | MANNE S | 177.
141.
168. | Ф
Ф | m m m m m m m m m m m m m m m m m m m | OPPOP
OPPOP
NEEDER | 112
67-
126-
126- | 49000
49000
49000 | ·° | 116. | | SOLAR | 74484
8894
8900
8900
7896
8900
8900 | \$604
\$604
\$604
\$600
\$600
\$750
\$750
\$750
\$750
\$750
\$750
\$750
\$7 | 2000
2000
2000
2000
2000
2000
2000
200 | 44444
4444
4444
6444
6444
6444
6444
64 | 790000
790000
790000
790000 | 363
566.2
2361.6
2361.6
24.6 | 376.5 | 357.4
134.1 | | ĭ₩.c | 0 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 725.05 | 00000
767887 | 20000
20000 | 0000°C | 10.0 | 3.1 | | 983.0 | 48644
•••••••••••••••••••••••••••••••••• | 211
2110
2000
2000 | | 70.00 | 20111111111111111111111111111111111111 | שאיטישט
האילים
האילים | 12.5 | 10.3 | | HERCENT | 341.00
441.00
441.00 | 288.0
388.0
288.0
488.0 | 23.0
-0.0
64.0
67.0 | 46.0
26.0
222.0 | 25.00
200.00
200.00
25.00 | 24
27
27
21
21
20
00
00 | 28.0 | 36.3 | | HERCENT
UR DPI | 00000
0000
00000
00000 | 6.47.9
9.99.0
9.99.0
1.69.1 | 0.00.0
0.00.0
0.00.0 | 96.0
100.0
100.0
100.0 | 00.000 | 000000000000000000000000000000000000000 | 0.72 | 98.6
2.9 | | OF G. C | 25.1.
20.2.2.0
20.2.2.0 | 66.55
- 20.00
- 20.00 | 2496.4
2022 | 7.47.00.00.00.00 | MW94- | -44-44
54000 | 0.0- | 3.6
3.0 | | J. G. G. | ห่งงเก่
กรงกล
อ๋งอ๋อ๋อ๋ | ವಗಗಾಣ
ಭವವನ ನ
ನಗೆಸಂಗೆ | 28825
28052
50050 | 747747
44780
70000 | 77777
22777
24777
24040 | 22
2023
2023
2023
2023
2023 | 20.0 | 5.12
4.15 | | 14
2
 | 00000
00000
00000
00000 | 0 683 0
0 833 0
0 830 0
0 830 0
0 830 0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0 683 C
0 83 C
0 83 C
0 63 C | 000000 | 20000
33338
30000 | Cusc | C CEV | | SHE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MEAN
STANDAKI | | DA1E | 100176
100276
100376
100476
100576 | 100 76
100 776
100 176
100 9 76
101 0 76 | 101176
101276
101376
101576 | 101276
101776
1016776
101676
101976 | 102176
102276
103376
102476
102576 | 102676
102776
102876
102976
103076 | 103176 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EVAPL
CM | 200.90
201.01
201.40
201.45
201.82 | 202.81
202.83
203.93
203.91
204.42 | 2055.11
2055.11
2055.11
2055.11 | 2005.18
2005.18
2005.21
2005.31 | 206.19
206.22
206.55
206.73 | 203.65
201.70
201.70
207.70
207.70 | | |------------------------------|--|--|--|---|--|--|-------------------| | PREC IP | 00000 | 30000 | 000000 | 00000 | 00000 | 20000 | | | P AN CEVAP | 00000 | 00000 | 00000 | 0-0-0-03
0-09
0-09
0-10 | 00000
40000
60000 | 1.57
-0.95
-0.00
-0.00 | 0.45 | | WIND
24-HRS
KA | 200 H
200 H
200 H
200 H | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 498
1112
866 | ~~~
~~~~
~~~~~
~~~~~~~~~~~~~~~~~~~~~~~ | 20
00000
00000
00000 | 3302
4400
640
640 | 140. | | SCLAR . | 4446
64446
64446
64446
64446 | WWWWW
4WW44
2W4Q4 | 300 HT 30 | 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 | 3422
2316.6
2262.1
2852.0 | 30000
30000
30000
3000
3000
3000
3000 | 280.2
85.0 | | SEG.
OFG.C | 200000
000000 | 20000 | 00000
00000 | aww.5
50405 | ವರ್ಷ-4.ಪ
ನಗುರಿಸುರ | 30000
20000 | 4.
4. | | DEG.L | 44004
04004 | 1111
1111
1111
1111
1111
1111
1111
1111
1111 | # 3 U J J
3 U J D
3 U J D | 448 44
34040 | 40001
20000 | 20.20 | 7.8
5.1 | | HERCENT | 24.00
24.00
20.00
20.00 | 243.00
243.00
243.00 | 9.0
90.0
77.0
-0.0 | 2452
6475
6475
6000 | 122336
122336
100000 | 0.44
0.44
0.44
0.44
0.44
0.44 | 33.9 | | HENCENT
PERCENT
UR DPT | 2 240
20000
00000 | 0.000 | 96.00
1000.00
990.00 | 000000 | 98.00
98.00
99.00
100.00 | 87
1000
1000
1000
1000 | 97.1 | | JIMIN
DEG.C | - 10.
- 10.
- 1.
- 1. | 100% | 1 | 000
000
000
000
000 | 00900
00900
11111 | 3.0
2.0
-14.0
-24.0 | 5.5
2.5
2.6 | | ILMAX 1
DE G.C | 2020
2020
2020
2020 | ۸ | on I
on in an | 2004420
200500 | 22112
2264
25024 | 211
2011
2014
2014 | 4.5
3.0 | | ⊒ √ - 1 | 20010
20010
20000
20000 | 00000
00000
00000 | 0000
0000
00000
00000
00000 | 00000
000000
0000000000000000000000000 | 00000
00000
000000
00000 | 0000
00000
00000
00000 | CEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DATE | 110176
110276
110376
110476
110576 | 110676
110776
110876
110976
111076 | 111276
111376
111376
111576 | 111676
11176
111676
111976 | 112176
112276
112376
112576 | 112676
112776
112876
112576 | | Table A-2. Climatological data for Las Cruces, New Mexico, 1976 (continued). | EVA AL | 201.70
201.93
208.01
208.05
208.33 | 208.42
208.62
208.97
208.97 | 209.24
209.53
209.92
209.92 | 2210.59
2210.531
2210.531
2210.531 | 211.43
211.46
211.60
212.00 | 212.32
212.53
212.65
213.65
213.65 | | |--------------------|--|--|---|--|--|--|-------------------| | PREC 1P | 00000 | 00000 | 00000 | 02000 | 00000 | 99999 | | | P AN
C A P | 00000
00000
00000
00000 | 0.09
0.20
0.16
0.19 | 0.00
0.25
0.22
0.22 | 00.122
00.122
00.144
00.144
00.144 | 0.03
0.14
0.32
0.08 | 000000
000000
000000000000000000000000 | 0.19
0.15 | | MA-HRS | 848949
0000 | 12
50
50
50
50
50
50
50
50
50
50
50
50
50 | ფლისტ
404ლი | 122
222
222
222
222
222
222
222
222
222 | 141.
790.
2019. | 2003
2015
2015
2015 | 108. | | SOLAR | 2905-4
2942-4
2942-4
274-4 | 22222
22222
22222
2222
2322
2322
2322 | 200000
087400
98461
•••••• | 2
mm
20~20
20~20
20~20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 22004
22004
2000-24
2000-25 | 222
24402
24423
000
000
000
000
000 | 253.0
68.6 | | MP. C. | 20000
20000 | 20000 | 00000
0mmnm | ארשכני
ארשכני | 10000
20000 | 40 <u>111</u>
40100 | ÷6. | | Bel. | -V-86 | 404WW
20000 | 30441
00220 | <i>ಬ</i> 4444
೨೦ಬೆಎಸ | ກທາຍວ່
ພ້ວີນໍ້ນ້ວ | 11
04040 | 2.0
4.0 | | PERCENT | 385.0
222.0
7.0
27.0 | 11124
17500
17500 | 244.0
20.0
27.0
19.0 | 741.0
741.0
70.0
18.0 | 26.00 | 17.0
7.0
6.0
12.0
29.0 | 23.1 | | HERCENT
IIR DPT | 20,20,0
20,00,0
20,00,0 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.001
0.001
0.001
0.001
0.001 | 0.000
0.000
0.000
0.000 | 0.001 | 00000
00000
00000 | 91.2 | | J (RIN) | 11.00 | 000000
00000 | 0.044
0.040
0.040 | 200000
200000
200000 | 2.00
0.00
0.00
0.11 | 1 - 1 - 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | -6.2 | | JEMAX)
DEC.E | 22712
22712 | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | รายการ
รายการ
รายการ | ಷ್ಟ್ರತ್ನಷ್ಟಾ
ನಿಬ್ಬಿಸಿದ್ದರೆ | วามนา
วงงณา
ว่างังงัง | ವರ್ಷವಾಗ
ವರ್ಷವಾಗಿಗ
ಶೆರೆನೆಸೆಸೆ | 2.5 | | 1 I P.C. | 00830008300 | 2000
88888
88888
90000 | 00000
00000
000000
00000 | 00000 | 20000
20000
20000
20000 | 00000
00000
000000
00000 | DEV | | SILE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCALC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | ME AN
STANDARD | | DATE | 120176
120276
120376
120476
120576 | 120676
120776
120876
120976
121076 | 121176
121276
121376
121476
121576 | 121676
121776
121876
121976
122076 | 122176
122276
122376
122476
122576 | 122776
122776
122876
123976 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977. | TO JAL
EVAP
CM | 0000
10000
10000 | | 22.180
22.180
23.180
23.180 | 4405
304
335
335 | 44440
44440
64421
56410 | 66667
64.506
64.506
64.506 | 6.82 | | |------------------------------|--|--|---|---|--|---|---------|-------------------| | PRECIP | 00000
0-000 | 00000 | 00000 | 00000 | 00000 | 00000
00000
9 | 0.0 | | | P
EVA
A
P | 00000
75000
75000 | 35000
00000
11000 | 0.00
0.00
0.35
0.35 | 0.00
0.33
0.33
0.33
0.23 | 277 | 00000 | 61.0 | 0.24 | | HIND
24-HRS
KM | 24400
24400
24400 | 404774
404774
46464 | | ###################################### | 126.
161.
187.
121. | 64664
64664
64664
64664
64664
64664 | 14. | 153. | | SOLAR | 1222
1222
1222
1024
1044
1044
1044
1044 | 82000
8000
8000
8000
8000
8000
8000
800 | 2202-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 2240
2240
24034
2444
2444 | 22721
24721
44721
35559 | 00000000000000000000000000000000000000 | 351.4 | 270.0 | | Nic
Dec.c | olumam
vinonio | 10000 | 00000 | 15000 | 4~0mm | 74ww/
0000w | 1.0 | 3.0 | | 081
086.c | 30000
20000 | -0000
-0000
-0000 | 0%040 | 0mm0- | ಎಂಬಿ.ಎಬ
ಎಂಬಿಎಂ | vandu
Givingo | 2.5 | ωω
•••
••• | | H FRCENI | 2000
4000
6000
6000 | 255.0
255.0
10.0 | 545.0
146.0
0.0
0.0 | 2000
2000
2000
2000 | 747.0
-0.0
-0.0
20.0
20.0 | 223
233
76.00
76.00 | 50.0 | 27.6 | | HERCENI
PERCENI
OR OPT | 0.000
0.000
0.000
0.000 | 0.001
0.001
0.001
0.009 | 0.00.00 | 00000
00000
00000 | 0.001
99.00
100.001
98.00 | 244
244
2001
1000
1000
0.000 | 100.0 | 0.7
6.7
6.0 | | I (MIN) | 111
02400 | -7
-2
-2
-1
-1
-1
-1 | 0000 | 11111 | 4.0
4.0
-12.5
-1.0
-1.0 | 10000 | -3.0 | 3.8 | | Je kax J | 22340 | 241-c | 2 222
2222
2422
2422 | 24444
24444
305344 | 20114
20144
00054 | 77777
73600
54604 | 0*6 | 12.5 | | = | 0000
88888
88888
0000
0000 | 2000
2000
2000
2000
2000
2000
2000
20 | 000000
000000
000000
000000 | 00000
0000
0000
0000
0000 | 00000
00000
00000
00000 | 00000000000000000000000000000000000000 | 0880 | , ULV | | S = E | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCPUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCAUC | MEAN
STANDARL | | DAIE | 10177
10277
10377
17501 | 10677
101
77501
77601
77601 | 111277 | 20077777777777777777777777777777777777 | 77757
77757
77757
77757
77757
77757
77757 | 12677
12877
12977
13077 | 13171 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | TOTAL
EVAP
CM | 7.7.30
7.7.30
8.055
8.055 | ###################################### | 00000
84800
847400 | 25004
38006
38006 | 44
445
445
445
455 | 9.92
0.42
0.81 | | |------------------------------|---|---|--|---|--|-------------------------------|------------------| | PRECIP | 00000 | 00000
20000
20000 | 00000 | 00000 | 00000 | 000 | | | P AN
CEVAP | 00000 | 0.129
0.41
0.41
0.24 | 00000 | 00000
00000
00000
00000 | 0-11-0
 | 0.44
0.30
0.30 | 0.50
0.32 | | WIND
24-HRS
KH | 2204.
1204.
1399. | 1144
833.
2233. | 16.3
36.5
57. | 91.
1014.
104. | 44882.
44882.
44882. | 204.
163.
106. | 186.
135. | | SULAR | 44 W24 A B B B B B B B B B B B B B B B B B B | 2222
2222
2222
2322
2322
232
232
232
23 | 422
422
400
410
410
410
410 | 44145
44145
467
467
4414
4414
4414
4414
4414
4414
4 | ###################################### | 468.8
411.7
488.5 | 367.3 | | WUT
DEG.C | | 0m0-7 | 7000w
20000 | 76442
06300 | 00mmn | 04.0 | 2.7 | | 081
066.c | WWOWW
WWOWW | on and | ಹ ೂ ಬರನ
ದರೆರೆಸುಸ | ลลแลน
อณ่ณณณ | 40.0000
40.0000 | 40.00
000 | ል
ል
ል
ል | | PIKCENT | 2522
2620
3690
3690
3690 | 17.0
224.0
11.0 | 115.0
15.0
24.0 | 17.00 | -0.0
9.0
9.0
26.0 | 13.9 | 17.5
8.8 | | H (MAX)
PERCENI
UR DPT | 000000 | 0.000
499.00
100.000
100.00 | 90000
90000
90000 | 0001
10001
847
00000
00000 | 96.05
76.00
86.00
96.00 | 71.0 | 92.0
12.3 | | (MIN)
DEG:C | 21111
240000
240000 | 7 7 7 1
244201
244200 | 11111
40444
30000 | 00000 | 111 1
00000
000:00 | -7.5
-7.0
-10.0 | 2.6 | | 11 MAX)
DEG.E | 70704
54565 | 444400
44460 | 277741
20044
20000 | 22222
22222
22222
22222 | ಬಬ್ಬಲ್ಲ
ಕ್ಷಾಹಿಡಿಗೆ
ಬೇಬೆಬೆಬೆ ವ | 12
13.0
14.5 | 4.5 | | 1141 | 0 8330
0 8330
0 830
0 830 | 00000
00000
000000
00000 | 00000
00000
00000
00000
00000 | 00000
00000
00000
00000 | 000000
00000
00000
00000
00000 | 0 83 C
0 83 C
0 83 C | DEV | | SILE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC | MCAN
STANDARD | | DA 1E | 20277
20277
20377
20477
20577 | 20611
20517
20617
20577
21017 | 22227 | 21677
21877
21877
22077 | 22277
222377
22377
22477 | 22677
22111
22517 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | 223.34 | 2244.226.44.226.44.226.44.226.44.20 | 259
259
32,359
32,359
32,359 | 24450
24450
24450
24450
24450 | 34.15
38.00
39.10
40.33 | 4444
4500
4500
4500
4500
4500
4500
4500 | 45.05 | |
---|---|--|---|---|---|---------|---| | 00000 | 20000 | 22220 | 20000 | 00000 | 00000 | 0.0 | | |
00000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000 | 2-00
2-00
2-00
2-00
2-00
2-00
2-00
2-00 | 0.54
0.46
0.66
1.09
1.05 | 0-0-0
0-0-0
0-4-0
5-4-0
5-4-0
5-4-0 | 00
00
00
00
163 | 0.71
0.27
1.14
0.90
0.96 | 91.0 | 0.78
0.37 | | 25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000 | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 243.
162.
294.
201. | 265.
265.
201.
227. | 2255
225
258
258
258
258 | 2000
600
600
600
600
600
600
600
600
600 | 283. | 262. | | 311-4
459-2
420-1
306-4 | 1.50
460.4
3.56.1
405.1
405.1 | 4505
4505
4505
4505
4505
4505
4505
4505 | 55755
55755
55755
5575
5575
5755 | 004440
000000
000000
0000000
0000000000 | 811897
72867
786.91
86.91 | 554.5 | 438.2
88.4 | | 2000% | 00000
00000 | 14440
20022 | +44 | 440-0
00000 | annaa
naann | 7.5 | 4 + 2
2 • 8 | | 40w4m | 27-27-27-27-27-27-27-27-27-27-27-27-27-2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 20000
20000
20000 | 211111 | 20000 | 0.61 | 9.4 | | 10.00
119.00
16.00 | 46444
000000 | 20.
10.
10.
10.
10.
10.
10. | 221.02222222222222222222222222222222222 | -071-1 | 777.00
721.00
721.00 | 7:0 | 16.1 | | 880.0
80.7
99.4
99.6
99.6 | 994.0
92.0
80.0
51.0 | 57.0
98.0
98.0 | 0.00
0.00
0.00
0.00
0.00 | 77.00
64.00
89.00
69.00 | 100.0
97.0
76.0
81.0
96.0 | 42.0 | 17.5 | | 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 111
#3440
vw500 | 11111
00000000000000000000000000000000 | 26.
24.
20.
20.
20.
20.
20.
20. | 11 1
2000-9 | 20000 | 0.9 | 0-
20-
20- | | ೧೨೯೯
೧۷۷۸೩೫
ಬೆಬೆಬೆರೆಬೆ | | 2222
2222
2222
2000
2000 | 22122
0002
2002
2002 | ವಿನ್ಯವಿಷ
ಇದಬಹಿತ
ನೆನೆನೆನೆರೆ | 20000 | 23.5 | 18.8 | | 00000
00000
00000 | 20000
20000
200000
200000 | 00000
00000
00000
00000
00000 | 00000
00000
00000
00000
00000 | 00000
00000
00000
00000
0000 | 00000 | 0830 |) DEV | | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
I ASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC | MEAN
STANDARD | | 30277
30377
30477
30577 | 2006
2006
2008
2009
2009
2009
2009 | 112277 | 220000
220000
220000
220000
220000 | 2222
2222
22222
22222
22222
22222
22222
2222 | 32.077
32.077
33.077 | 33177 | | | | 1/7 LASCKUC 043C 20.5 -4.5 66.0 10.0 14.0 5.0 311.4 323. 0.83 0.0 22.3 377 LASCKUC 083C 12.5 -8.0 87.0 13.0 6.6 1.0 459.2 351. 0.75 0.0 22.3 477 LASCKUC 083C 12.5 -8.0 87.0 19.0 3.0 -2.0 420.1 305. 0.68 0.0 23.0 477 LASCKUC 083C 14.0 -9.0 87.0 16.0 4.5 -1.0 440.6 227. 0.57 0.0 23.0 577 LASCKUC 083C 8.5 -2.0 99.0 46.0 5.5 1.6 306.4 325. 0.35 0.0 23.0 | 117 LASCKUC 0836 20.5 -4.5 68.0 10.0 45.0 311.4 353. 0.83 0.0 22.3 377 LASCKUC 0836 12.5 -4.5 68.0 13.0 45.0 351. 0.75 0.0 22.3 45.0 45.0 14.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | 117 LASCRUC 0836 20.5 -4.5 68.0 10.0 14.0 5.0 311.4 323. 0.83 0.0 22.3 3577 LASCRUC 0836 12.5 -6.5 87.0 16.0 4.5 5.5 -1.0 450.2 351. 0.83 0.0 23.0 4.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 87.0 15.0 15.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1. | The control of | 1.00 | 100000 | 1.00
1.00 | Climatological data for Las Cruces, New Mexico, 1977 (continued). Table A-3. | TUTAL
EVAP
CM | 45.44
46.43
48.34
48.34 | 550
500
500
500
500
500
500
500
500
500 | 25655
45655
45655
55655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
56655
5665
56655
5665
5665
56655
56655
56655
56655
56655
56655
56655
56655
56655
566 | 58.01
58.01
50.35
60.35
61.35
61.35 | 62.03
63.62
63.63
64.45 | 64.91
60.15
67.00
68.84 | | |----------------------|---|--|---
---|---|---|------------------| | PREC 19 | 00000 | 00000 | 20000 | 00000 | 00000 | 20000 | | | CHP
NAN
P
P | 0.92
0.74
0.84
0.84 | 0.82
0.75
0.76
1.11 | 1.06
1.59
0.57
0.57 | 0.61
0.63
0.67
1.14 | 00.25
00.25
00.25
00.25
00.25 | 000
000
000
000
000
000
000
000
000
00 | 0.79 | | MIND
24-HES
KM | መታጠ ተመ
መውረው ያ
መሥመው ያ
መሥመው ያ | 2024
11324
2116. | 22550
22550
22550 | 106.
2316.
239. | 176.
293.
120.
164. | 122
122
123
123
123
123
123
123
123
123 | 194.
91. | | SGLAR | MWWW
WBWW
WBW
WW
WW
WW
WW
WW
WW
WW
WW
WW | 24426
24426
34446
3464
1 • • • • • • • • • • • • • • • • • • • | 20074
20074
200040
200040
200040 | 5280
5730
7730
8730
8730
8730
8730
8730
8730
8 | 2022
2022
2022
2022
2022
2022 | 46494
6464
6464
6464
6464
6464
6464
646 | 505.6 | | WEI.c | 94440
00400 | 20245
2020
2020
2020
2020 | 24524
00000 | 125.00 | 20000 | 18.0
16.0
15.0
15.0 | 13.4 | | 081.c | marine
marine
wwww.co | 2025
2025
2025
2025 | 2000s | 20.50
180.50
180.50 | ~@ngn
onono | 2225
2225
2225
2225
225
225
225
225
225 | 23.6
3.5 | | PERCENT | 225.00
225.00
2000.00 | 274220
20000 | 242100
242100
242100 | 2 000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000
5,000 | 0.00 | 888
0.0000
0.0000 | 9.9 | | PERCENT
UR OP I | 78.0
99.0
97.0
99.0 | 200000
200000 | 47.0
73.0
74.0
100.0
69.0 | 00000
00000
00000 | 982-00
982-00
99-00 | 0.0000
0.0000
0.00000
0.0000 | 90.4
10.9 | | J. GMIN. | 2024WW | 02000 | 4.25.00
6.50
6.50
6.50 | 20000000000000000000000000000000000000 | -wavo | 21
21
21
21
21
21
21
21
21
21
21
21
21
2 | 4.6 | | I (MAX)
DE G.C | 701114
70801
80308 | ಸಸ್ತಹಳ
ಕಾರ್ವಿ
ಸ್ಥರಿಸ್ತರ | 201742
2020
2000
2000 | 2000
2000
2000 | 74747
47070
57050 | 724.72
686.0
72.32.0 | 24
44
55 | | 1 i ME | CRUC 083C
CRUC 083C
CRUC 0830
CRUC 0830
CRUC 0830 | CKUC 0630
CRUC 0630
CRUC 0630
CRUC 0630
CRUC 0630
CRUC 0630 | CKUC 0830
CKUC 0830
CKUC 0830
CKUC 0830
CKUC 0830 | RUC 0830
FUC 0830
FUC 0830
RUC 0830 | 000000
00000
00000
00000
00000
00000
0000 | XLC 0830
XUC 0830
XUC 083C
XUC 083C | AN
INDARU UFV | | NE SHE | 277 LAS
377 LAS
477 LAS
577 LAS | 617 LAS
677 LAS
677 LAS
077 LAS | 277 LAS
277 LAS
577 LAS | 677 LASC
677 LASC
677 LASC
677 LASC | SATI LASS | 677 LASC
877 LASC
877 LASC
077 LASC | ME AN
STAN | | UA | 44444
50000 | 7444
50004 | クククタ | 44444
 | 44444
74770 | 44444
200000 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | EULA | 72.08
72.08
72.08 | 77.55
76.55
76.55
76.55
76.55
76.55
76.55 | 788.551
80.333
82.033
62.04 | 83.14
865.23
865.23
87.53 | 888.37
990.24
91.25
91.25 | 9999
9999
9999
9999
9999
9999
9999
9999
9999 | 18.96 | | |------------------------------|---|---|---|--|---|---|---------|------------------| |
PREC 1P | 00000 | 00000 | 00000 | 90000 | 00000 | 00000 | 0.0 | | | EVAN
CMAP | 0.71
0.78
0.91
0.84 | 0.05
0.02
0.06
0.06 | 0.48
0.72
0.72
0.71 | 105
117
180
180 | 00
00
57
00 | 0.92 | 0.54 | 0.90 | | 24-HRS
KM | 153.
153.
241.
208. | 142.
126.
160.
200. | 2300
2300
200
200
200 | 190.
220.
108.
320. | 10021
10021
10034 | 144724
45124
1551 | -0- | 173. | | SCLAR | 32/24/2
12/2/24/2
12/2/24/2
12/2/24/2
12/2/24/2
12/2/24/2
12/2/24/24/24/24/24/24/24/24/24/24/24/24/ | 636.9
5376.8
617.8
617.0 | 200000
200000
2000000
2000000
2000000 | 6878.0
6978.0
6978.0
6978.3 | 704.3
700.0
709.1
541.3 | 72250
72250
72250
72250
7250
7250
7250
7 | 551.1 | 596.9 | | MBI.c | 44444
4444
40404 | 22772
22002
20000 | 14.00 | 00000 | 24424
24420
24000 | 00000 | 20.0 | 14.5 | | UBI.
DEG. C | 74674
74674
7474 | 250000
127-1-0
16-1-0 | 20000
1020
1020
1020
1030 | 3244
3444
34080 | 4440H
4446H
4444 | 20022
20022
20023 | 22.0 | 17.9 | | PERCENT | 375577 | 89849
99999 | 324
32.00
24.00
24.00 | 24444
09000 | e00000
140000 | -61
-60
-60
-60
-60
-60
-60
-60
-60
-60
-60 | 13.0 | 10.5 | | HIMAX)
PERCENT
OR OP I | 74.0
98.0
97.0
87.0 | 100
92.0
40.0
100.0 | 100
100
100
100
100
100
100 | 93.0
73.0
66.0
100.0 | 00000 | 900000
900000
900000 | 0.66 | 93. B | | J (MIN) | 100000000000000000000000000000000000000 | 44032
NNN00 | 24474 | 44044
00000 | 200000 | 400005 | 12.5 | ಎಟ
**
& & | | UEG SC | 22722
00844
32686 | 22222
50003
50003 | 22.22.22
22.25.25
22.25.55 | 22222
72222
742000
750000 | 28.42.2
82.20.3
52.55.5 | 24244
24244
24070 | 35.5 | 28.8
2.3 | | 1.75 | 20000
20000
20000
20000 | 008330
008330
008330
008330 | 00000
00000
00000
00000 | 0000
88888
88888
0000
0000 | 00000
################################ | 00000
00000
00000
00000 | 0 83 C | üΕν | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC | MEAN
STANDARD | | DATE | 50277
50277
50477
50477 | 50 617
50 617
50 617
51 617 | 20000 | 511677
511877
521877
52077 | 522211
522311
522311
523111 | 52.26
52.26
52.871
53.68
71
71
71
71 | 53171 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | TOTAL
EVAP
CM | 97.76
98.97
99.90
100.66 | 102.59
103.57
105.57
105.57 | 107.46
108.31
109.20
110.45 | 1122
1132-55
1155-56
1155-56
1155-56
1155-56 | 117.31
118.26
119.05
119.87 | 122
122
123
124
125
125
125
125
125
125
125
125
125
125 | | |----------------------|--|--|--|--|--|---|--| | PREC 1P | 20000
20100 | 00000 | 00000 | 00000 | 00000 | 0.0000000000000000000000000000000000000 | | | P AN
C VAP | 0.89
0.93
0.76
0.84 | 101101
00100
0013
0013
0013 | 0-00
0-00
0-00
0-00
0-00
0-00
0-00
0-0 | 001
002
003
003
003 | 00.003 | 20.1
1.0.7
1.0.7
0.00
0.00
0.00 | 0.98
0.14 | | MIND
24-HRS
KM | 1210. | 2283
2753
1038 | 2000
2000
2000
2000
2000
2000
2000
200 | 94.
102.
90. | 222
232
233
245 | 164.
2196.
1733. | 148. | | SGLAR | 6683
6683
6683
6683
6883
6883
6883
6883 | 000000
00000
00000
00000
00000
00000 | 2665
2665
27
27
27
27
27
27
27
27
27
27
27
27
27 | 759
759
735
735
74
74
75
75 | 24425
2445
2445
2445
2445
2445
2445
244 | 4-455
0404
0404
061-10
061-10 | 603.4
135.2 | | NES.C | 22234
2234
2234
2234
2234
234
234
234
23 | 221.0222.0221.00221.00 | 222.00
222.00
222.00 | 2001
2001
2000
2000 | 24466
24666
20020 | 00000 | 20.02 | | 525
DEC | クソフクにろ
うからまる
・・・・・
ひがらのの | 00000
55555
55555 | 22222
22222
22222
22222 | NNNNN
NNNNN
NONON | 22222
22222
23222
23222 | 22222
25222
25222 | 23 · 6
2 · 4 | | PERCENT | 200000
200000 | 12221 | 45000
00000 | 004444 | 22.00 | 14.0
20.0
14.0
14.0 | 16.2
10.3 | | HERCENT
DR DPT | 2001
0000
00000
00000 | 100
499
80
60
64
94
94 | 0.000
0.000
0.000
0.000 | 100.0
100.0
100.0
100.0 | 944.0
100-100-100-100-100-100-100-100-100-10 | 88889
8889
8889
8889
8889
8889
8889
88 | 94.8 | | I (MIN)
Dec.c | ಷ್ಟಾಪ್ತಾಪ್ತ
ಪ್ರಭಾವತಿ ಪ್ರಭಾವತಿ ಪ್ರ | 200500
200500 | 710470
710470
71700 | 200000 | 200000
200000 |
247-24
24-24
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
24-25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 14.4 | | II MAX)
DEG.C | 22.23
24.00
22.000
1.0000 | ಸಹಸ್ಥಾಬ
ಹಗ್ಗಳು
ಸವರೇಶ್ವರ | admum
dudum
dudum
dudum
dudum | ಸಸ್ವಹ್ಯ
ಹಿರುಪ್ರಿಯ
ರಲ್ಲೇಂಗ | ಸವವಹಿಸ
ST | ユュリショ
シアアシマ
されがいつ | 4. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | | 11 PE | 00000
00000
00000
00000 | 00000
00000
000000
00000 | C 83
C 83
C 83
C 83
C 83
C 83
C 83
C 83 | COCOC
BBBBB
COCC
COCC
COCC
COCC
COCC
CO | 00000
88800
88800
00000 | 00000
000000
000000 | DE V | | SIIE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASURUC
LASURUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
EASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANUARD | | UATE | 1100
60277
60377
77803
77803 | 11503
11503
11503
11503 | 24277
24377
24377
2666
2666
2666
2666
2666
2666
2666
2 | 616177
616177
616177
616177 | 622277
622277
622377
62477 | 62.677
62.477
62.877
63.677 | | Climatological data for Las Cruces, New Mexico, 1977 (continued). Table A-3. | EVAP. | 127-17
128-28
1329-09
131-68 | 1322.
1322.
1323.
1354.
1033.
1033.
1033. | 137.67
137.61
138.50
140.57 | 1421.30
1422.47
143.48
1443.48
1454.35 | 146.66
148.19
148.86
149.86 | 150.55
151.65
1532.64
153.64 | 155.40 | | |-------------------|--|--|--|--|--|--|---------|------------------| | PRECIP | 00000
00000
00000 | 00000
04000 | 00000 | 20200 | 0.00 | 00000 | 0.0 | | | E VAP
CM | 0-0-0 |
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00-100
00 | 0.94
0.89
0.689
0.62 | 11.00
1.00
1.00
1.00
1.00
1.00
1.00
1.0 | 000
33
44
000
000
000
000 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.92 | 0.94 | | 24-HRS | | 26034
000000 | 44-0000
44-0000 | 111349
12649
16649 | 100
100
100
100
100
100
100
100
100
100 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 111. | 127. | | SULAR | 568
5068
5169
4705
0.06 | 500
000
000
000
000
000
000
000
000
000 | 5544
15614
18614
1864
1864
1864
1864
1864
1864 | 898888
88888
88888
••••
88888 | 54489
741289
741289
741289 | 5000
5000
5000
5000
5000
5000
5000
500 | 9.194 | 528-7
87.0 | | MAS.c | 2222
2222
2222
2222
2222
2222
2222
2222
2222 | 02020
20102
20102
20102 | 22222
22222
22222 | 222
122.0
201.0
201.0 | 221
234.0
234.5
234.5 | 221.00
221.00
201.50 | 21.0 | 21.1 | | BEJ.c | NNNNN
25000
20000 | 200000
24420
20000 | NANNA
0-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | 44444
48444
4340 | 20000
10000
10000
10000 | 20000
2466
2466
2466
2466
2466
2466
2466 | 26.0 | 24.3 | | UERCENT. | 43222
43222
10000
10000 | 28884
4-1266
00000 | 3256.00
3366.00
3366.00 | 227
26.00
329.00 | 2000 42
2000 42
2000 0 | 22222
22222
20000 | 24.0 | 28.5 | | PENCENI
UR DPT | 0.001 | 20000 | 2000
2000
2000
2000
2000
2000 | 100.00
84.00
100.00 | 00000 | 00000 | 100.0 | 90.3 | | I LM IN I | 2022
2022
2022
2022 | 16.0
18.0
19.7 | 18.00
19.00
19.00
19.00 | 20000
20000
20000 | 00000 | 2017.5
2017.5
18.00 | 17.0 | 17.4 | | 11841 | ທຸກການ
ພວຍ
ພັນທູ້ທ່ວ | ಜನವನ್ನು
ನಟಲಾಗಾಗ
ರವನಗಳು | ₩₩₩₩
₩₩₩₩₩₽ | ಸಹದಾಗ
ನಿನ್ನಾತ್ತು
ವಿಶ್ವವಿಶ್ವನ್ನ | 20222
20204
20000 | มคพาม
จอดพอ
ล่งน่ณ่ณ่ | 84.38 | 34.0 | | 11 ×E | 00000 | . 00000
mmmm
mmmm
mmmm
mmmm
mmmm
mmmm
mm | 00000
00000
00000
00000
00000 | 0000
0000
0000
0000
0000 | 00000
00000
00000
00000 | 0 830
0 830
0 830
0 830
0 830 | 0.03.0 | CEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | HEAN
STANDARD | | DA FE | 70 277
70 277
70 277
70 577 | 10677
10777
10677
10577 | 111222 | 11677 | 72277 | 72 617
72 617
72 617
73 617 | 13171 | | Table A-3. Climatqlogical data for Las Cruces, New Mexico, 1977 (continued). | TUTAL
EVAP
CM | 10000000000000000000000000000000000000 | 161.31
162.23
164.39
165.39 | 166.27
166.80
167.52
169.33 | 170.17
171.77
172.57
173.51 | 174.08
175.91
175.92
175.75 | 178.40
1179.34
180.10
181.95 | 182.82 | | |------------------------|--|---|--|--|---
---|---------|------------------| | PREC 1P | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.0 | | | P
CEVA
A
P | 0010.
0010.
0010.
0010.
0010. | 0.98
0.94
1.02
0.59 | 00.00
0.7723
0.442
0.442 | 0.84
0.59
0.80
0.80 | 0.67
0.73
1.16
0.79
0.81 | 0.83
0.94
0.67
0.85
0.85 | 0.87 | 0.88
0.16 | | H I NO
24-HKS
KM | 40000
20000
20440 | 1127.
1577.
1974. | 1674.
1674.
1594. | 100
100
100
100
100
100
100
100
100
100 | 44 4
44404
44404 | MENTER OF THE PROPERTY | 171. | 124. | | SÇLAK
LY | 2420
2420
2420
2420
2420
2420
2420
2420 | NGN GAN
MG GAN
MG
MG GAN
MG
MG GAN
MG
MG GAN
MG
MG GAN
MG
MG
MG
MG
MG
MG
MG
MG
MG
MG
MG
MG
MG | 079750
0440
0440
0440
0440
0440
0440
0440 | 24542
2626
2626
2432
2432
244
244
2464 | 4488
4489
4483
4483
4483
4483
4483
4483 | 50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5 | 486.8 | 503.9
48.2 | | yet.c | 20.0
20.0
20.0
20.0 | 000000
00000
00000 | 221.00
221.00
222.00 | 2233.00
2243.00
224.00
224.00 | 200000
14000
20000
20000 | 22.35
23.55
23.00
23.00 | 22.0 | 20.9 | | ogg.c | 200000
400000
000000 | 2222
2222
2225
2232
2232
2332
2332
2332 | 22222
22222
22222
22222 | 20000
2444
2446
2000
2460 | 200000 | 2000
2000
2000
2000
2000
2000
2000
200 | 24.0 | 24.4 | | PERCENT | 0.0000 | 20000
288.0000
388.0000 | 446
1416
43410
400000 | 20000
20000
20000 | 2246
2246
3240
3240
3240 | 244
882
344
00000 | 45.0 | 28.4 | | PERCENT
OF OPT | 00000 | 1000
1000
1000
1000
1000
1000 | 0.001 | 0.000
0.000
0.000
0.000
0.000 | 988.0
988.0
100.0
100.0 | 1000.0
1000.0
100.0
91.0 | 100.0 | 99.1 | | TEMIN)
DEG.C | 05-200
 | 2117. | 2008
0008
0008
0008
0008 | 19.00
19.00
18.00 | 18.00
18.00 | ಗಾರಂಧಿಗ
ನಗ್ಗಳ
ಬಂದಿದ್ದು
ಗಾರಂಧಿಗ | 16.0 | 17.9 | | 1{ MAX 1 | พมพพพ
ครายคล
จำรังอื่อ | 2444
7444
7444
7444
7444 | 32333
0-020
3562
3562 | ಸ್ತವವಿದ್ದು
ಪ್ರತಿಸ್ತುವರು
ಇವೆಸ್ತುವೆಸ್ಕು | 22222
32222
34525
3455 | รมพมม
แห่งนุมพ
วัณ่งในใน | 43.5 | 34.9 | | 프
~ | 0 8 3 0
0 8 3 0
0 8 3 0
0 8 3 0 | 00000
0000
0000
0000
0000 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | 0830
0830
0830
0830
0830 | 0830
0830
0830
0830
0830 | 0830 |) DE V | | SITE | LASCAUC
LASCAUC
LASCAUC
LASCAUC
LASCAUC | LASCKUC
LASCKUC
LASCKUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC | MLAN
STANDAKD | | UATE | 80277
80377
80477
80577 | 80677
80777
80877
80577 | 00000000000000000000000000000000000000 | 81677
81677
81677
82077 | 8223777
1776
1776
1776
1776
1776
1776
1776 | 92677
82777
82677
82677
83077 | 83177 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | EVAP | 1854-45
1855-45
1866-45
1876-65 | 188-23
189-40
190-14
191-76 | 1932 - 51
1934 - 142
1944 -
145
1954 - 145
1954 - 145 | 1996-121
1996-121
1994-43
1993-88 | 199-50
200-28
200-87
201-74
202-47 | 203-23
203-64
204-44
205-10
206-12 | | |-------------------|--|---|---|---|--|--|---------------------------| | PREC1P | 0000 | -0000
-0000 | 0,9000
0,9000 | 00000 | 90000 | 00000 | | | C A A P | 1.0000
1.0000
1.0050 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.75
0.75
0.73
0.73 | 00000
00000
00000 | 00000 | 00.76 | 0.78 | | 24-HKS
KM | 136.
1167.
114.
111. | 78.
60.
67.
114. | 12204
12204
1234
1234 | 132.
69.
90.
112. | 11111111111111111111111111111111111111 | 2000
2000
2000
2000
2000
2000
2000
200 | 112. | | SOLAR | 4451.
448.7.
448.7.
16.25 | 4445
4445
4445
4445
4445
4445
4445
444 | 77447
0021
77447
77447 | 444
46894
46894
46894
6684
5897 | 54-029
54-029
54-029
56-71
56-71 | 44444
867-86
868-86
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
864-8
8
864-8
8
864-8
8
8
864-8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 451.4 | | MEI.c. | 07777 | 21.0
17.5
17.5 | 178 E8 | 11111
883 | 2000-2
2000-2
2000-2
2000-2 | 24440
2460
2460
2460 | 18.1
1.9 | | 081
086.c | 20225
21225
20200 | 250000
20000
20000 | 200440
00040
100440
000000 | 200
27.0
20.0
20.0
20.0 | 22
22
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | 00000
00000
00000 | 19.9
1.5 | | HERCENT | 600000
442100000 | 2222
2224
2224
2000
0000 | 2926
2926
2928
2928
2928
2928
2928
2928 | 284
1284
1390
1390 | 24.0
22.0
24.0
26.0 | 28882
200231
200000 | 30.4 | | HENCENT
OK DPT | 00000 | 00000 | 20020 | 1000.0
1000.0
1000.0
100.0 | 00000 | 000000 | 100.0 | | J (MIN)
DEG.C | 8 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 244W4
02000 | 47476
00000 | 41001 | 2-10-40
2-10-40
2-10-40 | | 13.7 | | IL MAX) | 22222
03240
03040 | ಎಬಬಬಬ
೧40
ಬೆಲೆಬೆರೆಬೆ | 77777
67681
516963 | 22222
0-466
0-666 | 675677
11100/6
246014 | ಜನಬಡುತ್ತು
ಸವರಾಭ್ಯ
ರೈಲೆರ್ನೆಸ್ಟ್ | ال
دومية | | 1116 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | 00000
000000
0000000000000000000000000 | 00000
00000
00000
00000 | CE3C
CB3C
CB3C
CB3C
CB3C | 00000
00000
00000
00000
00000 | : DEV | | S11E | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCFUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MLAN
S T ANDAKC | | DATL | 90277
90377
90377
90577 | 906/1/
908/1/
908/1/
9101/2 | 99111 | 91777
91777
91877
92077 | 922177
922177
92477
92577 | 92617
92777
926177
93077 | | Table A-3. Climatological data for Las Cruces, New Mexico, 1977 (continued). | FUTAL | 205.82
207.59
207.72
207.92
208.28 | 204.81
209.23
209.56
209.71
210.46 | 211.14
211.61
212.01
212.49
213.29 | 213.70
214.07
214.95
214.95
215.51 | 216.33
216.43
216.83
217.20
217.59 | 218.38
218.38
218.88
219.21
219.41 | 219.95 | | |----------------------|--|--|--|--
---|---|---------|------------------| | PREC IP
CM | 00000 | 0.00 | 20000 | 90000 | 00000 | 20000 | 0.0 | | | P AN
C M P | 00.10 | 0000
242
442
442
442
442
442
442
443
443
443 | 0.44
0.44
0.44
0.46
0.48 | 0.00
2.00
2.44
0.00
0.56 | 00000
8110000
5150000 | 20000
40000
40000 | 0.54 | 0.45 | | MIND
24-HRS
KM | 123
123
123
6
15
15 | 2 E2655
2 E2655
2 E2655 | 200
80
80
80
80
80
80
80
80
80
80
80
80
8 | 00000
00000
00000 | 2024
666
7566
756 | 177.
78.
106.
105. | 174. | 124. | | SCLAR | 44521
204521
30557
30557 | 2375
2375
4467
77.08 | 44404
44404
5545
1.00
1.00
1.00 | 444
2023
2013
51.00
51.00 | 2000
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
01-50
0 | 241.9
241.9
241.9
442.0
110.1 | 26.2 | 127.5 | | des.c | 14.5
17.0
20.0 | 22
20
20
20
20
20
20 | ಪಹವ <u>−</u> ಇ
ಬೀಬಬಬಬ | 131-142
131-142
131-142 | 2000 | 96.00
101.00
10.00
10.00 | 12.5 | 13.0 | | 0.5±0
0.5±0 | 21.5 | 20000 | ==================================== | 22447
22474
22474 | ~~~~
~~~~
~~~~ | 2-7-1-1
0-0-2-2-1 | 14.5 | 14.1 | | HERCENT | 2.54
2.54
2.50
2.00
2.00
3.00 | ადა ეფო
ფფიფო
ექენე | 2222
2222
2440
2440
2440 | 224
244
244
200
200
200 | 12.00
12.00
12.00
12.00 | 16.0
22.0
40.0
40.0 | 30.0 | 35.6
21.3 | | HERCENT
OR OPT | 0.000 | 00000 | 00000 | 00000 | 989.00
1000.00
1000.00 | 00000 | 0.001 | 99.6 | | 1 (MIN)
DEG. C | 25.25 | 1126.1 | c xwow
5w500 | 40042
4414
20000 | www.v-
⊃⊃www. | UNUMA
ONIVINO | 5.0 | 7.04 | | ILMAX) | 22022
22022
22020 | 78787
78789
78789 | -4444
6-444 | 40000
4111.4
44000 | มทหน
ผนหหน
ข้ออีเช่ | 2000/
54649
5665 | 53.5 | 24.7 | | 1 PE | 0830
0830
0830
0830
0830 | 00000 | 0 8830
0 8830
0 8830
0 8300
0 8300 | 00000 | 00 930
0 930
0 930
0 930
0 930
0 930
0 930 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0880 | SEV | | \$118 | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRIC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCHUC | MEAN
STANDARC | | DAGE | 1001/7
100277
100377
100477
100577 | 100677
100677
100877
100577 | 101277 | 101677
101777
101677
101577
102077 | 102277
102377
102377
102477 | 102677
102777
102877
102577 | 103177 | | Climatological data for Las Cruces, New Mexico, 1977 (continued). Table A-3. | EVAP
Co | 220.53
220.53
221.75
221.73 | 222 75
223 75
223 56
224 10 | 2224
22254
22254
52255
569
68 | 226.40
226.40
227.76
227.24 | 2223.05
2229.06
2229.32
229.32 | 2330-12
2330-12
2331-46
2331-46 | | |---
---|--|---|---|---|--|-------------------| | PREC 1P | 00000 | 00000 | 20000 | 00000 | 00000 | 00000 | | | CEVAN
PAN
PAN
PAN
PAN
PAN
PAN
PAN
PAN
PAN
P | 00000
84.00
64.44.00 | 0.554
0.524
0.284
0.284 | 00000
93354
93354
93354 | 00000 | 00000
3-274
8-274
8-274 | 00.000 | 0.39 | | MA-PRS | 155.
106.
119.
97. | 2003
2003
2003
2003
2003 | 11
00
00
00
00
00
00
00 | 104.
124.
274.
154. | 120.
1755.
792. | 23.0°°° | 129. | | SGLAR | 2000000
2000000
2000000000000000000000 | 24525
24525
24525
25525
2552
2552
2552 |
22424
23042
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
23040
20040
20040
20040
20040
20040
20040
20040
20040
20040
20040
20040 | 3256-10
2256-10
3266-10
3266-10 | 220
220
220
220
220
220
220
220
220
220 | 2862.0
2862.9
2831.8
2831.8 | 9.567 | | NEG.C | 07-02
02-05
02-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05
05-05 | 377-17
Onkok | w4~~~
onoco | 20000
00000 | ~20004
00004 | <i>w</i> 4 <i>w</i> 4→
<i>v</i> 0 <i>w</i> 4 <i>w</i> | 36.2 | | Deg.c | 72-12-4
13-13-4
13-13-0 |
 | ag ing
and ing | 10
00
00
11
10
10
10
10
10
10
10
10
10
1 | 28L-60 | & & VI
0.2.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 9.9
2.4 | | PERCENT | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 200000 | 237,
335,
34,
25,
0000 | 255
255
355
355
355
355
355
355
355
355 | 220
220
220
220
20
20
20
20 | 00000
8775.0
8475.0
8475.0 | 31.2 | | H (MAX)
PERCENT
UR OP T | 00000
00000
00000 | 100.0
100.0
100.0
99.0
299.0 | 942-0
942-0
842-0
100-0 | 75.0
100.0
100.0
100.0 | 100.0
100.0
70.0
79.0 | 849.00
0.00
0.00
0.00 | 94.2 | | JEG.C | 2000
2000
2000
2000 | 4-10-10
nnnon | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1111
 | 11111
 | 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.5 | | JE CAX) | 13/2/2/
50/2/2/2
22/2/2/2 | 24
122.5
172.0
172.0 | | 20000
20000
25000 | ನವರ <u>=</u> ಬ
=ಡಜನಬ
ವಸ್ತಿಸಿಸಿಸಿ | | 8.6
9.8
8.8 | | 11 PE | 00000
760000
760000
760000 | 00000
00000
000000
00000 | 00000
000000
000000 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | DEV | | SITE | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC
LASCHUC | ME AN
STANDAKD | | DATE | 116177
110377
110377
110577 | 110677
110777
110677
110377 | 7.
11112777
1111277777777777777777777777 | 111577
1111677
1111677
1111577 | 112177
112277
112377
112577 | 112677
112877
112877
113077 | | Climatological data for Las Cruces, New Mexico, 1977 (continued). Table A-3. | LOTAL
EVAP
CM |
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$8888
\$888
\$8688
\$8688
\$8688
\$8688
\$8688
\$868
\$868
\$868
\$868
\$868
\$868
\$868 | 234.54
2356.60
236.17
236.17 | 236.72
231.50
231.50
237.60
238.25 | 239.21
239.82
239.83
240.51
240.75 | 241.14
241.14
241.14
241.79
241.99 | 2452.16
2422.32
2422.32
2422.32 | | |----------------------|---|--|---|--|--|--|--------------------| | PREC1P
CM | 00000 | 00000 | 20000 | 00000 | 20000 | 0.0000 | | | PAN
EVAP
CM | 0000 | 000000 | 00000
00000
000000
000000 | 0.34
0.34
0.53
0.54 | 00000 | 000000000000000000000000000000000000000 | 0.37 | | MIND
24-HRS
KM | 99.
121.
374.
202. | 2245.
2315.
100. | N N
WWW.W
WW.W
WW.W
WW.W
WW.W
WW.W
WW.W | 2000
0000
0000
0000
0000 | 82.
124.
114.
67. | 885.
585.
1224. | 155.
93. | | SOLAR | 27272
27272
2727
29.93 | 225.8
226.8
226.6
38.0 | 2247 | 2266.1
2866.1
2862.9
2947.2
2947.8 | 2229
1380
2411
1961
655
655
655 | 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 232.4 | | dec.c | ~0N/90 | യംഷയയ
* * * * *
യായ്യെ | אַסָסָה | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1 1 1 1 1 1 1 1 1 1 | Juana
20000 | 2.5
3.1.5 | | 0.555
UE6.c | 00004 | ಒಟ್ಟುಗಳು
ನಬಸುಗಳಂ | 44444
00440 | 00000 | 25.50 | ಒಂತಾಬರ
ಕಾಗುದ್ಧರೆ | 10 m
4 4
2 4 | | HERCENI | 20000
20000
20000 | 222.0
222.0
446.0
136.0 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 222
222
223.0
483.0
46.0 | 200004
20000 | 4842
7350
74750
00000 | 37.9 | | PERCENT
OR DPT | 88857-48887-60-60-60-60-60-60-60-60-60-60-60-60-60- | 00000
00000
00000 | 82628
20000
20000 | 67.0
888.0
888.0
90.0 | 64.0
82.0
96.0
76.0 | 00000 | 83.4
13.4 | | N. G. C. | 1
8 9 2 4 4 9
9 4 4 4 4 9
9 4 9 9 9 9 9 9 | 1 | 400000
400000 | | 200000
200000 | 1
1
1
1
1
1
1
1
1
1 | 9++ | | DEG.C | 44040
24040
24040 | またとしま
おとことを
はいことを | コイーリ
コートレム
だれれいら | 71
78
72
72
72
72
72
73
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | 44444
64444
54444 | 20111
50113
50354 | 16-8 | | 3411 | 00000
#####
00000 | 00000
00000
00000
00000
00000 | 00000
00000
00000
00000
00000 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | 00000
00000
00000
00000 | D DEV | | SI 1E | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC
LASCKUC |
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC
LASCRUC | MEAN
STANDARD | | DATE | 120217
120277
120377
120477
120577 | 120 <i>611</i>
120 <i>611</i>
120 <i>611</i>
120 <i>611</i> | 101177
121377
121377
121477 | 1216/7
1216/7
1219/7
1219/7 | 122277
122277
122377
1225477 | 122677
122677
122577
123077 | | ## Appendix B DAILY FLOW OF IRRIGATION RETURN WATER Table B-1. Daily flow of irrigation return water in the La Mesa drainage canal at Site D in 1976. | | | | | | | | | ······································ | | | | | |-----|------|-------|-------|-------|------|---------------------|------|--|------|------|------|------| | Day | Jan | Feb | Mar | Apr | May | June | Jul | Aug | Sept | 0ct | Nov | Dec | | | | | | | | m ³ /sec | | | | | | | | 1 | .224 | . 157 | .235 | .470 | .694 | .829 | .902 | .840 | .549 | .325 | .078 | .134 | | 2 | .218 | .179 | .235 | .448 | .739 | .750 | .946 | .874 | .538 | .314 | .078 | .123 | | 3 . | .207 | .185 | . 258 | .437 | .750 | .767 | .963 | .902 | .610 | .291 | .056 | .123 | | 4. | 224 | .185 | .246 | . 448 | .795 | .818 | .952 | .834 | .538 | .258 | .056 | .112 | | 5 | .218 | .190 | .241 | .459 | .840 | .857 | .930 | .840 | .650 | .246 | .056 | .112 | | 6 | .224 | .174 | .246 | .487 | .829 | .907 | .913 | .818 | .605 | .196 | .056 | .101 | | 7 | .213 | .241 | .207 | .482 | .773 | .941 | .907 | .907 | .616 | .207 | .056 | .101 | | 8 | .196 | . 224 | .218 | .526 | .784 | .958 | .918 | .935 | .504 | .224 | .056 | .095 | | 9 | .213 | .235 | .224 | .532 | .762 | .890 | .907 | .885 | .493 | .179 | .056 | .101 | | 10 | .213 | .218 | .241 | .532 | .790 | .885 | .885 | .874 | .504 | .146 | .045 | .101 | | 11 | .202 | .196 | .269 | .577 | .795 | .851 | .874 | .874 | .504 | .112 | .045 | .095 | | 12 | .207 | . 213 | .263 | .549 | .773 | .834 | .885 | .885 | .448 | .101 | .078 | .090 | | 13 | .213 | .190 | .319 | .566 | .762 | .829 | .874 | .862 | .465 | .112 | .123 | .078 | | 14 | .179 | .235 | .325 | .571 | .773 | .806 | .952 | .851 | .414 | .112 | .095 | .084 | | 15 | .185 | .235 | .330 | .605 | .784 | .806 | .952 | .902 | .414 | .106 | .090 | .067 | | 16 | .168 | .235 | .353 | .594 | .745 | .773 | .930 | .885 | .426 | .101 | .084 | .067 | | 17 | .168 | .246 | .364 | .650 | .784 | .812 | .918 | .874 | .454 | .073 | .078 | .078 | | 18 | .168 | .230 | .386 | .655 | .806 | .818 | .907 | .885 | .437 | .062 | .078 | .078 | | 19 | .168 | .241 | .325 | .638 | .806 | .806 | .902 | .885 | .482 | .050 | .067 | .078 | | 20 | .162 | .252 | .336 | .610 | .750 | .812 | .902 | .896 | .482 | .045 | .073 | .056 | | 21 | .078 | .263 | .374 | .610 | .829 | .829 | .907 | .907 | .482 | .045 | .112 | .067 | | 22 | .084 | .263 | .370 | .627 | .879 | .829 | .885 | .930 | .482 | .056 | .112 | .062 | | 23 | .101 | . 274 | .437 | .638 | .857 | .851 | .868 | .941 | .482 | .078 | .134 | .056 | | 24 | .106 | .269 | .392 | .616 | .857 | .907 | .862 | .890 | .403 | .078 | .129 | .051 | | 25 | :101 | .269 | .403 | .627 | .851 | .862 | .851 | .874 | .437 | .056 | .056 | .056 | | 26 | .101 | .263 | .403 | .638 | .829 | .834 | .829 | .784 | .448 | .022 | .185 | .045 | | 27 | .118 | .263 | .414 | .627 | .818 | .918 | .840 | .638 | .515 | .062 | .174 | .045 | | 28 | .146 | .274 | .448 | .616 | .818 | .874 | .829 | .403 | .420 | .078 | .202 | .045 | | 29 | .157 | | .454 | .627 | .812 | .913 | .829 | .403 | .403 | .078 | .213 | .078 | | 30 | .168 | | .437 | .706 | .851 | .896 | .829 | .403 | .347 | .078 | .213 | .090 | | 31 | .174 | | .437 | | .829 | | .829 | .638 | | .078 | | .090 | Table B-2. Daily flow of irrigation return water in the La Mesa drainage canal at Site D in 1977. | Day | Jan | Feb | Mar | Apr | May | June | Jul | Aug | Sept | 0ct | Nov | Dec | |-----|-------|-------|-------|-------|------|------------|------|------|------|------|-------|-------| | | | | | | | m^3/\sec | | | | | | | | 1 | . 275 | . 248 | .167 | .266 | .465 | .641 | .574 | .506 | .582 | .456 | .334 | . 352 | | 2 | .271 | . 253 | .167 | .275 | .492 | .628 | .596 | .497 | .560 | .461 | .330 | .366 | | 3 | .271 | .271 | .153 | . 284 | .573 | .614 | .582 | .483 | .578 | .474 | .343 | .370 | | 4 | .266 | .253 | .149 | .284 | .564 | .605 | .601 | .483 | .551 | .465 | .325 | .357 | | 5 | . 266 | .257 | .144 | .280 | .569 | .573 | .646 | .537 | .537 | .452 | .316 | .361 | | 6 | .262 | .253 | .140 | .284 | .573 | .560 | .614 | .515 | .569 | .452 | .334 | .348 | | 7 | .253 | .248 | .144 | .298 | .537 | .555 | .673 | .587 | .578 | .424 | .352 | .352 | | .8 | . 257 | .253 | .140 | .312 | .555 | .546 | .628 | .582 | .587 | .375 | .357 | .352 | | 9 | .253 | .262 | .126 | .312 | .560 | .555 | .637 | .605 | .560 | .357 | .339 | .366 | | 10 | . 244 | . 253 | .162 | .325 | .564 | .555 | .623 | .573 | .537 | .361 | .330 | .375 | | 11 | .248 | . 244 | .135 | .330 | .569 | .542 | .596 | .515 | .555 | .325 | .339 | .379 | | 12 | .244 | .235 | .126 | .339 | .623 | .560 | .614 | 524 | .574 | .316 | .334 | .384 | | 13 | .253 | .226 | .104 | .393 | .646 | .528 | .582 | .510 | .564 | .321 | .334 | .370 | | 14 | .253 | .221 | .158 | .366 | .641 | .537 | .574 | .506 | .582 | .330 | .334 | .370 | | 15 | .248 | .199 | .144 | .352 | .632 | .524 | .587 | .542 | .592 | .334 | .339 | .361 | | 16 | .248 | .176 | .135 | .370 | .628 | .501 | .564 | .497 | .533 | .339 | .339 | .361 | | 17 | .248 | .181 | .167 | .370 | .637 | .528 | .546 | .506 | .519 | .325 | .339 | .348 | | 18 | . 257 | .176 | .172 | .375 | .637 | .564 | .574 | .497 | .528 | .348 | .343 | .339 | | 19 | .275 | .167 | .172 | .397 | .632 | .533 | .564 | .483 | .492 | .325 | .343 | .361 | | 20 | .257 | .172 | .185 | .393 | .628 | .542 | .555 | .479 | .465 | .325 | .334 | .348 | | 21 | .262 | .167 | .190 | .379 | .623 | .555 | .578 | .474 | .456 | .316 | .339 | .357 | | 22 | .271 | .144 | .190 | .388 | .619 | .560 | .587 | .489 | .452 | .312 | .348 | .361 | | 23 | .257 | .154 | .199 | .402 | .614 | .510 | .560 | .501 | .461 | .307 | .361 | .366 | | 24 | .257 | .172 | .208 | .411 | .610 | .533 | .574 | .489 | .447 | .316 | .370 | .379 | | 25 | .253 | .172 | .208 | .420 | .637 | .546 | .582 | .542 | .461 | .334 | .357 | . 366 | | 26 | . 253 | .162 | .217 | .438 | .623 | .551 | .582 | .524 | .456 | .325 | .343 | .352 | | 27 | . 257 | .162 | .235 | .442 | .632 | .560 | .569 | .560 | .442 | .339 | .348 | .357 | | 28 | . 244 | .162 | . 235 | .461 | .628 | .560 | .537 | .564 | .456 | .348 | .357 | .375 | | 29 | .248 | | .226 | .452 | .614 | .537 | .555 | .546 | .452 | .352 | .33.0 | .370 | | 30 | . 253 | | .266 | .465 | .619 | .551 | .551 | .569 | .465 | .339 | .343 | .379 | | 31 | . 253 | | . 257 | | .632 | | | .573 | | .334 | | .375 | | | | | | | | | | | | | | | ## Appendix C ELECTRICAL CONDUCTIVITY AND FLOW OF LA MESA DRAIN Table C-1. Electrical conductivity (mmhos/cm) and flow (m³/sec) of water at La Mesa drain sampling Sites A, B, C, and D during 1975. (Sampling was begun in April.) | Site | A | Sit | :е В | Sit | <u> </u> | Site | D | |--------------|--------------------|--------------------|-----------------------|----------------------|--------------------|--------------------|-----------------------| | Date | ECX10 ³ | ECX10 ³ | Flow | Date | ECX10 ³ | ECX10 ³ | Flow | | | | | (m ³ /sec) | | | | (m ³ /sec) | | 4-21-75 | 1.37 | 1.39 | - | 4-21-75 | 1.39 | 1.33 | | | 4-28-75 | 1.49 | 1.50 | | 4-28-75 | 1.49 | 1.52 | | | 5-05-75 | 1.46 | 1.41 | - | 5-05-75 | 1.43 | 1.45 | -40 | | 5-12-75 | 1.40 | 1.49 | - | 5-12-75 | 1.52 | 1.52 | *** | | 5-19-75 | 1.42 | 1.43 | | 5-19 - 75 | 1.41 | 1.36 | - | | 5-26-75 | 1.50 | 1.52 | - | 5-26-75 | 1.53 | 1.54 | - | | 6-02-75 | 1.42 | 1.42 | .725 | 6-02-75 | 1.43 | 1.46 | .767 | | 6-09-75 | 1.46 | 1.49 | .623 | 6-09 - 75 | 1.51 | 1.52 | .710 | | 6-16-75 | 1.40 | 1.43 | .743 | 6-16-75 | 1.46 | 1.48 | .725 | | 6-23-75 | 1.36 | 1.36 | .822 | 6-23-75 | 1.41 | 1.38 | .812 | | 6-30-75 | 1.29 | 1.28 | .754 | 6-30-75 | 1.44 | 1.33 | .774 | | 7-07-75 | 1.29 | 1.32 | .799 | 7-07-75 | 1.28 | 1.40 | .858 | | 7-14-75 | 1.35 | 1.36 | .898 | 7-14-75 | 1.31 | 1.38 | .846 | | 7-21-75 | 1.43 | 1.50 | .878 | 7-21-75 | 1.47 | 1.47 | .963 | | 7-28-75 | 1.43 | 1.42 | .942 | 7-28-75 | 1.46 | 1.46 | 1.000 | | 8-04-75 | 1.07 | 1.11 | 1.296 | 8-04-75 | 1.11 | 1.11 | 1,150 | | 8-11-75 | 1.43 | 1.45 | 1.024 | 8-11-75 | 1.46 | 1.48 | .982 | | 3-18-75 | 1.40 | 1.45 | .983 | 8-18-75 | 1.46 | 1.48 | .977 | | 8-25-75 | 1.38 | 1.40 | 1.096 | 8-25-75 | 1.36 | 1.35 | 1.082 | | 9-01-75 | 1.41 | 1.43 | 1.118 | 9-01-75 | 1.44 | 1.45 | 1.028 | | | 1.39 | 1.41 | 1.056 | 9-08-75 | 1.47 | 1.44 | .969 | | 9-08-75 | 1.64 | 1.54 | .928 | 9-16-75 | 1.57 | 1.61 | .870 | | 9-16-75 | | 1.56 | .882 | 9-23-75 | 1.51 | 1.57 | .843 | | 9-23-75 | 1.51 | 1.49 | .934 | 9-30-75 | 1.46 | 1.47 | .801 | | 9-30-75 | 1.46 | 1.74 | .642 | 10-07-75 | 1.76 | 1.76 | .642 | | 10-07-75 | 1.73 | 1.82 | .537 | 10-14-75 | 1.81 | 1.83 | .427 | | 10-14-75 | 1.71 | | .574 | 10-21-75 | 1.87 | 1.38 | .548 | | 10-21-75 | 2.01 | 1.88 | .374 | 10-28-75 | 1.91 | 1.92 | ,424 | | 10-28-75 | 1.91 | 1.93 | | 11-04-75 | 1.72 | 1.69 | .359 | | 11-04-75 | 1.62 | 1.73 | .375
.350 | 11-11-75 | 1.72 | 1.54 | . 370 | | 11-11-75 | 1.63 | 1.71 | | 11-18-75 | 1.30 | 1.80 | .362 | | 11-18-75 | 1.74 | 1.78 | .345 | 11-26-75 | 1.86 | 1.88 | | | 11-26-75 | 1.84 | 1.88 | - | 12-02-75 | 1.96 | 1.99 | .310 | | 12-02-75 | 2.00 | 1.98 | .320 | 12-02-75 | 1.93 | 1.93 | .291 | | 12-09-75 | 1.94 | 1.94 | . 290 | | 1.64 | 1.66 | .257 | | 12-16-75 | 1.61 | 1.70 | .281 | 12-16-75 | 1.04 | 1.51 | - 237 | | 12-30-75 | 1.39 | 1.83 | . 287 | 12-23-75 | | 1.38 | .266 | | | | | | 12-30-75 | 1.91 | | .704 | | Mean | 1.54 | 1.50 | .720 | | 1.36 | 1.57 | .280 | | SD | .22 | .21 | .296 | | .21 | .21 | .280 | | Weighted Mea | เก | 1.497 | | | | 1.510 | | Table C-2. Electrical conductivity (mmhos/cm) and flow $\rm m^3/sec)$ of water at La Mesa drain sampling Sites A, B, C,
and D during 1976. | Site A | 1 | Sit | ≥ B | Site | С | Site | a D | |----------|--------------------|--------------------|-----------------------|------------------|--------|--------------------|----------| | Date | ECX10 ³ | ECX10 ³ | Flow | Date | ECX103 | ECX10 ³ | Flow | | 2000 | | | (m ³ /sec) | | | | (m³/sec) | | 1-06-76 | 1.67 | 1.65 | .242 | 1-06-76 | 1.62 | 1.70 | .272 | | 1-13-76 | 1.89 | 1.90 | .259 | 1-13-76 | 1.89 | 1.92 | .216 | | | | 1.95 | .226 | 1-21-76 | 1.91 | 1.93 | .203 | | 1-21-76 | 1.93 | 1.74 | .273 | 1-26-76 | 1.74 | 1.74 | .259 | | 1-26-76 | 1.71 | | | 2-02-76 | 1.39 | 1.33 | _ | | 2-02-76 | 1.16 | 1.18 | - | 2-02-76 | 1.62 | 1.57 | .376 | | 2-07-76 | 1.52 | 1.50 | .394 | | 1.62 | 1.63 | .319 | | 2-14-76 | 1.60 | 1.62 | .347 | 2-14-76 | | 1.46 | .336 | | 2-21-76 | 1.49 | 1.50 | .316 | 2-21-76 | 1.46 | | .340 | | 2-28-76 | 1.60 | 1.49 | .341 | 2-28-76 | 1.54 | 1.57 | | | 3-06-76 | 1.46 | 1.49 | .308 | 3-06-76 | 1.53 | 1.52 | .329 | | 3-13-76 | 1.41 | 1.44 | .385 | 3-13-76 | 1.47 | 1.44 | .363 | | 3-20-76 | 1.36 | 1.32 | .459 | 3-20-76 | 1.40 | 1.33 | .469 | | 3-27-76 | 1.38 | 1.43 | .503 | 3-27-76 | 1.42 | 1.43 | .497 | | 4-03-76 | 1.38 | 1.41 | .544 | 4-03-76 | 1.43 | 1.47 | .408 | | 4-10-76 | 1.34 | 1.40 | .385 | 4-10-76 | 1.40 | 1.43 | .528 | | 4-17-76 | 1.41 | 1.42 | .715 | 4-17-76 | 1.44 | 1.46 | .672 | | 4-24-76 | 1.42 | 1.40 | .645 | 4-24-76 | 1.44 | 1.46 | .650 | | 5-01-76 | 1.39 | 1.39 | .720 | 5-01-76 | 1.41 | 1.42 | .563 | | 5-08-76 | 1.51 | 1.52 | .851 | 5-08-76 | 1.54 | 1.54 | .765 | | | 1.44 | 1.46 | .788 | 5-15-76 | 1.49 | 1.45 | .929 | | 5-15-76 | | 1.56 | .921 | 5-20-76 | 1.54 | 1.56 | .805 | | 5-20-76 | 1.50 | | .735 | 5-28-76 | 1.43 | 1.46 | .774 | | 5-28-76 | 1.39 | 1.40 | | 6-07-76 | 1.38 | 1.39 | .810 | | 6-07-76 | 1.44 | 1.39 | .925 | | | 1.58 | .714 | | 6-11-76 | 1.48 | 1.47 | .591 | 6-11-76 | | 1.42 | .714 | | 6-21-75 | 1.38 | 1.41 | .543 | 6-21-76 | 1.41 | | | | 6-28-76 | 1.35 | 1.40 | .723 | 6-28-76 | 1.39 | 1.38 | .750 | | 7-08-76 | 1.28 | 1.24 | .615 | 7-08-76 | 1.29 | 1.30 | 1.055 | | 7-13-76 | 1.30 | 1.30 | .816 | 7-13-76 | 1.34 | 1.33 | .913 | | 7-19-76 | 1.39 | 1.35 | .771 | 7 -19- 76 | - | 1.42 | - | | 7-26-76 | 1.33 | 1.37 | .920 | 7-26-76 | | 1.43 | 1.020 | | 3-03-76 | 1.31 | 1.28 | .940 | 8-03-76 | 1.33 | 1.31 | .748 | | 8-11-75 | 1.25 | 1.29 | .363 | 8-11-76 | 1.28 | 1.23 | .492 | | 8-18-76 | 1.30 | 1.29 | .986 | 8-18-76 | 1.31 | 1.30 | .480 | | 8-25-76 | 1.21 | 1.28 | .543 | 8-25-76 | 1.22 | 1.23 | .774 | | 3-31-76 | 1.29 | 1.28 | 1.008 | 8-31-76 | 1.33 | 1.39 | _ | | 9-07-76 | 1.38 | 1.30 | 1.002 | 9-07-76 | 1.41 | 1.35 | _ | | 9-14-76 | 1.61 | 1.60 | .330 | 9-14-76 | 1.63 | 1.63 | .612 | | 9-23-76 | 1.45 | 1 65 | .946 | 9-23-75 | 1.45 | 1.41 | 1.055 | | | 1.58 | 1.50 | .773 | 9-28-76 | 1.54 | | 1.083 | | 9-28-76 | | | .702 | 10-05-76 | 1.69 | 1.69 | .865 | | 10-05-76 | 1.82 | 1.69 | .523 | 10-12-76 | 1.84 | 1.84 | .466 | | 10-12-76 | 1.34 | 1.84 | | | 1.61 | 1.76 | .507 | | 10-19-76 | 1.62 | 1.60 | .461 | 10-19-76 | 1.75 | 1.30 | .414 | | 10-26-76 | 1.78 | 1.79 | .489 | 10-26-76 | | 1.82 | .443 | | 11-32-76 | 1.83 | 1.81 | .464 | 11-02-76 | 1.84 | 1.82 | .510 | | 11-09-76 | 1.88 | 1.85 | .416 | 11-09-76 | 1.85 | | | | 11-16-76 | 1.88 | 1.81 | . 372 | 11-16-76 | 1.89 | 1.91 | .498 | | 11-23-76 | 1.89 | 1.89 | .355 | 11-23-76 | 1.89 | 1.88 | .468 | | 11-30-76 | 1.85 | 1.68 | .328 | 11-30-76 | 1.90 | 1.76 | .476 | | 12-07-76 | 1.89 | 1.88 | .352 | 12-07-76 | 1.88 | 1.88 | .333 | | 12-14-76 | 1.38 | 1.86 | .323 | 12-14-76 | 1.85 | 1.88 | .338 | | 12-21-76 | 1.95 | 1.90 | .360 | 12-21-76 | 1.93 | 1.96 | .301 | | 12-28-76 | - | 1.81 | - | 12-28-76 | - | 1.79 | - | | Mean | 1.54 | 1.54 | .586 | | 1.56 | 1.56 | .574 | | SD | .23 | .21 | .241 | | .21 | . 21 | . 244 | | | , 4 | | | | | 1.527 | | Table C-3. Electrical conductivity (mmhos/cm) and flow m^3 /sec) of water at La Mesa drain sampling Sites A, B, C, and D during 1977. | Site | A | Site | в В | Site | C | Site | . D | |----------------------|--------------------|--------------------|----------|-------------------------|--------------------|--------------------|----------| | Date | ECX10 ³ | ECXLO ³ | Flow | Date | ECX10 ³ | ECX10 ³ | Flow | | | | | (m³/sec) | | | | (m³/sec) | | 1 0/ 17 | 1 60 | 1.89 | ,327 | 1-04-77 | 1.68 | 1.90 | .304 | | 1-04-77 | 1.69 | 1.94 | .330 | 1-11-77 | 1.95 | 1.93 | .323 | | 1-11-77 | 1.93 | | | 1-18-77 | 2.05 | 2.05 | .324 | | 1-18-77 | 2.08 | 2.06 | . 280 | 1-26-77 | 2.02 | 2.06 | .294 | | 1-26-77 | 1.99 | 2.03 | .301 | 2-02-77 | 2.08 | 2.09 | .320 | | 2-02-77 | 2.09 | 2.11 | .282 | 2-02-77 | 2.04 | 2.06 | .229 | | 2-09-77 | 2.05 | 2.06 | .274 | 2-16-77 | 2.07 | 2.06 | | | 2-16-77 | 2.07 | 2.07 | - | | 2.04 | 2.05 | .217 | | 2-23-77 | 2.07 | 2.06 | .265 | 2-23-77 | 2.04 | | - 21/ | | 3-02-77 | 2.08 | 2.12 | - | 3-02-77 | | 2.01 | | | 3-0 9- 77 | 2.03 | 1.98 | .172 | 3-09-77 | 1.98 | 1.97 | .157 | | 3-16-77 | 2.01 | 2.01 | .172 | 3-16-77 | 1.99 | 1.99 | .140 | | 3-23-77 | 1.61 | 1.61 | .267 | 3-23-77 | 1.62 | 1.61 | .187 | | 3-30-77 | 1.54 | 1.55 | .314 | 3-30-77 | 1.55 | 1.54 | .309 | | 40677 | 1.41 | 1.45 | .261 | 4-06-77 | 1.46 | 1.47 | .332 | | 4-13-77 | 1.43 | 1.44 | .479 | 4-13-77 | 1.45 | 1.45 | .553 | | 4-20-77 | 1.28 | 1.28 | . 408 | 4-20-77 | 1.33 | 1.39 | .442 | | 4-28-77 | 1.32 | 1.32 | - | 4-28-77 | 1.33 | 1.33 | - | | 5-04-77 | 1.32 | 1.33 | - | 5-04-77 | 1.32 | 1.34 | - | | 5-11-77 | 1.48 | 1.49 | .502 | 5-11-77 | 1.48 | 1.47 | .592 | | 5-18-77 | 1.53 | 1.53 | .429 | 5-18-77 | 1.54 | 1.55 | .557 | | 5-25-77 | 1.44 | 1.39 | .586 | 5 25 77 | 1.30 | 1.46 | .585 | | 6-01-77 | 1.58 | 1.55 | .564 | 6-01-77 | 1.53 | 1.55 | .596 | | 6-08-77 | 1.62 | 1.61 | .370 | 6-08-77 | 1.62 | 1.62 | .371 | | 6-15-77 | 1.67 | 1.67 | .453 | 6-15-77 | 1.66 | 1.65 | .472 | | 6-22-77 | 1.60 | 1.57 | .609 | 6-22-77 | 1.66 | 1.59 | .603 | | | 1.51 | 1.50 | .652 | 6-29-77 | 1.51 | 1.52 | .680 | | 6-29-77 | | 1.38 | .800 | 7-06-77 | 1.34 | 1.38 | .660 | | 7-06-77 | 1.42 | 1.49 | .686 | 7-13-77 | 1.50 | 1.50 | .705 | | 7-13-77 | 1.50 | 1.44 | . 649 | 7-20-77 | 1.52 | 1.42 | .653 | | 7-20-77 | 1.50 | | .630 | 7-27-77 | 1.51 | 1.50 | .646 | | 7-27-77 | 1.50 | 1.51 | | 8-03-77 | 1.49 | 1.52 | .669 | | 8-03-77 | 1.46 | 1.47 | .616 | | 1.43 | 1.43 | .691 | | 8-10-77 | 1.42 | 1.43 | .633 | 8-10-77 | 1.38 | 1.37 | .091 | | 8-17-77 | 1.55 | 1.56 | .630 | 8-24-77 | | 1.37 | .738 | | 8-24-77 | 1.37 | 1.36 | . 635 | 8-31-77 | 1 50 | | | | 8-31-77 | ~ | . | .622 | 9-08-77 | 1.50 | 1.49 | .646 | | 9-08-77 | 1.49 | 1.50 | . 567 | 9-15-77 | 1.74 | 1.76 | .646 | | 9-15-11 | 1.75 | 1.82 | .668 | 9-22-77 | 1.93 | 1.86 | . 464 | | 9-22-77 | 1.90 | 1.93 | . 368 | 9-29-77 | 2.03 | 2.03 | .396 | | 9-29-77 | 2.05 | 2.04 | .374 | 10-06-77 | 1.31 | 1.81 | .398 | | 10-06-77 | 1.84 | 1.84 | .378 | 10-13-77 | - - - | . . . | .294 | | 10-13-77 | - | - | . 221 | 10-20-77 | 2.09 | 2.09 | .310 | | 10-20-77 | 2.06 | 2.08 | .244 | 10-27-77 | - | - | .308 | | 10-27-77 | _ | - | . 249 | 11-03-77 | 2.00 | 2.01 | .400 | | 11-03-77 | 2.01 | 2.01 | .236 | 11-10-77 | 1.95 | 1.37 | .208 | | 11-10-77 | 1.37 | 1.97 | .151 | 11-17-77 | - | - | .178 | | 11-17-77 | _ | _ | .185 | 12-01-77 | - | - | .161 | | 12-01-77 | ~ | - | . 204 | 12-08-77 | 2.05 | 2.05 | .183 | | 12-08-77 | 2.04 | 2.06 | .182 | 12-15-77 | 2.05 | 2.03 | .177 | | 12-15-77 | 2.05 | 1.92 | .184 | 12-22-77 | 2.00 | 2.04 | .161 | | 12-13-77 | 2.03 | 2.03 | .186 | 12-29-77 | - | - | .166 | | 12-22-77 | 2.05 | - | .186 | · · | | | | | | 1.71 | 1.72 | .402 | | 1.72 | 1.72 | .410 | | Mean | .28 | .28 | .188 | | .27 | .28 | .192 | | SD | | 1.636 | . 100 | | | 1.651 | | | Weighted Me | ean | 7.070 | | | | _, | | Appendix D COMPLETE WATER ANALYSIS OF LA MESA DRAIN WATER Table D-1. Water analysis of the La Mesa drain water sampled at Site A, 1975. | Site | Date | ECx10 ³ | PH | Cations | Anions | Ca | Mg | Na
(meg/1 | ₹ | Cl | 80 - 1
- 1 | HCO3 | so ₄ | (mdd) | |---------------------|--|--|--|---|---|--|--|--|--
--|---------------|--|--|---| | 4666666668888866644 | 4/21/75
5/5/15
5/19/75
6/2/75
6/30/75
7/14/75
1/28/75
9/23/75
10/21/75
11/18/75
12/2/75
12/2/75 | 1.37
1.46
1.42
1.42
1.29
1.39
1.39
1.73
1.61
1.61 | 7.97
6.24
8.11
8.29
7.85
7.85
7.90
7.95
7.89
7.89
7.86
7.89
7.86 | 15.19
16.28
16.64
14.95
12.22
12.78
14.85
15.29
16.58
19.93
20.02
19.93
20.16 | 14.00
15.30
15.30
12.54
12.54
12.96
13.24
14.65
14.65
20.88
20.88 | 5.83
6.78
7.85
6.50
6.50
6.68
6.63
10.00
11.44
9.91
9.91 | 2.04
2.04
2.04
1.69
1.69
1.89
2.57
2.57
2.78
2.74
2.74 | 7.09
7.19
7.19
6.36
6.35
6.39
6.35
7.23
7.23
7.23 | 0.23
0.22
0.22
0.22
0.22
0.23
0.23
0.23 | 3.77
3.25
3.25
3.25
3.25
4.44
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25 | | 84444444444444444444444444444444444444 | 6.96
7.16
7.20
7.16
6.68
6.13
6.47
7.24
6.13
8.70
8.95
9.32
9.96 | 0.066
0.19
0.19
0.038
0.047
1.48
1.45
1.45
0.00
0.00
0.00
1.43 | | Mean | | 1.55 | 8.04 | 17.02 | 16.72 | 7.45 | 2.25 | 7.09 | 0.24 | 4.17 | 0.02 | 4.62 | 7.89 | 0.95 | | Std. Dev. | e mie mie ame eme este este este es | 0.22 | 0.20 | 2.94 | 3.17 | 2.22 | 0.45 | 0.51 | 0.05 | 0.98 | 0.08 | 1.13 | 1.35 | 0.82 | Table D-2. Water analysis of the La Mesa drain water sampled at Site B, 1975. | Site | Date | ECx10 ³ | Hď | Cations | Anions | Ca | Mg | Na | K | CI | 603 | HCO ₃ | SO4 | NO ₃ | |-----------|----------|--------------------|------|---------|--------|-------|------|--------|------|------|-----|------------------|------------|-----------------| | | | | | | | | | (meg/1 | 1 | | | 1 |
 }
 | (wdd) | | В | 4/21/75 | 1.39 | | 15.28 | | 5.78 | 2.11 | | | | | 3.36 | | 1,37 | | മ | 5/5/75 | 1.41 | - | | | 5.88 | 2.11 | | | _ | | 3.48 | | 1.53 | | B | 5/19/75 | 1.43 | | | • | 7.46 | 2.23 | | | - | • | 4.82 | | 1.39 | | В | 6/ 2/75 | 1.42 | | | • | 6.38 | 2.11 | | | | | 4.76 | | 0.57 | | ш | 6/16/75 | 1.43 | 8.10 | 14.22 | 14.94 | 6.05 | 1.71 | 6.21 | 0.25 | 3.51 | 0.0 | 4.66 | 9.76 | 0.38 | | മ | 6/30/75 | 1.28 | | | • | 96.9 | 2.05 | | | | • | 2.20 | | 0.0 | | മ | 7/14/75 | 1.36 | | | ۰ | 5.73 | 1.99 | | | • | | 3.54 | | 0.28 | | മ | 7/28/75 | 1.42 | | | ٠ | 6.68 | 2.03 | | | ۰ | | 3.64 | | 0.63 | | Œ | 8/11/75 | 1.45 | | | | 6.92 | 2.00 | | | | | 4.82 | | 1.35 | | α | 8/25/75 | 1.40 | | | | 6.18 | 1.87 | | | | | 4.14 | | 1.44 | | Δ | 9/ 8/75 | 1.41 | | | | 6.37 | 1.87 | | | | | 4.64 | | 0.0 | | . Д | 9/23/75 | 1.56 | | | • | 7.88 | 2.24 | | | | | 2.00 | | 0.67 | | മ | 10/ 7/75 | 1.74 | | | | 5.49 | 2.67 | | | | | 5.54 | | 1.73 | | ш | 10/21/75 | 1.88 | | | • | 5.98 | 2.78 | | | | | 5.44 | | 0.30 | | Ω | 11/4/75 | 1.73 | | | • | 11.35 | 3.18 | | | | 6 | 5.98 | | 0.0 | | Ω | 11/18/75 | 1.78 | | | * | 9.80 | 2.82 | | | | | 5.90 | | 2.95 | | Д | 12/ 2/75 | 1.98 | | | • | 10.21 | 2.96 | | | • | • | 5.64 | | 2.86 | | щ | 12/16/75 | 1.70 | | | • | 9.84 | 2.81 | | | | • | 5.64 | | 1.91 | | മ | 12/30/75 | 1.83 | | 20.19 | • | 9.84 | 2.76 | | | | • | 4.57 | | 0.0 | | Mean | | 1.56 | 8.07 | 17.15 | 16.94 | 7.41 | 2.33 | 7.17 | 0.24 | 4.18 | 0.0 | 4.62 | 8.13 | 1.02 | | | | | | | | | | | | | | | | | | Std. Dev. | ev. | 0.21 | 0.19 | 2.41 | 3.11 | 1.84 | 0.44 | 0.83 | 0.05 | 0.88 | 0.0 | 1.01 | 1.48 | 0.92 | | | | | | | | | | | | | | | | 1 | Table D-3. Water analysis of the La Mesa drain water sampled at Site C, 1975. | Site | Date | ECx10 ³ | pH | Cations | Anions | Ca | Mg | Na | K | [] | ω ₃ | HCO ₃ | so ₄ | NO ₃ | |--------|----------|---|-------|---------|--------|-------|------|---------|------|------|----------------|----------------------------|-----------------|-----------------| | | | | - | | | 1 | | (meq/1) | 1 | | | | 1 | (wdd) | | C | 4/21/75 | ä | 8.04 | 15.03 | | | 2.06 | | 0.24 | | 0.0 | 2.64 | 7.48 | 1.02 | |) C | 5/ 5/75 | | 7.94 | 15,33 | | | 2.15 | 7.17 | 0.23 | 3.77 | 0.0 | | | | |) ر | 5/19/75 | i | 8,28 | 16.69 | | | 2.21 | | 0.21 | | | | | | |) ر | 21/6/9 | i — | 8.14 | 15,53 | | | 2.11 | | 0.21 | | | | | | | ی ر | 6/16/75 | - | 7.70 | 14.31 | | | 1.78 | | 0.24 | | | | | | | o C | 6/30/75 | , , , | 8,35 | 14,67 |
 | 2.04 | | 0.25 | | | | | | |) C | 7/14/75 | , - 1 | 8.38 | 14.04 | | | 1.98 | | 0.24 | | | | | | |) C | 7/28/75 | , <u>-</u> | 7.66 | 15.46 | | | 1.91 | | 0.23 | | | | | | |) C | 8/11/75 | i | 8.01 | 15,55 | | ٠ | 2.00 | | 0.23 | | | | | | | ، د | 8/25/75 | · | 8.12 | 14.02 | | • | 1.75 | | 0.23 | | | | | | | ے ر | 9/ 8/12 | - | 7.76 | 15.96 | | | 1,92 | | 0.29 | | | | | | | ی ر | 9/23/75 | | 8.38 | 17.76 | | 4 | 2.13 | | 0.25 | | | | | | | ی ر | 10/7/75 | - | 7.93 | 19.46 | | • | 2.68 | | 0.25 | | | | | | | , ر | 10/21/75 | · | 8.10 | 19.00 | | | 2.74 | | 0.28 | | | | | | | ر د | 11/4/75 | · | 8.01 | 21.15 | | | 2.95 | | 0.26 | | | | • | | | ى ر | 11/18/75 | i — | 8,50 | 19.28 | | | 2.69 | | 0.26 | | | | | | | ی ر | 12/ 2/75 | · | 8.24 | 20,43 | | • | 2.86 | | 90.0 | | | | | | | ی ر | 12/16/75 | · ~ | 8, 12 | 20.48 | | • | 2.81 | | 0.26 | | | | • | | | ນ ບ | 12/30/75 | 1.91 | 8.06 | 21.19 | 21.34 | 10.76 | 2.89 | | 0.25 | | | 5.71 | 10.22 | | | ı | | | | | | | | | | | | | | 1 | | Mean | | 1.57 | 8.09 | 17.12 | 16.96 | 7.30 | 2.30 | 7.29 | 0.24 | 4.12 | 0.0 | 4.66 | 8.16 | 1.22 | | Std. D | bev. | 0.20 | 0.23 | 2.57 | 3.08 | 1.93 | 0.42 | 0.88 | 0.05 | 0.86 | 0.0 | 1.11 | 1.38 | 1.08 | | | | | | | | | | | | | | . **** *** *** *** *** *** | | 1 | | | | · *** *** *** *** *** *** *** *** *** * | | | | | | | | | | | | | Table D-4. Water analysis of the La Mesa drain water sampled at Site D, 1975. | Site | Date | ECx10 ³ | pd | Cations | Anions | Ca | Mg | Na | × | CJ | 89 | HCO ₃ | so ₄ | NO ₃ | |-----------|---|---|------|---------|--------|-------|---|---------|------|------|------|--|-----------------|------------------| | | *************************************** | | | | | | | (meq/1) | | | | |
 | (wdd) | | Ω | 4/21/75 | r i | 8.04 | 14.43 | 13.79 | 4.89 | 2.06 | 7.26 | 0.22 | 3.77 | 0.0 | 2.56 | 7.44 | 1.16 | | Ω | 5/ 5/75 | ٠. | 8.22 | 16.33 | 15.04 | 6.37 | 2.17 | | 0,27 | 3.74 | 0,0 | 3.96 | | 3.62 | | D | 5/19/75 | ä | 8.20 | 15.46 | 14.95 | 5,95 | 2.13 | | 0.21 | 3.57 | 0.0 | 3.88 | | 1.05 | | Ω | 6/ 2/75 | Ä | 8.22 | 15.98 | 15.57 | 6.46 | 2.13 | | 0.22 | 3.50 | 0.0 | 4.82 | | 0.80 | | Ω | 6/16/75 | | 8.00 | 14.13 | 15.49 | 5.76 | 1.77 | | 0.24 | 3.58 | 0.0 | 4.74 | | 0.61 | | Q | 6/30/75 | | 8,31 | 16.88 | 15.60 | 7.20 | 2.14 | | 0.26 | 3.74 | 0.0 | 4.30 | | 0.0 | | <u> </u> | 7/14/75 | ť | 8.41 | 13.39 | 13.41 | 4.55 | 1.89 | | 0.25 | 2,55 | 0.0 | 4.10 | | 0.28 | | Ω | 7/28/75 | - i | 8.33 | 16.41 | 15.84 | 6.88 | 2.03 | | 0.23 | 3,55 | 0.0 | 4.20 | | 0.88 | | Ω | 8/11/75 | į, | 7.94 | 15.93 | 16,20 | 6.78 | 2.00 | | 0.23 | 3.58 | 0.0 | 4.80 | | 1.48 | | | 8/25/75 | 7 | 8.47 | 14.32 | 12.96 | 5.93 | 1.79 | | 0.25 | 3.22 | 0.20 | 3.95 | | 1.26 | | ۵ | 9/ 8/75 | _ | 8.04 | 16.32 | 15.23 | 6.67 | 1.98 | | 0.26 | 3.33 | 0.0 | 4.90 | | 0.0 | | ι Δ | 9/23/75 | 7 | 8.20 | 15.84 | 16.48 | 7.20 | 2.10 | | 0.26 | 4.04 | 0.0 | 5.04 | | 1.58 | | ا ۵ | 10/ 7/75 | - | 7,88 | 18.44 | 19.19 | 7.10 | 2.48 | | 0:30 | 4.52 | 0.0 | 5.66 | | 1.86 | | α | 10/21/75 | <u>, -</u> i | 8.03 | 21.66 | 19.71 | 9,44 | 2.66 | | 0.29 | 5.11 | 0.0 | 5.50 | | 0.0 | | Q | 11/4/75 | | 7,99 | 21.00 | 21.14 | 10.43 | 3.07 | | 0.25 | 5,43 | 0.0 | 5.02 | | 0.54 | | Q | 11/18/75 | - i | 8,31 | 20.11 | 21.99 | 9.76 | 2.81 | | 0.27 | 5.27 | 0.0 | 6.10 | | 3.95 | | Q | 12/ 2/75 | _ | 7.96 | 20.79 | 21.24 | 10,38 | 2.96 | | 90.0 | 5.33 | 0.0 | 5.72 | | 2.24 | | a | 12/16/75 | <u>, , , , , , , , , , , , , , , , , , , </u> | 7.91 | 20.57 | 21.06 | 10.10 | 2.75 | | 0.29 | 5,44 | 0.0 | 5.52 | | 2.07 | | Q | 12/30/75 | ri | 7.98 | 21.91 | 21.24 | 11.33 | 2.93 | | 0.27 | 5.4] | 0.0 | 5.57 | | 0.0 | | | | | | | | | | | | | | | | | | Mean | | 1.57 | 8.13 | 17.36 | 17.17 | 7.54 | 2.31 | 7.28 | 0.24 | 4.14 | 0.01 | 4.75 | 8.24 | 1.23 | | Std. Dev. | · A÷ | 0.21 | 0.18 | 2.79 | 3.03 | 2.04 | 0.42 | 0.70 | 0.05 | 0.91 | 0.05 | 98.0 | 1.49 | 1.14 | | | | | | | | | *************************************** | | |
 | | , 14th offs also also also also also also also als | | 1
1
1
1 | Table D-5. Water analysis of the La Mesa drain water sampled at Site A, 1976. | Site | Date | ECx10 ³ | ЬН | Cations | Anions | Ca | Mg | Na | X | C1 | 03 | HCO ₃ | SO 4 | NO ₃ | |--------------|--|--------------------------------------|-----------|----------|--------|-------|------|--------|------|------|------|------------------|-------|-----------------| | į
Į | 745 Air and 115 Air 117 11 | This time date with the view date of | * *** *** | | | | | (meg/1 | (| 1 | | | | (mdd) | | | 1/13/76 | 1.89 | 8.03 | 22.14 | 21.61 | 11.33 | 3.02 | 7.52 | 0.27 | 5.43 | | 6.07 | 10.11 | 0.0 | | . 1 | 1/26/76 | • | 1 | တံ | တံ | ٠ | | | ۰ | | 0.0 | 6.81 | | 0.0 | | . • | 2/ 7/76 | ۰ | | ۲. | 7 | | | | • | | 0.0 | 5.57 | • | 0.0 | | - 1 | 2/21/76 | | | 6. | ô. | | | ۰ | • | | 0.0 | 4.07 | • | 1.11 | | . , | 3/ 6/16 | , <u>+</u> | | ė | ę. | 4 | | | 9 | | 0.0 | 4.86 | • | 0.89 | | | 3/20/16 | , | 8.29 | 6. | 15.92 | • | | | | • | 0.0 | 5.04 | • | 0.69 | | • | 4/3/16 | ,
, | | 6. | δ, | • | | 4 | | ٠ | 0.0 | 5.00 | • | 1.35 | | * | 4/10/76 | r. | | 6. | Ŝ | • | | | • | ٠ | 0.0 | 4.82 | 6.80 | 1.50 | | | 7 | ٠ | 8.09 | 4. | ₹, | • | | | 9 | ٠ | 0.0 | 4.62 | | 1.22 | | / | 5/15/76 | | 8.48 | 6. | 5 | • | | | | | 0.0 | 4.54 | | 0.50 | | , | 5/28/76 | | 8.43 | 4. | Ŝ | | | | ۰ | | 0.65 | 3.65 | • | 1.10 | | ~ | 9//11/9 | • | 7.64 | Ġ | 6 | | | | | | 1.11 | 4.25 | | 90.0 | | _ | /28/ | | 8.54 | Š | ů. | ٠ | | | • | - 4 | 1.68 | 3.30 | | 0.28 | | • | | | 8.42 | 4. | ₹. | ٠ | | ۰ | | • | 0.64 | 3.84 | 6.56 | 0.15 | | • | | • | 8.44 | 5. | 4. | • | | • | • | • | 0.72 | 3.06 | | 3.03 | | ~ | /11/ | ۰ | | 4. | 4, | ۰ | | • | • | • | 0.44 | 4.08 | • | 2.20 | | ~ | 7 | • | 8.39 | 3 | 14.31 | • | | | 0.37 | • | 0.24 | 2.58 | 7.80 | 4.25 | | <u> </u> | / | • | ۰ | 4. | 4. | • | | | • | • | 96.0 | 1.80 | | 2.64 | | • | 9/23/76 | ٠ | • | 5. | 6. | • | | 4 | ٠ | | 0.32 | 3.66 | • | 5.62 | | 10 | 5 | ٠ | • | <u>.</u> | 0. | Ģ | | | ٠ | • | 0.0 | 5.44 | • | 0.04 | | 10 | 0/19/76 | ٠ | • | 6 | ÷. | | | | | • | 0.60 | 3.28 | • | 5.50 | | H | 1/ 2/76 | • | | 3 | 4. | 0 | | | | | 0.84 | 5.06 | • | 2.29 | | | 1/16/76 | • | | 4 | 23.50 | o. | | | | • | 0.0 | 5.74 | 12.36 | 2.45 | | 7 | 1/30/76 | | | ω, | | 10.53 | | | | • | 0.64 | 5.38 | 11.20 | 2.05 | | ~ | 2/14/76 | • | • | 4 | | · | | | | | 0.0 | 6.40 | • | 2.00 | | | | 1.52 | 8.22 | 17.70 | 17.61 | 7.43 | 2.36 | 7.68 | 0.24 | 4.21 | 0.35 | 4.52 | 8.50 | 1.64 | | Dev. | 4 | 0.22 | 0.29 | 3.37 | 3.51 | 2.06 | 0.36 | 1.23 | 0.03 | 0.79 | 0.46 | 1.21 | 2.25 | 1.62 | | | | | | | | | | | | | | | | | Table D-6. Water analysis of the La Mesa drain water sampled at Site B, 1976. | Site | e Date | ECx103 | Hď | Cations | Anions | Ca | Mg | Na | K | C | 003 | HCO ₃ | so ₄ | NO ₃ | |-------------|--|---|---|---|--------------------------------------|------|------|--------|------|------|------|--|-----------------|-----------------| |
 | | i orani dans dans dans dans dans dans dans dans | ate union militar dates activa delem villate: | | | | | (meg/1 | (| | | |
 | (mdd) | | B | 1/13/76 | 1.90 | 8.00 | 7 | 1: | • | | • | • | | | 5.78 | • | • | | മ | 1/26/76 | • | 1 | ထံး | ٠
• | • | ۰ | | | | | 6.78 | | ٠ | | aca t | 2/ 1/16 | • | 99.7 | ٠, | | • | • | • | • | | • | 5.17
2.17 | • | • | | 20 (| 2/21/16 | 1.50 | α. Ly | ہ ف | or | • | | | • | • | • | 71.5 | • | | | od ta | 3/ 6/ /6 | 1.49 | 8.21
8.35 | o r | · ' | | | | | • | 9 | 4. 4. 4. 4. 4.
4. 4. 4. 4. 4. 4. 4. 4. 4 | ٠ | 9 | | ад | 4/3/76 | 1.4. | 8,26 | 16.61 | 15.91 | 6.25 | 2.25 | 7.88 | 0.23 | 3.86 | 0.0 | 5.26 | 6.76 | 1.70 | | Ф | 4/10/76 | 1.40 | 8.41 | 9 | 5. | • | | | | ۰ | | 4.74 | | • | | B | `~i` | 1.39 | 8,23 | 4. | ₹, | | | | ٠ | | | 4.70 | ٠ | • | | В | 5/15/76 | 1.46 | 8.45 | ė, | 5 | • | | | 4 | • | | 3.52 | | | | œ. | /28 | 1.40 | 8.34 | 4 | Š | ۰ | | ۰ | | ۰ | • | 3.90 | ٠ | ۰ | | മ | 6/11/76 | 1.47 | 8.30 | ហ | 6. | • | • | | • | q | | 4.64 | • | • | | B | /28/ | 1.40 | 8.55 | ς, | ₹. | | | • | • | | • | 2.74 | • | • | | 6 | 13/ | 1.30 | 8.54 | 4. | 4. | • | • | • | | | ۰ | 4.08 | • | ۰ | | മ | /26/ | 1.37 | 8.59 | Š | 5 | • | • | | ٠ | • | | 3.88 | • | • | | മ | /11/ | 1.29 | 8.27 | 4 | 4. | • | ٠ | • | | 9 | ۰ | 4.08 | • | ۰ | | മ | 8/25/76 | 1.28 | 8.66 | 4. | 'n | | • | | • | • | | 3.32 | • | ٠ | | മ | 1- | 1.30 | 8.24 | 4 | 4 | ٠ | ٠ | • | • | • | • | 2.62 | • | ۰ | | മ | 9/23/16 | 1.65 | 8.43 | တ် | æ | • | | • | ٠ | • | • | 3.80 | | ۰ | | 8 3 | 5 | 1.69 | 8.37 | ထံ | 9 | ٠ | ۰ | • | | | • | 4.70 | ٠ | ۰ | | В | abla | 1.60 | 8.36 | ę. | 0. | • | | | ٠ | • | ٠ | 2.74 | તં | • | | <u>α</u> | | 1,81 | 8.39 | e, | 3 | | • | • | | • | ۰ | 5.02 | ٠ | • | | ബ | /16/ | 1.81 | 8.10 | _; | ċ | • | • | • | • | ٠ | | 4.40 | 0 | ٠ | | B | 11/30/76 | 1.68 | 8.13 | <u>, , , , , , , , , , , , , , , , , , , </u> | ÷ | • | | • | • | • | | 4.20 | , - | • | | B | 12/14/76 | 1.86 | 8.07 | 4. | ω, | • | | | • | | • | 6.30 | ,i | • | | മ | 12/28/76 | • | 8.10 | ત્ત | 2. | | • | • | | • | • | 5.40 | • | • | | Mean | | 1.53 | 8.29 | 17.78 | 17.64 | 7.38 | 2.35 | 7.81 | 0.23 | 4.32 | 0.30 | 4.43 | 8.55 | 1.98 | | Std. | Dev. | 0.20 | 0.21 | 3.26 | 3.16 | 2.03 | 0.41 | 1.18 | 0.02 | 0.86 | 0.36 | 1.03 | 2.10 | 1.18 | |
 | a was war the same office which saids the ware while the | wa war wan bara wale delli oku boly . | | | حمد بعد جد طب بابد زبان بدن رسد نده. | | | | · |
 | 1 | ********** | ****** | | Table D-7. Water analysis of the La Mesa drain water sampled at Site C, 1976. | Site | Date | ECx10 ³ | pH | Cations | Anions | Ca | Mg | Na | X | CI | 003 | HCO ₃ | SO ₄ | 1803 | |-----------|----------|--|--------------|---------|-------------|------|------------------------------|--------|------|-------------------|------|------------------|-----------------|-------| | | | to bend were what would date under the | | | | |
 1
 1
 1
 1 | (meg/1 | (| | | | | (mdd) | | O (| 1/13/76 | 1.89 | 7.97 | 2. | ر اسم | | | 9. | • | • | • | | | • | | ပ | 1/26/76 | | ן כ | ກໍເ | ກ ່ວ | | | ψí | | ٠ | | | • | • | |) ر | 2/ // 16 | • | g. 20 | ٠, | ά, | • | • | `ા (| | ٠ | ۰ | | | • | | ပ | 2/21/16 | | 8.06
2.06 | ڻ ر | ع ف | | | س د | • | • | • | | • | | | ن ر | 3/ 0/ 16 | 1.53 | 6.19
6.26 | 17,15 | 16.36 | 7,33 | 2.25 | 7.34 | 0.23 | 4. 5. 4.
2. 4. | 0.0 | 4.90
5.24 | 8.00
6.95 | 1.03 | | Ö | 4/ 3/76 | | 8.36 | ં | J. | | | 9. | | | | | | | | ပ | 4/10/76 | 1.40 | 8.30 | ó. | J, | • | • | 4 | • | | • | | | | | ပ | 5/ 1/76 | | 8.04 | Ď, | < | ۰ | | 9. | | ٠ | | ٠ | ٠ | | | ပ | 5/15/76 | 1.49 | 8.38 | Ġ | ė. | • | | œ. | | ٠ | ۰ | | • | 6 | | ပ | 5/28/76 | | 7.97 | Š. | Š | | | 0, | ۰ | • | • | | | | | ပ | 6/28/76 | | 8.42 | 4 | マ | • | | Q | ٠ | • | | • | • | | | ပ | 7/13/76 | • | 8.53 | ń | ŝ | ۰ | • | 4. | | | | | • | | | ပ | 8/11/76 | ٠ | 8.66 | 4 | ~ | ٠ | • | ٠, | | | • | | ۰ | • | | ပ | 8/25/16 | 1,22 | 8.38 | 4 | ₽, | | | Q. | • | | • | ۰ | | • | | ပ | 91/1 /6 | 1.41 | 8.34 | Š. | ွှံ | | | ς. | • | | • | | • | | | O | 9/23/76 | 1,45 | 8.49 | ė. | ġ | ۰ | | 3 | • | • | • | ٠ | • | | | | 10/5/76 | 1.69 | 8.33 | ထင် | ઝો | ٠ | | a, | • | | ٠ | | • | • | | | 10/19/76 | 1.61 | 8.43 | · | તં | • | | ~ | | | ۰ | | Ċ. | | | | 11/ 2/76 | 1.84 | 8.36 | ů | 2 | 0 | | 7 | • | | • | | - i | | | | 11/16/76 | 1.89 | 7.58 | œ. | cή. | • | | ထ | • | 4 | | | • | • | | ပ | 11/30/76 | 1.90 | 7.64 | ä | ന് | ် | | | | • | • | | ÷. | • | | ပ | 12/14/76 | 1.85 | 7.99 | 4 | 3 | 0 | | 4 | ٠ | | ۰ | • | ÷ | • | | Mean | | 1.55 | 8.23 | 17.94 | 17.90 | 7.55 | 2.40 | 7.76 | 0.23 | 4.28 | 0.38 | 4.63 | 8.57 | 2.19 | | Std. Dev. | žV. | 0.21 | 0.27 | 3.32 | 3.20 | 2.05 | 0.37 | 1.19 | 0.02 | 0.70 | 0.42 | 1.16 | 1.97 | 1.66 | | | | | | | | | | | | | : | , | | | Table D-8. Water analysis of the La Mesa drain water sampled at Site D, 1976. | Site | Date | ECx10 ³ | Hd | Cations | Anions | Ca | Mg | Na | 不 | C | ω ₃ | нсоз | SO ₄ | NO ₃ | |---------|---|---|------|---------|------------|------|----------------|--------------|------|------|---------------------------|---|-----------------|-----------------| | - | | | | | | | | (meq/1) | | |

 | 1 | 1 | (wdd) | | Ω | 1/13/76 | | 8.00 | 3.0 | تُ | 0. | 0 | 9 | | | 0.0 | 00.9 | 10.11 | 0.17 | | Ω | 1/26/76 | | ! | 3.9 | J. | ထံ | J. | ζ. | | | | | ۰ | 0 | | Q | 2/ 7/76 | | 7.76 | 3.6 | 7 | ٦, | 4 | ς. | ۰ | | • | | | 0 | | Ω | 2/21/76 | | 8.23 | 3 | J. | | S | ٠, | | • | • | | | | | a | 3/ 6/76 | | | ٠.
د | o. | 9. | u, | 9. | | | • | | • | υ, | | Q | Ĺ | 1.33 | 8,30 | 16.41 | 15.77 | 6.57 | 2.30 | 7.32 | 0.22 | 4.07 | 0.0 | 4.70 | | 1.40 | | Ω | 4/3/76 | • | • | 0,0 | 'n | 2 | | S, | | ۰ | • | | • | ٥. | | D | 4/10/76 | | 8.17 | 6.3 | ம் | 3 | ┌ | بئ | • | | | | • | സ് | | Q | 5/ 1/76 | | • | 5.4 | ₽ | ٤, | 2 | 9 | | | • | | | സ | | Q | 5/15/76 | | | 7.3 | ó | | ς, | ð | | | • | | | C. | | Д | 5/28/76 | | • | သ | Ġ | ŝ. | Q, | S | • | | • | | | o. | | | $^{'11''}$ | | | 5. | - | ς, | ٦. | ٥, | • | | | | • | 9 | | . Ω | 1 | | • | S. | য া | သ | <u> </u> | L. | ٠ | | • | • | • | ന | | Q | 7/13/76 | | | 5.4 | ぜ | | 0 | ß | | | | • | • | נא | | Ω | 1/26/16 | | • | 5,2 | 'n | 2 | 7 | 2 | | | • | • | | Ωĵ | | Ω | 8/11/76 | • | | 4.0 | m | 9 | ο, | ب | | • | | • | - 0 | m | | ۵ | 8/25/76 | | | 3.8 | 4 | 9 | ٥, | o. | • | | | • | | o, | | D | 9/1/16 | 1.35 | 8.23 | 5.4 | υ, | rC. | 4 | ₹. | • | • | | | | L 3 | | Q | 9/23/76 | • | ۰ | 5.5 | Ġ | u, | Ç | | | ٠ | | • | | Τ. | | ۵ | 10/ 5/76 | | • | 8.4 | ð | 2 | ς, | S. | | ٠ | | | | 0 | | Q | 1 | | • | ω.
Ω | 0 | 0 | J. | <u>.</u> | | • | • | | , | (1) | | Ω | 7 | • | | 2.9 | ς. | 7 | $\hat{\sigma}$ | C. | | • | • | • | ٠į. | ωį | | Ω | 11/16/76 | | • | 3.7 | 2 | 0.6 | 0, | ο, | ٠ | | | • | Ċ | ω | | Д | 11/30/76 | | ٠ | 2,1 | Ξ. | 4 | α, | 9 | • | | • | • | o. | 7. | | Д | 12/14/76 | • | 4 | 4.7 | ヷ | 0. | | c, | | • | • | • | • | | | Ω | 12/28/76 | 1.79 | 8.14 | 2,5 | \sim | ش | 2) | 9 | | • | • | • | _ i | | | Mean | | 1.55 | 8.25 | 17.94 | 17.64 | 7.51 | 2.41 | 7.78 | 0.23 | 4.26 | 0.41 | 4.43 | 8.50 | 2.15 | | StD. De | Dev. | 0.21 | 0.25 | 3.29 | 3.07 | 2.04 | 0.38 | 1.20 | 0.02 | 0.70 | 0.44 | 1.05 | 1.85 | 1.65 | | | 999) — 1890 ALMA ALMA PARA PARA PARA PARA PARA PARA PARA PA | v maa ame een een een een een een een een een e |
 | | | | | | 1 |
 | * ** ** ** ** ** | A 400 to 100 | *********** | # U # II | Table D-9. Water analysis of the La Mesa drain water sampled at Site A, 1977. | S | Site | Date | ECx10 ³ | Hd | Cations | Anions | Ca | Mg | Na | K | CJ | ω ₃ | HCO ₃ | SO ₄ | NO ₃ | |----------------------------------|-----------|------------------|--------------------|------|---------|--------|-----------------------------------|------|--------|------|------|----------------|------------------|-----------------|-----------------| | {
{
{ | | | | | | | delle foto that desir desir desir | | (meg/1 | | | | | 1 1 | (wdd) | | - | | 1/11/17 | 1.93 | 7.99 | | | 10.28 | 2.86 | 8.77 | | | 0.84 | | 11.44 | 2.20 | | • | | 1/26/77 | 1.99 | 8.14 | | | 7.29 | 2.79 | 11.62 | | | 0.0 | | 11.36 | 1.70 | | - | | TT/6 /Z | 2.05 | 8.32 | | | 9.87 | 2.54 | 9.26 | _ | | 0.28 | | 11.06 | 1.45 | | • | | 2/23/77 | 2.07
 8.22 | | | 9.57 | 2.84 | 9.65 | _ | | 0.48 | | 11.06 | 2,55 | | 7 | A | 3/ 9/77 | 2.03 | 8.28 | 21.28 | 22.36 | 9.25 | 2.73 | 9.05 | 0.25 | 5.44 | 0.0 | 5.56 | 11.35 | 0.75 | | | | 3/23/77 | 1.61 | 8.14 | | • | 7.27 | 2,18 | 6.98 | _ | | 0.40 | | 8.42 | 0.80 | | 31 | | 4/ 6/77 | 1.4] | 8.43 | | | 5,96 | 2.00 | 6.55 | _ | | 0.48 | | 7,25 | 0.15 | | | | 4/20/77 | 1.28 | 8.49 | | | 5,93 | 1.88 | 5.92 | _ | | 0.52 | | 6.86 | 0.30 | | - | | 5/ 4/77 | 1.32 | 8.60 | | | 5.78 | 1.74 | 6.32 | _ | | 0.84 | | 6.81 | ! | | • | | <i>LL/</i> 17 /9 | 1.58 | 7.55 | | | 6.72 | 2.02 | 7.03 | _ | | 0.0 | | 7.72 | 0.40 | | - | | 7/13/77 | 1.50 | 7.99 | | | 99.9 | 1.84 | 6.60 | _ | • | 0.44 | | 7.84 | - | | - | | 11/8 /8 | 1.46 | 7.25 | | | 6.57 | 1.74 | 6.05 | _ | | 0.0 | | 7.12 | 1,30 | | • | | 11/51/6 | 1.75 | 8,10 | | | 7.91 | 2.25 | 7.08 | - | | 0.0 | | 8.44 | 1.10 | | 7 | | 10/ 6/17 | 1.84 | 8.28 | | | 8.50 | 2.48 | 7.68 | _ | | 0.0 | | 9.28 | 1.00 | | - | | <i>L2/</i> 8/71 | 2.04 | 8.24 | | | 9.51 | 2.70 | 8.97 | _ | | 0.0 | | 10.06 | 1.70 | | Mean | ç | | 1.72 | 8,13 | 18,18 | 18,53 | 7.80 | 2.31 | 7.83 | 0.23 | 4.44 | 0.29 | 4.71 | 9.07 | 1.18 | | | | | | | | | | | | | | | ! | | i
i | | Std | Std. Dev. | 7. | 0.29 | 0.35 | 3,35 | 3.31 | 1.57 | 0.42 | 1.64 | 0.03 | 0.87 | 0.31 | 0.80 | 1.82 | 0.73 | | | | | | | | | | | | | | | | | | Table D-10. Water analysis of the La Mesa drain water sampled at Site B, 1977. | NO ₃ | 2.05 | 1.70 | 2.30 | 0.80 | 0.25 | 90.0 | 1 | 0.50 | 1 | 1.30 | 1.35 | 1.00 | 1.65 | 1.18 | 0.70 | |--------------------|---------|----------------|------------|--------------|---------|---------|---------|--------|---------|--------|---------|----------|----------|-------|-----------| | S04 | 11.40 | 11.17 | 10.87 | 8.31 | 7.29 | 6.67 | 6.8] | 7.60 | 7.88 | 7.36 | 8.56 | 9.80 | 10.06 | 9.12 | 1.85 | | LICO ₃ | 5.26 | 5.08 | л. 68
я | 4.50 | 3.84 | 3,38 | 3.52 | 4.42 | 4.04 | 4.74 | 4.98 | 4.86 | 5.36 | 4.74 | 0.78 | | 00 ⁻ | 0.80 | 0.0
0.44 | 0.0 | 0.36 | 0.76 | 0.44 | 0.20 | 0.44 | 0.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.27 | 0.29 | | C1 | 5.22 | 5.54 | 5.47 | 4.12 | 3.71 | 3,40 | 3,38 | 3.90 | 3,59 | 3,34 | 4.28 | 4.54 | 5.46 | 4.44 | 0.87 | | K
) | 0.25 | 0.23 | 0.27 | 0.25 | 0.18 | 0.20 | 0.23 | 0.25 | 0.22 | 0.23 | 0.21 | 0.23 | 0.28 | 0.23 | 0.03 | | Na
(meq/1 | 8.67 | 9.43 | 9,83 | 6.85 | 69.9 | 6.01 | 5.89 | 6.88 | 6.40 | 6.16 | 7.12 | 7.78 | 9.15 | 7.66 | 1.39 | | Mg | 2.83 | 2.93 | 2.77 | 2.17 | 1.90 | 1.90. | 1.79 | 2.11 | 1.90 | 1.60 | 2.50 | 2.42 | 2.76 | 2.35 | 0.46 | | Ca | | 10.15 | | | | | | | | | | | | 8.12 | 1.63 | | Anions | 22.71 | 23.05
22.26 | 22.06 | 17.30 | 15.60 | 13.89 | 13.91 | 16.37 | 16.07 | 15.46 | 17.84 | 19.22 | 20.91 | 18.58 | 3.34 | | Cations | 21.90 | 22.59
22.97 | 22.25 | 21.14 | 14.85 | 14.20 | 13.84 | 16.30 | 15,28 | 14.72 | 18.49 | 18.53 | 21.70 | 18.36 | 3.44 | | Hď | 7.96 | 8.05
38 | 8.26 | 8.22 | 8.51 | 8,29 | 8,63 | 8.33 | 8,03 | 7.26 | 8.22 | 8.15 | 8.26 | 8.18 | 0.31 | | ECx10 ³ | 1.94 | 2.03
2.06 | 2.06 | 1.98
1.61 | 1.45 | 1.28 | 1,33 | 1.55 | 1.49 | 1.47 | 1.82 | 1.84 | 2.06 | 1.73 | 0.29 | | Date | 1/11/17 | 1/26/77 | 2/23/77 | 3/ 9/11 | 4/ 6/77 | 4/20/77 | 5/ 4/77 | 71/1/9 | 7/13/77 | 17/5/8 | 9/15/77 | 10/ 6/77 | 12/ 8/77 | | • ^5 | | Site | മ | മമ | ш | മാമ | വ്യ | n | ď | ο ρα | ıα | ເໝ | α | σ | ıα | Mean | Std. Dev. | Table D-11. Water analysis of the La Mesa drain water sampled at Site C, 1977. Table D-12. Water analysis of the La Mesa drain water sampled at Site D, 1977. | Site | Date | ECx10 ³ | Hď | Cations | Anions | Ça | Mg | Na | X | CJ | සි | HCO ₃ | SO ₄ | NO ₃ | |---------|----------|--------------------|------|---------|--------|------|------|--------|------|------|------|------------------|--------------------|-----------------| | | | | | | | |
 | (meg/1 | | | | 1 |

 | (mdd) | | Ω | 1/11/17 | 1.93 | 8.07 | ٠ | 22.38 | 9.82 | 2.76 | | | | 0.84 | | | | | Q | 1/26/77 | 2.06 | 7.96 | | 23.13 | 8.29 | 2.93 | | | - | 0.0 | | | | | Ω | 2/ 9/77 | 2.06 | 8.30 | | 22.26 | 9.77 | 2.55 | | | | 0.0 | | | | | Q | 2/23/77 | 2.05 | 8.25 | 21.96 | 21.69 | 9.38 | 2.83 | 9.48 | 0.27 | 5.48 | 0.40 | 4.86 | 10.91 | 2,50 | | Q | 3/ 9/77 | 1.97 | 8.27 | | 21.92 | 9.03 | 2.74 | | | | 0.0 | | | | | Ω | 3/23/77 | 1.61 | 8.19 | | 17.36 | 7.24 | 2.17 | | | | 0.64 | | | | | Q | 4/ 6/77 | 1.47 | 8.28 | | 15.73 | 5,45 | 2.03 | | | | 0.32 | | | | | Q | 4/20/77 | 1.39 | 8.56 | | 15.62 | 6,71 | 2.03 | | | | 0.80 | | | | | Q | 5/ 4/77 | 1.34 | 8,62 | | 14.11 | 5.89 | 1.76 | | | | 0.20 | | | | | Q | 11/11 | 1.55 | 8.43 | | 16.71 | 6.19 | 2.04 | | | | 0.40 | | | 0.60 | | Q | 7/13/77 | 1.50 | 8.12 | | 16.27 | 7.30 | 2.01 | | | • | 0.68 | | | 1 | | Ω | 11/8 /8 | 1.52 | 7,33 | | 16.10 | 6.91 | 1.88 | | | | 0.0 | | | 1.25 | | Ω | 9/15/77 | 1.76 | 8.15 | | 17.86 | 8.22 | 2.38 | | | | 0.0 | | | 1.50 | | Q | 10/ 6/77 | 1.81 | 8.16 | | 18.39 | 8.19 | 2.44 | | | | 0.0 | | | 1.40 | | O | 12/8/77 | 2.05 | 8,29 | | 20.94 | 9.14 | 2.65 | | | ٠ | 0.0 | | | 1.80 | | Mean | | 1.74 | 8.20 | 18.50 | 18.70 | 7.88 | 2.35 | 8.04 | 0.24 | 4.50 | 0.29 | 4.67 | 9.22 | 1.40 | | Std. De | Dev. | 0.27 | 0.30 | 3,10 | 3.03 | 1.39 | 0.38 | 1.53 | 0.02 | 0.81 | 0.32 | 99.0 | 1.73 | 0.73 | | | | | | | | | | | | | | | | | Appendix E PIEZOMETER HEIGHTS Table E-1. Water stage below surface measured in piezometers (1975). | 19 | | i | 1 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1 | 1.9 | 6.1 | 1.9 | 2.0 | 2.0 | ı | 2.0 | |------------------|--|---------|---------|---------|---------|---------|---------|-----|-----|-----|----------|----------|----------|----------|----------|----------| | 18 | 1 | 1.5 | 1,5 | 1.5 | 1.5 | 1.8 | 1.7 | 1.7 | 1.8 | 1.8 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | | 17 | t
1 | 1.5 | 1.4 | 1.4 | 1.4 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.8 | 1.9 | 1.9 | 2.0 | 2.0 | | 16 | l
l | 1.4 | 1.3 | 1.3 | T, 3 | 1.4 | 1.5 | 1.5 | 1.5 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.9 | | 1.5 | 1 | 1.6 | 1.5 | 1.4 | 1.3 | 7.7 | 1.3 | | | 1.5 | | | 1.6 | | 1.6 | 1.6 | | 14 | ı | 1.5 | | | | 1.5 | | 1.5 | 1.6 | 1.7 | 1.8 | | 1.9 | | 1,9 | | | 13 | 1 | 1.5 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | | | 1.5 | | 1.5 | 1.6 | 1.7 | 1,9 | | | 12 | [
 [
 [| 1.5 | 1.3 | £. | 1.4 | 1.5 | 1.6 | 1.6 | 1.6 | 1.7 | 1.8 | | 1.8 | | 1.9 | _ | | 11 | 1
1 | 1.5 | | | | 1.5 | | 1.7 | 1.7 | 1.8 | 1.8 | | 1.9 | | 2.0 | 1.7 | | er No | ı | 1.5 | 1.2 | 1.4 | 1.4 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.8 | 1.8 | 1.9 | 1.9 | 2.0 | 2.0 | | iezometer
9 1 | (meters) | 1.6 | | | | 1.6 | | 1.7 | 1.7 | 1.8 | 1.8 | | 2.0 | | 2.0 | 2.4 | | P1e | 1 | 1.6 | | | | 1.5 | | 1.7 | 1.7 | 2.1 | 1.8 | | 1.9 | | 2.0 | 2.1 | | 7 | 1 | 1.6 | | | | 1.7 | | | | 1.8 | | | 2.0 | | 2.1 | | | 9 | | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.7 | 1.8 | 1.9 | 1.9 | 2.0 | 2.0 | 2.1 | 2.0 | 2.1 | 2.2 | | 5 | 1 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 1.4 | 1.5 | 1.5 | | 1.5 | | 1.6 | 1,6 | | 4 | 1 | 1.6 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.8 | 1.9 | 1.9 | 2.0 | 2.0 | 2.1 | 2.1 | 2.2 | 2.0 | | 3 | | 1.6 | 1.5 | 1.6 | 1.6 | 1.7 | 1.8 | 1.8 | | | | 2.0 | 2.1 | 2,1 | 2.1 | 2.2 | | 2 | 1 | 1.9 | 1.9 | 1.9 | J.9 | 2.0 | 2.0 | 2.1 | 2.2 | 2.2 | 2.2 | 2.3 | 2.2 | | 2.4 | 2.4 | | - | | 1.7 | 1.3 | 1.2 | ł | 1.3 | 1.5 | 1.6 | 1.7 | 1.7 | 1.8 | 1.9 | 2.0 | 1.9 | ı | 2.0 | | Date | And the second s | 8-25-75 | 9-02-75 | 9-08-75 | 9-16-75 | 9-23-75 | 9 30-75 | | | | 10-28-75 | 11-04-75 | 11-11-75 | 11-18-75 | 12-18-75 | 12-30-75 | Table E -2. Water stage below surface measured in piezometers (1976). | | 173 | | 2.1 | | 2.0 | | | 2.2 | • | • | 2.1 | • | • | 2.1 | • | 2.1 | • | • | | 2.1 | • | | 1.8 | • | |------------|----------|-------|-------|-------|-----|-------|-------|---------|-------|-------|---------|-------|--------|-----|-------|-----|-----|-------|-------|-------|-------|-----|----------|------| | , | 27 | | 2.0 | | 2.0 | • | | 1.9 | • | | 2.1 | • | | 1.9 | | • | • | • | | 1.8 | • | • | ۲.
8. | • | | | / | | 2.0 | | 1 | 4 | |
2.0 | | • | 2.0 | 4 | • | 1.8 | • | | 1 | ļ | ŀ | 1 | ł | ı | i | į | | , | QT | | 2.0 | | 2.0 | | • | 2.2 | • | • | 1.9 | • | 1.7 | 1.7 | 1.7 | 1.7 | • | | • | 1.6 | 1.7 | • | 1.9 | • | | | T2 | | 9,1 | | • | | 1.6 | • | • | • | 1.7 | • | • | 1.7 | • | ŧ | • | • | • | 1.8 | • | • | 1.7 | • | | | T + . | | 2.0 | · 1 | 1.9 | | 2.1 | 2.1 | • | • | 1.9 | | • | 1.8 | • | | • | • | | 1.6 | • | 1.8 | | ı | | | 113 | | 2.3 | i | 1.9 | 4 | 2.1 | 2.1 | • | | 2.0 | • | • | 1.8 | • | 1 | ŧ | ı | 1 | ı | 1 | ı | 1 | ī | | | 77 | | 2:1 | | 2.0 | • | • | 2.1 | • | • | 2.0 | • | • | 1.7 | | • | | • | • | 1.7 | | • | 1.6 | • | | ٠ . | TT . | | 2.1 | | | | 2.2 | • | • | | 2.0 | • | • | 1.8 | • | * | • | • | | 1.7 | • | | 1.7 | • | | ter No. | ers) | | 2.1 | • | 2.1 | | 2.0 | • | • | • | 1.9 | • | • | 1.8 | • | • | • | • | • | 1.7 | | • | 1.7 | • | | Piezometer | (met | | 2.2 | • | • | | 2.2 | • | • | • | 2.1 | • | • | 1.7 | • | • | • | • | • | 1.8 | • | • | 1.9 | • | | P1 | | | 2.2 | | | | 2.2 | • | • | | 2.0 | • | • | 1.7 | • | • | • | • | • | 1.8 | | | 1.8 | | | ľ | - - | | 2.3 | | 2.2 | | | 2.3 | • | | 2.1 | | • | | • | 2.0 | • | • | • | 1.8 | 1.8 | • | 1.8 | | | | | | | | 2.3 | | | 2.3 | | | | • | | • | - | | • | | | | | 1.8 | | • | | | | | J. 6 | • | 1.7 | 1.8 | | • | | • | | 2.0 | 1.9 | 1.9 | • | • | 1.8 | | | | | 1.8 | 1.8 | | | | 4 | | | | 2.3 | 2,3 | • | • | 2.3 | | | • | 2.0 | • | • | • | 1.9 | | • | 1,8 | | • | 8. | • | | c | | | 2.3 | | 2.3 | | | 2.3 | 2.3 | | | 2.0 | | 1.9 | | 2.0 | • | • | | 1.8 | • | | 1.9 | • | | C | 7 - | | | • | 2.5 | 2.5 | | 2.6 | 2.7 | | • | • | 2.3 | • | • | 2.2 | • | • | | ٠ | • | 2.0 | | • | | 1 | -4 | | | | 2.2 | | | 2.2 | • | • | • | 1.9 | • | | | 1.7 | • | • | | 1.7 | • | 1.7 | 1 | ı | | | Лаге | 7-90- | -13-7 | -21-7 | 29 | -07-7 | -21-7 | 2-28-76 | -90-7 | -13-7 | 3-20-76 | -27-7 | 4-03-7 | | -17-7 | -24 | 01- | -08-7 | -15-7 | -20-7 | -28-7 | -70 | 6-21-76 | 29-7 | Water stage below surface measured in piezometers (1976) (continued). Table E-2. | 8 19 | 8 1.7 | 1.6 | 1.8
1.6
1.6 | 2.0
2.1
2.1
2.1 | 22.1.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3 | 2.1 | |----------------------------------|---------|-------------------------------|--|--|--|----------------------| | 1 1 | ~ | 1 1 1 | 1 1 1 1 | 111 | 1111 | 1 1 | | 17 | i | I | 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 E | 1 1 | | 16 | 1.8 | 1.4 | 1.52 | 4.1.4.4.4.2.6.2.6.2.6.2.6.2.6.2.6.2.6.2.6.2 | 1.6 | 1.6 | | 15 | 1.7 | 1.5 | 1.3 | 1.6 | 1.7
1.7
1.8
1.8 | 8.4 | | 14 | I | 1 1 1 | [] [| 4 F I I | 1 1 1 1 1 | 1 [| | 13 | i | 1 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 | | 12 | 1.6 | 1.7 | 1.4 | 1.3 | 11111
88.60
9.60 | 4.8
8.8 | | No. | 1.4 | 1.5
1.5 | 1.5 | 1.8
1.9
1.9 | 1.9
1.9
2.0
2.0 | 1.9 | | zometer l
9 10
(meters) | 1.6 | 444 | 1.2 | 1.6
1.6
1.6 | 1.6 | 1.6 | | Piezometer
9 10
- (meters) | 1.7 | 1.5 | 1.3
1.7
1.7 | 1.8
2.4
6.4
8.4 | 1.9
1.9
2.0
2.0 | 1.9 | | 8 1 | 1.7 | 1.5 | 1.3 | 8.4.4.4 | 1.9 | 2.0 | | | 1.6 | 1.6 | 1.4 | 1.9
1.9
2.0 | 0 2.0
0 1.9
1 2.0
1 2.0
0. 2.0 | 2.0 | | 9 : | 1.7 | 5 1.6
6 1.6
6 1.6 | 6 1.5
6 1.8
6 1.8 | 7 1.9
6 2.0
6 2.0
6 1.9 | 5 2.C
6 2.1
6 2.1
6 2.1 | 5 2.0
6 2.0 | | 70 1 | 7 1.9 | 91.1 | 5 1.6
7 1.6
7 1.6 | 90 1.6 | 0000 | 0 1.5 | | 7 : | 7 1.7 | 6 1
6 1
6 1 | 73 1.1. | 9 1. | 0 2.
1 2.
1 2.
1 2. | 1 2. | | 3 | 0 1.7 | 0 1.
9 1. | 88
0 0 1.:
0 1.: | | 3 2 2 | 3 2.
3 2. | | 2 | 2. | 2.5 | 22.5 | 2222 | 22.22 | 2. | | | | 1 [[| | 1 1 1 1 | 1111 | 1 1 | | Date | 7-08-76 | 8-11-76
8-25-76
8-31-76 | 9-07-76
9-14-76
9-23-76
9-29-76 | 10-05-76
10-12-76
10-19-76
10-26-76 | 11-02-76
11-09-76
11-16-76
11-23-76
11-30-76 | 12-07-76
12-14-76 | Table E-3. Water stage below surface measured in piezometers (1977). | | F 1 | t 1 | i i | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | i i | 1 1 | | |--|------------------|--------------------|--------------------|---------|--------------------|-----------------|--------------------|--------------------|----------------------|----------------------|----------------------|--| | | 81 | 1 1 | 1 1 | t t | l I | i i | i i | 1 1 | į I | 11. | 1 1 | | | | 17 | i i | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | I I | 1 1 | i f | t I | | | | 1 1 1 1 | 2.0 | 1 1 | į į | t i | 1 1 | 1 1 | l 1 | 1 1 | i i | 1 I | | | | 1.5 | 2.1 | i i | i 1 | 1 I | 1 1 | . 1 1 | i I | 1 [| i i | 1 [| | | | 14 | l i | 1 1 | 1 1 | 1 1 | 1 1 | į į | i i | 1 1 | 1 1 | 1 1 | | | | 13 | i i | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | (i | 1 1 | 1 1 | 1 I | | | | 12 | 2.1 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | 2.4 | 2.5 | 2.5 | 2.6 | | | - 1 | 111 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | 2.5 | 2.5 | 2.6 | | | Plezometer No | 10
ers) - | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.2 | 2.2 | 2.2 | | | ezomet | 9 10
(meters) | 2.2 | 2.3 | 2.3 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.6 | 2.6 | | | P1 | 8 ! | 2.2 | 2.3 | 2.3 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.6 | 2.6 | | | | | 2.2 | 2.3 | 2.3 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.6 | 2.6 | | | | 9 - | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | 2.4 | 2.5 | 2.6 | 2.7 | 2.7 | | | | 1 5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.8 | 1.8 | 2.0 | 2.0
2.0 | 2.0 | | | | 7 | 2.4 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.7 | 2.8 | 2.8 | 2.8 | | | | -
-
- | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.6 | 2.6 | 2.7 | 2.8 | 2.8 | | | | 2 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6
2.6 | 2.7 | 2.8 | 2.9 | 3.0 | | | | | ţ I | ; t | 1 1 | 1 1 | 1 1 | t I | 1 1 | i i | 1 1 | 1 1 | | | Services and the are services and the services and the services and the services and the services are services and the services and the services are ar | Date | 2-02-77
2-09-77 | 3-02-77
3-30-77 | 4-07-77 | 5-05-77
5-26-77 | 6-16-77 6-30-77 | 8-01-77
8-25-77 | 9-15-77
9-29-77 | 10-13-77
10-27-77 | 11-10-77
11-24-77 | 12-15-77
12-23-77 | | Appendix F WATER QUALITY SAMPLE SITE WELLS Table F-1. Water quality samples taken from observation well No. 1. | Well | Date | ECx10 ³ | Fd. | Cations | Anions | Ca | Ma | Na
(meq/l) | × | CJ | ω ₃ | 11003 | SO ₄ | NO ₃ | |--------|---|--|--|--|---|--|--|---|--|--|--|--|--|--| | | 3/20/76
4/ 3/76
4/10/76
5/ 1/76
5/15/76
5/28/76
1/26/76
8/11/76
9/ 7/16
10/21/76
12/28/76 | 2.06
2.08
2.08
2.20
2.15
2.15
2.03
1.93
1.86
1.86
1.86
1.86 |
8.23
8.18
8.11
8.11
8.11
8.12
8.25
8.25
8.44
7.90
7.90 | 25.21
25.02
25.02
25.02
25.34
24.20
22.88
24.38
22.94
22.94
22.94
22.52
20.49
22.52
20.49
22.51
21.55
24.14 | 24.69
25.58
25.53
25.37
25.22
24.75
22.45
21.73
21.75
21.65
23.29
23.29
23.16 | 8.27
8.38
7.91
6.58
8.86
7.83
7.09
6.04
6.11
7.45
6.04
8.33 | 44.08
44.08
44.09
44.09
44.09
44.08 | 12.36
12.97
13.00
13.96
12.05
12.03
11.91
11.91
11.53
10.82
10.68
10.55
10.58 | 0.30
0.31
0.33
0.32
0.32
0.32
0.33
0.33
0.33 | 6.04
6.31
6.24
6.42
6.42
6.02
6.02
6.02
5.27
5.11
5.11
5.24 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.40
0.0 | 6.46
6.50
6.50
4.70
4.42
3.88
3.58
3.58
3.02
6.02
6.28
6.28 | 11.50
11.62
13.20
13.20
13.15
13.12
11.64
11.60
11.44
11.36
11.36
11.36 | 43.08
71.28
48.96
61.60
48.00
46.50
24.60
24.00
33.10
28.70
28.70
28.70
33.10
33.10
33.10
33.00 | | Mean | | 2.00 | 8.18 | 23,59 | 23,48 | 7.23 | 4.34 | 11.74 | 0.28 | 5.86 | 0.10 | 4.65 | 12.25 | 38.29 | | Std. D | Dev. | 0.14 | 0.24 | 1.61 | 1.44 | 1.16 | 0.23 | 1.07 | 0.10 | 0.54 | 0.19 | 1.21 | 0.78 | 14.92 | Table F-1. Water quality samples taken from observation well No. 1 (continued) | Well | ll Date | ECx10 ³ | Hd. | Cations | Anions | Ca | Mg | Na | አ | C1 | ω_3 | HCO ₃ | so ₄ | NO3 | |----------------|--|---|------|---------|--------|------|--------------------|---------|-----------|-------------|-------------|------------------|-----------------|-------| | | | *************************************** | | | | |

 | (meq/1) |
 | }
}
} | i
i
i | ,
1
1 | ‡
[| (maa) | | ,- | 77/11/1 | | 7.74 | 22.82 | 23.62 | 8.30 | | 10.08 | 0.32 | 4.90 | 0.36 | 5.30 | 12.32 | 46.00 | | 4 ~~ | 2/23/77 | | 8.20 | 23.05 | 22.55 | 7.34 | 4.46 | 10.94 | 0.31 | 5,33 | 0.48 | 4.98 | _ | | | | 3/ 9/77 | | 7.98 | 23.58 | 24.15 | 8.93 | | 9.77 | 0,33 | 5,43 | 0.0 | 5.12 | _ | | | , , | 3/23/77 | | 7.69 | 24.29 | 24.04 | 8.95 | | 10.54 | 0.33 | 5,54 | o.u | 72.0 | - | | | · ~~ | 4/ 6/77 | | 8.71 | 23.01 | 23.51 | 8.40 | | 10.08 | 0,31 | 17.5 | 1,56 | 4.34 | - | | | | 4/20/77 | | 8.27 | 23.84 | 24.09 | 9.00 | | 9.92 | 0.32 | 5.52 | 0.28 | 4.42 | | | | 4 m | 5/ 4/77 | | 8.26 | 23.73 | 23.96 | 8,33 | | 10.43 | 0.34 | 5.44 | 0.0 | 4.94 | | | | -i - | // // // // // // // // // // // // // | | 7.73 | 24.24 | 24,34 | 9.19 | | 10.08 | 0.30 | 5,43 | 0.0 | 5.56 | | 56.50 | | H ~ | 71/2 /0 | | 7 97 | 27.72 | 24.64 | 60.6 | | 8.93 | 0.28 | 5,39 | 0.0 | 5.76 | | 53.00 | | | 77/5 /0 | | 7.22 | 23.28 | 24.68 | 8.60 | | 10.40 | 0.31 | 5.67 | 0.0 | 5.50 | | 44.00 | | - | 10/ 6/77 | 2,35 | 7.36 | 24.42 | 24.14 | 9.45 | | 10.06 | 0.30 | 5.71 | 0.0 | 5.48 | • | 51.50 | | Mean | | 2,18 | 7.92 | 23.54 | 23.97 | 8.69 | 4.43 | 10.11 | 0.31 | 5.42 | 0.24 | 5.26 | 12.48 | 39.15 | | Std. | Std. Dev. | 0.10 | 0.43 | | 0.59 | 0.58 | 0.23 | 0.51 | 0.02 | 0.22 | 0.47 | 0.52 | 0.62 | 12.82 | | | | | | | | | | - |

 | | | | | | Table F-2. Water quality samples taken from observation well No. 2. | Well | Date | ECx10 ³ | Hd | Cations | Anions | Ca | Mg | Na
(mec/1) | X | Cl | ω ₃ | HCO ₃ | SO ₄ | NO3
(ppm) | |--|--|---|---|--|---|---|---|--|--|---|--|--|---|--| | Wean DODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | 3/20/76
4/ 3/76
4/10/76
5/ 1/76
5/15/76
5/28/76
7/26/76
8/11/76
9/23/76
9/23/76
10/21/76
12/28/76 | 2.50
2.67
2.65
2.73
2.75
2.65
2.33
2.33
2.33
2.35
2.35
2.35
2.35
2.3 | 8.09
8.17
8.14
7.71
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.1 | 31.82
33.88
33.06
31.58
32.48
28.76
29.14
30.13
27.89
27.89
27.32
27.31
27.32
30.05 | 30.31
32.31
31.57
30.31
31.28
29.12
27.79
28.22
27.73
28.10
27.73
28.66
27.75
29.80
29.80 | 10.72
12.34
11.30
9.17
10.33
8.90
10.14
8.92
9.20
8.92
11.35
9.04
11.35 |
5.48
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
10.45
1 | 15.30
15.86
16.72
14.72
14.72
14.04
13.80
13.53
13.61
11.92
11.92
11.92
12.91
12.91 | 0.32
0.32
0.32
0.33
0.33
0.33
0.33
0.33 | 9.59
10.14
10.06
9.80
10.04
9.30
9.17
9.17
9.03
8.68
8.68
8.76
9.17 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 6.02
6.26
6.26
6.26
5.42
3.98
4.42
3.96
7.96
7.96
7.96
4.48 | 14.70
15.90
16.00
15.00
15.84
14.44
16.28
113.96
114.84
116.24
116.28
116.28
116.28 | 0.05
0.52
0.52
0.39
0.30
0.30
1.05
1.05
1.05
1.05
1.05 | | Std. Dev. | ^ \
- \ | 0.17 | 0.22 | 2.11 | 1.63 | 1.30 | 0.23 | 1.42 | 0.10 | 0.71 | 0.18 | 1.28 | 0.78 | 2.33 | Water quality samples taken from observation well No. 2 (continued). Table F-2. | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Well | Date | ECx10 ³ | Hď | Cations | Anions | Ca | Mg | Na | X | C1 | | HCO ₃ | SO ₄ | NO ₃ | |--|---------|------------------|--------------------|------|---------|--------|-------|------|---------|------|------|------|------------------|-----------------|-----------------| | 1/11/77 2.48 7.78 28.04 29.13 11.99 4.67 11.07 0.31 7.89 0.68 4.72 1/26/77 2.63 7.62 29.30 30.12 10.85 5.28 12.91 0.26 8.20 0.0 5.36 2/23/77 2.69 8.17 28.97 28.44 10.86 4.73 13.07 0.31 8.44 0.26 8.20 0.0 5.36 3/23/77 2.59 7.93 26.81 27.78 10.49 4.53 11.47 0.32 7.84 0.0 5.18 4/6/77 2.45 8.71 27.26 26.34 10.54 4.42·11.97 0.33 7.67 0.0 5.18 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.54 0.33 7.86 1.40 3.68 5/4/77 2.51 8.20 28.09 26.81 11.36 4.42·11.97 0.33 7.87 0.0 5.46 | | | | | | | | | (mea/1) | | | | | | (mdd) | | 1/26/77 2.63 7.62 29.30 30.12 10.85 5.28 12.91 0.26 8.20 0.0 5.36 2/23/77 2.69 8.17 28.97 28.44 10.86 4.73 13.07 0.31 8.44 0.28 5.02 3/977 2.53 7.93 26.81 27.78 10.49 4.53 11.47 0.32 7.84 0.0 5.18 3/23/77 2.50 7.77 26.84 27.10 10.57 4.43 11.52 0.32 7.67 0.0 5.14 4/20/77 2.45 8.71 27.26 26.34 10.54 4.42.11.97 0.33 7.56 1.40 3.68 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 3.76 5/40/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/11/77 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.52 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.58 27.54 10.71 4.59 11.82 0.31 7.58 0.30 5.50 5.50 5.50 5.50 5.50 5.50 5.50 | 7 | 1/11/17 | 2.48 | 7.78 | | | 11.99 | 29 | | 0.31 | 7.89 | 0.68 | 4.72 | 15.84 | 0.25 | | 2/23/77 2.69 8.17 28.97 28.44 10.86 4.73 13.07 0.31 8.44 0.28 5.02 3/977 2.53 7.93 26.81 27.78 10.49 4.53 11.47 0.32 7.84 0.0 5.18 3/23/77 2.50 7.77 26.84 27.10 10.57 4.43 11.52 0.32 7.67 0.0 5.14 4/20/77 2.45 8.71 27.26 26.34 10.54 4.42·11.97 0.33 7.56 1.40 3.68 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 3.76 5/477 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/11/77 2.54 7.90 29.23 29.35 11.85 4.70 12.36 0.30 7.15 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.57 8.20 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.57 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.56 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 0.71 | 7 | 1/26/17 | 2.63 | 7.62 | | | 10.85 | 28 | _ | 0.26 | 8.20 | 0.0 | 5,36 | 16.56 | 0.10 | | 3/9/77 2.53 7.93 26.81 27.78 10.49 4.53 11.47 0.32 7.84 0.0 5.18 3/23/77 2.50 7.77 26.84 27.10 10.57 4.43 11.52 0.32 7.67 0.0 5.14 4/6/77 2.45 8.71 27.26 26.34 10.54 4.42.11.97 0.33 7.56 1.40 3.68 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 5.14 2.00/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/177 2.51 8.20 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.85 0.0 5.46 10/6/77 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 0.00 0.01 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 2/23/77 | 2.69 | 8.17 | | | 10.86 | 73 | _ | 0.31 | 8.44 | 0.28 | 5.02 | 14.67 | 1.75 | | 3/23/77 2.50 7.77 26.84 27.10 10.57 4.43 11.52 0.32 7.67 0.0 5.14 4/6/77 2.45 8.71 27.26 26.34 10.54 4.42 11.97 0.33 7.56 1.40 3.68 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 3.76 5/4/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/1/77 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 2 | 3/ 9/77 | 2.53 | 7,93 | | | 10.49 | 53 | _ | 0.32 | 7.84 | 0.0 | 5.18 | 14.63 | 8.35 | | 4/6/77 2.45 8.71 27.26 26.34 10.54 4.42·11.97 0.33 7.56 1.40 3.68 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 3.76 5/4/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/1/77 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.92 0.0 5.52 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 | 7 | 3/23/77 | 2.50 | 7.77 | | | 10.57 | 43 | _ | 0.32 | 1.67 | 0.0 | 5.14 | 14.20 | 5.60 | | 4/20/77 2.25 8.26 23.78 24.56 7.62 4.36 11.50 0.30 7.34 0.0 3.76 5/4/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/17 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32
7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/16/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.15 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 4/ 6/77 | 2.45 | 8.71 | | | 10.54 | 42. | _ | 0.33 | 7.56 | 1.40 | 3.68 | 13.65 | 3.30 | | 5/4/77 2.51 8.20 28.09 26.81 11.36 4.67 11.74 0.32 7.32 0.0 4.20 6/1/77 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 4/20/17 | 2.25 | 8.26 | | | 7.62 | 36 | _ | 0.30 | 7.34 | 0.0 | 3.76 | 13,38 | 5.20 | | 6/1/77 2.64 7.90 29.23 29.35 11.85 4.70 12.36 0.32 7.80 0.0 5.66 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 5/ 4/77 | 2.51 | 8.20 | | | 11.36 | 19 | _ | 0.32 | 7.32 | 0.0 | 4.20 | 15.29 | 1 | | 8/3/77 2.57 8.10 26.51 27.41 10.26 4.35 11.60 0.30 7.15 0.0 5.66 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 2 | <i>TL/</i> 17 /9 | 2.64 | 7.90 | | | 11.85 | 70 | _ | 0.32 | 7.80 | 0.0 | 5.66 | 15.88 | 0.50 | | 9/15/77 2.47 7.58 27.59 27.02 11.40 4.67 11.23 0.29 6.85 0.0 5.46 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 11/8 /8 | 2.57 | 8.10 | | | 10.26 | 35 | _ | 0.30 | 7.15 | 0.0 | 5.66 | 14.60 | 0.20 | | 10/6/77 2.52 7.53 26.66 26.36 10.70 4.25 11.42 0.29 6.92 0.0 5.52 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 7 | 9/15/77 | 2.47 | 7.58 | | | 11.40 | 29 | | 0.29 | 6.85 | 0.0 | 5.46 | 14.70 | 06.0 | | 2.52 7.96 27.42 27.54 10.71 4.59 11.82 0.31 7.58 0.20 4.95 Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | 2 | 10/ 6/77 | 2.52 | 7.53 | | | 10.70 | 25 | _ | 0.29 | 6.92 | 0.0 | 5.52 | 13,92 | 0.20 | | Dev. 0.11 0.34 1.52 1.54 1.12 0.27 0.64 0.02 0.49 0.43 0.71 | Mean | | 2.52 | 7.96 | • | | 10.71 | | 11.82 | 0.31 | 7.58 | 0.20 | 4.95 | 14.78 | 2.39 | | | Std. De | ۸. | 0.11 | 0.34 | 1.52 | 1.54 | 1.12 | 0.27 | 0.64 | 0.02 | 0.49 | 0.43 | 0.71 | 96.0 | 2.83 | Table F-3. Water quality samples taken from observation well No. 3. | Well | Date | ECx103 | E. F. | Cations | Anions | Ca | Mg | Na | K | U | ω3 | HCO ₃ | SO ₄ | NO ₃ | |--------|----------|--------|-------------------------|--|--------|--------|------|---------|--------|-------|------|------------------|-----------------|-----------------| | · | | | An - 10 mm ar - 10 mm a | | | | | (meq/1) | | 1 | | | | (mdd) | | ന | 3/20/76 | 2.59 | 8.16 | ~ | | 9.01 | 91 | 19.33 | 0.34 | 9,47 | 0.0 | 6.78 | | 0.0 | | m | 4/3/76 | 2.62 | 8.20 | m | • | 10.48 | 57 | 18.66 | 0.30 | 9.23 | 0.0 | 95.9 | | 0.55 | | m | 5/ 1/76 | 2. | 8.07 | ં | | 66.9 | 49 | 15.91 | 0.32 | 8.62 | 0.0 | 5.71 | | 0.21 | | M | 5/15/76 | 2 | 8.37 | o. | | 10.45 | 85 | 15.37 | 0.34 | 9:36 | 0.0 | 5.42 | | 0.69 | | m | 5/28/76 | 2.71 | 7,48 | 31.04 | 31.21 | 10.07 | 3.73 | 16.87 | 0.37 | 90.6 | 1.69 | 4.46 | 16.00 | 0.10 | | ٣ | 6/28/76 | 2 | 8.51 | 9 | | . 6.10 | 33 | 17.06 | 0.39 | 8.87 | 0.44 | 3,56 | | 0.10 | | m | 7/13/76 | 2. | 8,32 | 2 | | 7.51 | 72 | 17.85 | 0.04 | 9.25 | 0.0 | 4.28 | | 0.02 | | m | 7/26/76 | 2. | 8,10 | , | | 9.21 | 57 | 18.58 | 0.35 | 8.86 | 0.0 | 4.04 | | 2.11 | | m | 8/11/76 | 2 | 8.08 | 0 | | 7.27 | 70 | 18.70 | 0.37 | 9.53 | 0.0 | 4.32 | | 0.85 | | m | 8/25/76 | ζ, | 8.21 | Ö | | 7.62 | 85 | 18.79 | 0.39 | 9.90 | 0.0 | 2.98 | | 1.99 | | m | 91/1/6 | 2 | 8.16 | α, | | 7,26 | 80 | 17.04 | 0.46 | 10.25 | 0.0 | 3.02 | | 0.0 | | m | 9/23/76 | 2 | 8.15 | , | • | 9.40 | 85 | 17.86 | 0.36 | 10.08 | 0.36 | 4.50 | | 1.92 | | m | 10/5/76 | 7 | 7.74 | m | | 10.77 | 96 | 18.74 | 0.35 | 9.98 | 0.0 | 96.9 | | 0.02 | | e | 10/21/76 | 2 | 8.39 | m | | 9.74 | 58 | 19.13 | 0.38 | 9.45 | 0.52 | 3.94 | | 0.20 | | ٣ | 12/14/76 | | 7.72 | Θ. | • | 12.85 | 34 | 18.95 | 0.34 | 9.64 | 0.0 | 91.9 | | 0.30 | | 3 | 12/28/76 | | 7.43 | | • | 12.54 | 10 | 19.67 | 0.38 | 9.93 | 0.0 | 6.84 | 18.04 | 0.05 | | | j | 03 (| 50.0 | רא נכ | 30 03 | . o | 2 83 | 18.03 | 0 34 | . 47 | 0 19 | ٦.
ص | 16.26 | 0 57 | | Mean | | 7.00 | 0.0 | TF. TC | | 04.0 | | 70.1 | r
> | 7.37 | 1.0 | • | | | | Std. D | Dev. | 0.14 | 0.32 | 2.94 | 2.43 | 1.98 | 0.31 | 1.25 | 0.09 | 0.48 | 0.44 | 1.42 | 1.62 | 0.76 | | | | | | | | | | | | | | | | | Table F-3. Water quality samples taken from observation well No. 3 (continued). | We11 | Date | ECx10 ³ | IId | Cations | Anions | Ca | Mg | Na | * | CI | ω_3 | HCO ₃ | SO ₄ | NO ₃ | |--------------|--------------|--------------------|------|---------|---------|--------|--------|---------|------|-------|------------|------------------|-----------------|-----------------| | | | | | | | | | (meg/1) | 1 | | 1 | | | (mdd) | | m | 1/11/77 | 3.06 | 7.55 | | | 12.92 | | 16.45 | 0.38 | 13 | 0.68 | 6.18 | 19.36 | 0.05 | | ٣ | 1/26/17 | 3.20 | 7.61 | 35.23 | 35.90 | 11.08 | 4.4]] | 19.39 | 0.35 | 10.12 | 0.0 | 6.64 | 19.14 | 0.15 | | . W . | 2/23/77 | 3.21 | 8.02 | | | 12.58 | | 17.18 | 0.38 | 29 | 0.0 | 6.70 | 17.10 | 1.70 | | ĸ | 11/6 /8 | 2.80 | 90.8 | | | 9.65 | | 60.91 | 0.40 | 92 | 0.0 | 5.76 | 15.80 | 1,55 | | m | 3/23/77 | 2.86 | 7.92 | | | 10.10 | | 15.20 | 0.39 | 16 | 0.0 | 5.94 | 15.48 | 0.07 | | ĸ | 11/9/1 | 2.73 | 8.18 | | | 9.58 | | 16.60 | 0.38 | 94 | 0.0 | 4.84 | 15.52 | 0.15 | | m
1/ | 4/20/77 | 2.48 | 8.18 | | | 06.90 | | 15.50 | 0.34 | 38 | 0.0 | 3.86 | 14.39 | 0.10 | | 6 | 5/ 4/77 | 2.78 | 8.24 | | | 10.69 | | 16.13 | 0.36 | 98 | 0.0 | 5.88 | 16.45 | 1 | | æ | 6/ 1/77 | 3.10 | 7.69 | | | 12.18 | | 18.36 | 0.38 | 89 | 0.0 | 6.80 | 17.24 | 0.05 | | ٣ | 11/8 /8 | | 8.19 | | | 11.56 | | 16.97 | 0.36 | 62 | 0.0 | 7.10 | 17.10 | 0.08 | | m | 9/15/77 | 3.20 | 7.75 | | | 13.04 | | 15.77 | 0.34 | 69 | 0.0 | 6.40 | 17.00 | 1.60 | | m | 10/ 6/77 | | 7.55 | | | 12,32 | | 17.49 | 0.34 | 26 | 0.0 | 6.38 | 17.00 | 0.20 | | ; | | ć | ŗ | | c
c | ,
, | | 4 | (| | (| • | , | 4 | | Mean | | 7.99 | 16./ | 32.03 | 32.33 | 11.05 | 3.85 | 16./6 | 0.3/ | 9.43 | 0.00 | 6.04 | 16.80 | 0.52 | | Std. Dev | • Λ ε | 0.25 | 0.27 | 2.82 | 2.82 | 1.79 | 98.0. | 1.21 | 0.02 | 0.61 | 0.20 | 0.91 | 1.44 | 0.71 | | - | | | | | 1111111 | 11111 | | | | | | | | *** | ## Appendix G WATER QUALITY OF THE TRICKLE IRRIGATION WELL Table G-1. Water quality of the trickle irrigation well. | We]] | Well Date | ECx103 | Cx103 pH Cat | Cations | Anions | Ca | Mg | Na | X | CI | ය | HCO3 | so_4 | NO ₃ | |-----------------|--|--------|--------------|---------|--------|------|------|---------|------|------|------|------|--------|-----------------| | | و جون محد نست نيمار وجه بابت وابت هي خدد نيت نيت ن | | | | | | | (meq/1) | (| | | |
 | (mdd) | | - | 3/20/76 | | 8.42 | 6.68 | 6.39 | 1.47 | 0.70 | 4.4] | 0.10 | 1.27 | 0.16 | 3.44 | 1.52 | 0.0 | | · 11 | 4/ 3/76 | | 8.50 | 6.65 | 6.35 | 1.47 | 69.0 | 4.38 | 0.11 | 1.34 | 0.0 | 3.44 | 1.56 | 0.48 | | 1 }1 | 4/10/76 | | 8.18 | 6.59 | 6.41 | 1.79 | 99.0 | 4.02 | 0.12 | 1.35 | 0.0 | 3.62 | 1.43 | 0.40 | | | 5/ 1/76 | | 8.09 | 6.63 | 6.41 | 1.75 | 0.75 | 4.02 | 0.11 | 1.27 | 0.0 | 3.78 | 1.36 | 0.27 | | 1 | 5/15/76 | | 8.41 | 6.71 | 6.39 | 1.61 | 0.75 | 4.24 | 0.11 | 1.28 | 0.0 | 3.44 | 1.67 | 0.20 | | ι Η
Ω | 5/28/76 | 0.62 | 7.94 | 7.08 | 6.82 | 1,33 | 0.70 | 4.93 | 0.12 | 1.32 | 0.0 | 4.04 | 1.46 | 0.10 | | Mean | | 0.55 | 8.26 | 6.72 | 6.46 | 1.57 | 0.71 | 4,33 | 0.11 | 1.30 | 0.03 | 3.63 | 1.50 | 0.24 | | Std. Dev. | Dev. | 0.03 | 0.22 | 0.18 | 0.18 | 0.18 | 0.04 | 0.34 | 0.01 | 0.04 | 0.07 | 0.24 | 0.11 | 0.18 | | | ** | | | | | | | | | | | | | | Table G-1. Water quality of the trickle irrigation well (continued). | i | Well | Date | ECx10 ³ | Hd | Cations | Anions | Са | Mg | Na | K | C1 | ω_3 | HCO ₃ | SO4 | NO3 | |--------------|------------------------|----------|--------------------|------|---------|--------|------|--------|--------|------|---------------|------------|------------------|--------|-------| | i | | | | | | | | i
 | (mea/1 | | ‡
.l
.l |

 | 1
f
1 | l
I | (wdd) | | | | 1/11/1 | 1,19 | 7.74 | 14.40 | | 6.38 | 1.70 | 6.14 | 0.18 | 2.73 | 0.0 | 5.74 | 6.64 | 0.05 | | | · - | 2/ 9/77 | 1.26 | 8.45 | 13.29 | | 6.14 | 1.51 | 5.48 | 0.16 | 2.79 | 0.0 | 5.06 | 5.43 | 0.15 | | | ı i | 2/23/77 | 1.24 | 8.25 | 12.83 | | 5.90 | 1.56 | 5.22 | 0.15 | 2.85 | 0.40 | 4.44 | 5.24 | 0.10 | | | 1 j 1 | 3/ 9/77 | 1.08 | 8.15 | 11.67 | 11.31 | 5.09 | 1.47 | 4.95 | 0.16 | 2.75 | 0.0 | 3.92 | 4.64 | 0.15 | | | i i— | 3/23/77 | 1.25 | 7.72 | 13.08 | | 6.26 | 1.63 | 5.00 | 0.19 | 2.67 | 0.0 | 5.40 | 5.38 | 0.85 | | | t 1 | 4/ 6/77 | 1.24 | 7.99 | 14,60 | | 6.99 | 1.86 | 5.58 | 0.17 | 2.74 | 0.0 | 00.9 | 6.01 | 0.05 | | | · ; | 4/20/77 | 1.18 | 8.16 | 13,27 | | 6.32 | 1.70 | 5.09 | 0.16 | 2.55 | 0.0 | 4.70 | 5.58 | 0.08 | | 7 | ; - | 7/13/77 | 1.49 | 7.42 | 14.96 | | 7.01 | 1.92 | 5.85 | 0.18 | 2,83 | 0.0 | 5,50 | 6.92 | 1 | | <i>1</i> , 0 | (| 17/2/8
| 1.43 | 7.59 | 14.93 | | 7.18 | 1.87 | 5.70 | 0.18 | 2.76 | 0.0 | 5.86 | 6.32 | 0.0 | | | + - | 10/ 5/71 | 1.40 | 8.08 | 14,55 | 15.07 | 6.73 | 1.93 | 5.71 | 0.18 | 2.98 | 0.0 | 5.76 | 6.28 | 3,35 | | Σ | Mean | | 1.28 | 7.95 | 13.76 | 13.89 | 6.40 | 1.71 | 5.47 | 0.17 | 2.76 | 0.04 | 5.24 | 5.84 | 0.53 | | ß | Std. Dev | ٥٠. | 0.13 | 0.32 | | 1.33 | 0.62 | 0.17 | 0.40 | 0.01 | 0.11 | 0.13 | . 69.0 | 0.71 | 1.09 | | 1 | | | | | | | | !
! | | |
 | | | | |